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Abstract .  This paper describes a new way to compute the optical flow 
based on a discrete wavelet basis analysis. This approach has thus a 
low complexity (O(N) if one image of the sequence has N pixels) and 
opens the way to efficient and unexpensive optical flow computation. 
Features of this algorithm include multiscale treatment of time aliasing 
and estimation of illumination changes. 

K e y w o r d s  Analytic wavelets, Image compression, Optic flow, Illumination, Dis- 
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1 Introduction 

Optic flow detection consists in computing the motion field v = (vl, v2) of the 
features of an image sequence in the image plane. Applications range from mov- 
ing image compression to real scene analysis and robotics. 

Given an image sequence It(Xl,X2) we want to measure the optical flow 
v = (vl, v2) that  matches the well known optical flow equation 

I t + s t ( X  1 -~ v l S t ,  x 2 -~- v25 t  ) = / t (Xl ,X2)  , (1) 

or its differential counterpart  

Olt Olt oh 
--OXl Vl -'[- --V2(~X2 -~- ~ = 0 . (2) 

No point-wise resolution of (2) is possible, since on each location and each time, 
this would consist in solving a single scalar equation for two scalar unknowns. 
This is the aperture problem. 

1.1 P r e v i o u s  W o r k  

Horn & Schunck [13] [14] wrote a pioneering paper on the subject in 1980. 
Then, several methods where proposed: region matching methods [2], differen- 
tial methods [16] and spatiotemporal filtering methods [1] [6] [9] [11] [12], on 
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which Barron ~4 al. made an extensive review [3]. Later, Burns ~ al. developed 
a discrete wavelet spatiotemporal filtering technique [4], and Weber & Malik 
designed a filtered differential method [21]. 

In this profusion of methods, two points always arise: 

A d d i t i o n a l  a s s u m p t i o n  The only way to get rid of aperture is to do an addi- 
tional assumption on the optic flow, expressed or implied. Horn & Schunck 
minimize a smoothness functional; region based matching methods, and fil- 
tering based methods [2] [1] [6] [9] [11] [12] [4] [21] rely explicitly on the 
assumption that  the optic flow is constant over quadrangular domains. 

Mu l t i s ca l e  a p p r o a c h  Because of t ime aliasing, the optic flow measurement 
must be performed on a multi-scale basis. Coarse scales for detection of 
large displacements and finer scales for smaller displacements. 

1.2 M o t i v a t i o n  

This work was motivated by the belief that  wavelet bases, as described by Ingrid 
Daubechies [7] St~phane Mallat [17] are a very well designed tool for our purpose 
for several reasons: 

- Wavelet bases have a natural multiscale structure; 
- As a local frequency analysis tool, wavelet analysis compares favorably to 

filtering (as used in [1] [6] [9] [11] [12] [21]) because it is far less computation 
intensive, and still provides a complete information on this signal; 

- With the additional assumption that  the optic flow is locally constant, they 
provide an easy way to solve the aperture problem. 

1.3 R o a d  M a p  

In Sect. 2, we show how we solve the aperture problem. Section 3 is devoted to 
numerical experimentation. Time aliasing problems are addressed in Sect. 4, and 
Sect. 5-6 respectively focus on stability enhancement with analytic wavelets, and 
to the design of dyadic filter bank wavelets that  are specific to the optic flow 
measurement, and are a key point in achieving these measurements in a short 
time. 

2 S u g g e s t e d  S o l u t i o n  

2.1 Wave le t  N o t a t i o n s  

We start from a set of mother wavelets (r in L2(R2). We then define a 
8 2 discrete wavelet family (r by 

= 2Jr "(2 ix  - k)  

where j is a resolution index and k = (kl, k2) a 2-dimensional translation index, 
and x a 2-dimensional variable x -- (xl, x2). 
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EXAMPLE - - In  image processing, a set of three mother wavelets is commonly 
used. These wavelets are built as tensor products of a scaling function r E 
L2(R) and a wavelet r E L2(R): 

4 I(x) = r162 (3) 
r = r162 (4) 
r = r162 (5) 

Note that  a wavelet r is located around (2-Jkl ,  2-Jk2), and spreads over 

domain of size proportional to 2 - j .  

2.2 Loca l  S y s t e m s  

Given such a basis, we do an inner product of (2) with all the S different wavelets 
tha t  we have at scale j and location k, getting thus S different equations. 

t~lXl vx(x) -~- ~2X2 V2(X) -[- - - ~ )  Cjk(X)dx,dx2 = 0 Vs = 1.. .  S (6) 

Using the notation < f ,  g > =  f f  f(x)g(x)dxldx2, this can also be written as 

O& ~ ) l O& ~ \ l a& , ' ,  

For a given resolution j and translation index k, we do the following assump- 
tion: 

(Ajk): vl(x)  and v2(x) are constant over support  1(r ]or all s = 1..S 

Equation (7) then becomes 

I O I t ,  , )  IOIt  ~ "  O 
r j k V l -b ~ -'~'~X 2 ' l/J j k ~ V 2 -~'- -'~ ( I t ' ~J 3 k ) : 0 VS:  1. . .S 

and after an integration by parts 

I~, 0xl / + It'-5~-x2 v ~ = ~  . . . .  

For j and k fixed, we have a local system of 3 equations with 2 unknowns vl 
and v2, that  has to be compared to the single equation (2): now we have found 
a way around aperture. 
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Fig. 1. Measure grids at several scales 

2.3 Solving the Local Systems 

For some scale indexes j = 1,2, 3, the corresponding discrete grids {2 - j  (kt,  k2)} 
are displayed in Fig. 1. At each node of each of these, we have a local system (8). 

A question arises: what  grid should we choose for our optic flow measure- 
ment? The answer depends on several factors. 

- -  Arguments towards finer scale grids are (1) tha t  we get a finer knowledge 
of the space dependence of the optic flow and (2) tha t  the needed assumptions 
on the optic flow .Ajk are looser when the scale is finer. 

- -  However, there is a strong argument  against going towards finer scales: 
t ime aliasing (see Sect. 4). Time aliasing limits reliable est imation of the flow at 
a given scale j to flows tha t  are smaller than c~2-J, where a is some constant of 
[0, 1/2). 

2.4 Adaptive Choice of  the Measure Scale 

The t ime aliasing limitation making fine scale measurements  unreliable, we will 
s tar t  with coarse scale measures and then refine our measure. The behavior of 
a local system at a given scale j and location 2 - J (k l ,  k2) hints us whether at a 
given location, we stick at the current scale, or we use finer scale estimation. 

1. If the system has a unique solution (vl, v2), we get a straightforward esti- 
mat ion of the optic flow at  2 - Jk .  Thus the measure scale j is suitable. 

2. If the system has no solution, it means tha t  our assumption ,4jk is incorrect. 
In such a case, we t ry  to do finer scale measurements,  since they rely on 
looser assumptions .Aj+l,k,. 

If for example our measure region overlaps two regions where the flow is 
different, we have to split our measure region in subregions, to perform 
again this measure on each of these subregions, where hopefully the optic 
flow is locally constant. 

1 For the simplicity of our statement, we will consider the interval where most of 
the L2(R)-energy of the wavelets is concentrated, and suppose that this support is 
2-Jk  + [ - 2 - J - 1  ; 2-J-l]  2. 
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3. If  on the contrary,  the sys tem has infinitely m a n y  solutions, this means tha t  
the  pa t t e rn  at the locat ion we are looking at is too  poor  to  tell us how it is 
moving.  The  aper ture  problem remains.  

A typical case is a locally translation invaxiant pattern, because then it is 
impossible to measure its translation along his translation invariance axis. 

As a safeguard against  errors induced by t ime aliasing, we add two tests. 
The  first is done in case 1, where we reject measures (vl, v2) t ha t  are above the 
t ime aliasing threshold (ie I(vl,v2)l > a x 2-J ) .  The  second is done in case 2, 
where we make a least-squares est imate  of  v. If  Ivl > a • 2 - j - 1  , we give up any 
es t imat ion at t ha t  location, since even finer scale es t imat ions are false because 
of aliasing. 

3 Numerical  Experimentation 

The algor i thm was implemented with a dedicated set of  analytic mothe r  wavelets. 
The  mot ivat ion of their use as well as their const ruct ion are described in Sect. 5. 

3.1 True Sequences 

Image sequences were downloaded from Bar ron  84 al.'s F T P  site at  csd.uwo.ca. 
The a lgor i thm was tested on the  rubik sequence (a rubik 's  cube on a ro ta t ing  
plate), the taxi  sequence (where three vehicles are moving respectively towards  
East ,  West  and Northwest)  and the  NASA sequence, which a is zoom on a Coke 
can. 

Fig.  2. Rubik sequence and flow 

3.2 Synthetic Sequences 

The described a lgor i thm was also run on classical synthet ic  sequences (including 
Yosemite), and the result was compared  to  classical me thods  (Heeger, Fleet & 
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Fig. 3. Taxi sequence 

Fig. 4. NASA sequence 

Jepson, Weber & Malik). The estimations errors are about  1.2 times higher, and 
are thus a little weaker. Reasons for this are tha t  

- the suggested method is a two-frame method,  while others rely on a number  
of frames ranging from 10 to 64; 

- there no is coarse scale oversampling, and no coarse scale error averaging. 
The small loss of accuracy induced by this is counterbalanced by a much 
lower computat ional  cost. 

3.3 Il lumination Changes 

We use a new optic flow equation 

Oh air  v air  oxv,+-5--yy ~, + --~- = ~ h  

instead of (2) where )~ = o log L is the logarithmic derivative of the illumination 
factor L. We use an additional wavelet shape r176  = r162 of nonzero 
integral, and perform illumination change measurements,  tha t  is, est imate the 
new unknown parameter  )~. 
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A synthetic sequence (moving white noise, with increasing illumination of 
Gaussian shape) was created. Three pictures of the sequence (Fig. 5) and the 
corresponding measured flow and illumination map (Fig. 6) are displayed. The 
real optic flow is of (1.2, 0.8) pixels per frame, and the average error in degrees 
as measured by Barron & al. is less than 1. 

Fig. 5. Moving random pattern with varying illumination 

4 T i m e  A l i a s i n g  

Since our picture sequence is time sampled, the computation of the right-hand 
side coefficient in (8) 

0__ (i,, 
Ot 

Fig. 6. Measured flow and illumination maps 

relies on a finite difference approximation of the picture time derivative o I in ~ t  
time, like ~  _ It+l - It. We will see that  the error of such estimations is high 
if the displacement (vl, v2) between two pictures It and It+l is large with regard 
to the wavelet scale 2-J. 
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Note that  this phenomenon always arises in some form in optic flow compu- 
tation and has been pointed out by many authors [15]. Also note that  this very 
problem motivates a multiscale approach to optic flow computation [2] [4] [18] 
[21]. 

Let us suppose that  for a given j and k, the picture is translating uniformly 
over the support of our wavelets r for all s, ie 

I t ( x )  = S ( x  - t v )  

4.1 E r r o r  B o u n d  

The simplest time derivative approximation is a two step finite difference 

Oh 
O-T ~- It+l - It 

In this paper however, we will use higher order estimate, and measure the optic 
at each t + 1/2, between two successive pictures, based on the following approx- 
imation: 

OIt+l/2 
Ot ~- It+l - I t  

Now we also need to compute coefficients of the left hand side of (8) at t + 1/2: 
0 s < b-~T~r It+l~2 >, because we only know them at integer times. This is done 

with the following estimation: 

~ t h + l / 2  It "~ It-{-1 
2 

At a given resolution j ,  these approximations lead respectively to the following 
coefficient approximations: 

0It+1/2 
< 0----t--' Cjk > ~ (it+l -- It, Cjk) (9) 

< [t+l/2,r >'~ <I t+l /  l t , r  (10) 

which can be rewritten after variable changes and integrations by parts 

< I t + l / 2 , v . V C j k  > ~-- < I t + l / 2 , r  -- Cjk(X-- V/2)> (11) 

< s~+~/~,r >~< I~+'l~'r162 2 (12) 
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4.2 De s ign  R u l e  

Each approximation (11) and (12) is the approximation of a linear functional of 
L2 (]~) with another one. We take as a design rule that  the following approxima- 
tions be true: 

V . V C j k  ' ~  C j k ( X  + V / 2 )  - -  • j k ( X  - -  V / 2 )  ( 1 3 )  

Cjk ~-- Cjk(X + V/2) + 2 ~bjk(X -- V/2)) (14) 

With a Taylor expansion of 4,  we can prove that  there exists some constant M 
such that  the sum of the relative errors of (13) and (14) is less than M x (Ivl2J). 
This sum has been numerically estimated for the wavelets we use later in this 
algorithm, and lead to the constraint 

I Ivl _< 042 • I 

5 Analytic  Wavelets  

Standard real valued wavelets are displayed in Fig. (7-a-d). If we use wavelets 
r r and r to compute the optic flow, the determinants of the system of 
equations (8) will be real valued and highly oscillating in space. 

For these two reasons, they will vanish very often and make the flow estima- 
tion poor and unstable. 

5.1 A P r o b l e m :  E x t i n c t i o n  

Going back to the one-dimensional case, we can write the velocity estimation as 

a f I t(x)r  
v(k/2J) ~-- ot (15) 

f It (x)r (x)dx 

. . . .  l i,t �84 
o.8 ........... i i i 

~ i . . . . . .  T ........... i ............... o .............. i .......... 
~6 o. ............ 

o.4 

0.2 ~: 0.4 :- 04 

o 4 o 5 

(a) r (b) r (c) I $ 1  (d) I ~ 1  

Fig. 7. r r and their Fourier transforms 
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If r is a classical real-valued wavelet, as displayed in Fig. (7-a,c), its t ime 
and frequency behavior can be described with a local cosine model: 

r g(x) cos(x) = Re(g(x)e (16) 

where g(x) is an even function with a frequency content significantly narrower 
that  2~. As a consequence, we can make the following approximation: 

r  = Re(ig(x)e i~) 

In this case, the denumerator of (15) is equal to 

D(k/2J) = Re (i2J / It(x)g(2Jx - k)eK2~x-k)dx) 

= Re (i2Je-ik f lt(x)ei2JX g(2Jx - k)dx) 

=Re( ie- ik f l t (2-Jy)e iyg(y-k)dy)  by setting y = 2ix 

where the integral is a convolution C of two functions 

y ~-+ It(y2-J)e iy 
and y ~ g(-y) = g(y) 

Because g has a narrow spectrum, so has C, and thus our denumerator is 

D(k/2 j) = Re(ie-ikC(k) ) 

where C is slowly varying. Therefore, 

D(k/2 j) = cos(k - ArgC(k)  + 7c/2) x IC(k)l (17) 

where Arg(C(k)) and IC(k)l are slowly varying. The denumerator thus roughly 
behaves like a cosinus function. It is thus very likely to vanish or to be close to 
0 for some k. 

5.2 A Solution: Analytic  Wavelets 

If instead of this real valued wavelet r  we use its positive frequency analytic 
part  r  defined as 

~+(~) = 2 x 1(4_>0) x r 

equation (16) becomes 

r _ g(x)e 

that  is the same formula now without the "real-part" operator.  As a result, the 
cosine function is replaced by a complex exponential in (17) that  becomes 
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D(k/2 j) = ei(k-Arg C ( k ) + ~ / 2 )  X IC(k)l 

The modulus of D(k/2J) is now [C(k) instead of [ c o s ( ( k - i r g  C(k)+Tr/2) x IC(k)[ 
and is less often close to zero. 

Two-dimension analytic wavelets This suggests us to replace our three real 
wavelets r r and r as defined in equations (3-5), with the four following 
wavelets 

~l(x)  ~--- r162 

~2(X) ~.~ r162 
~3(X) = r162 
~4(X) : r 

(is) 
(19) 

(20) 
(21) 

where r  = r  It is easy to prove that  if (~)~k)s=I..3,jEZ,kCZ2 is a basis of 
L2(]~), then (k~k)s=l..4,jeZ,keZ: is a frame. 

Analytic measure functions are also used in spatiotemporal filtering tech- 
niques, where velocity tuned filters are analytic [9]. Note, however, that  the 
Hilbert transform is also used to make filters direction selective and not analytic 
[4] [20]. 

Psychophysical evidence also supports the use of analytic wavelets. Daugman 
[8] identified a pair of (real valued) Gabor filters with a 7r/2 phase shift between 
them 

f l  = e - (x-x~ eosk .X 

f2 = e - (x-x~ sin k .X 

Such a pair can equivalently be seen as a single complex filter 

f = e-(X-X~ ik'x (22) 

that  now has a non-symmetric spectrum, and is thus an approximation of an 
analytic transform of f l .  

6 Dyadic  Filter Bank Wavelets  

For computational efficiency, we need wavelets implementable with dyadic filter 
banks, so that  the computation of the system coefficients in (8) can be done with 
a fast wavelet transform. We will use separable wavelets r  x~) = f(xl)g(x2), 
and can therefore limit ourselves to the one-dimensional case. 

Wavelet coefficients in the one-dimensional case can be computed with a 
dyadic pyramid filtering and subsampling scheme when the wavelet is an infinite 
convolution of discrete FIR 2 filters, which can be written in Fourier domain as 

2 finite impulse response 
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= I I  ms 
j----1 

where the m s's axe trigonometric polynomials. For computational efficiency pur- 
poses, the functions rn s should be all the same, up to the very first ones. 

There exist plenty of dyadic filter bank wavelets. More difficult points are 
the computation of wavelet derivative coefficients also with dyadic filter banks, 
as well as the design of analytic dyadic filter bank wavelets. 

6.1 Dyadic Filter Bank Wavelet Derivatives 

If a function r is an infinite convolution of discrete filters 

j = l  

then 

where 

Proof. 

j : l  

we get, 

f ~  m)(~) = ~ e'~+l i f j  > 2 
[2(e i e -  1)ml(~) i f j  1 

Thanks to the following identity 

+ ~ e  i~/2j +1 _ e i ~ -  I 

H 2 i~ 
j= l  

ms =i IIms 
j-"=l j= l  

This shows that  the derivative a dyadic filter bank wavelet is also implementable 
with a filter bank and gives us the rule to find the corresponding coefficients. The 
extension to partial derivatives of two-dimensional wavelets is straightforward. 

6.2 Analytic Dyadic Filter Bank Wavelets 

Using a true Hilbert transform to compute analytic wavelet coefficients is not 
possible in practice because of its computational cost. The purpose of this section 
is thus to approximate the Hilbert transform r  of a real wavelet r with an 
almost analytic wavelet r  that  can still be implemented with a FIR 2 filter 
bank. 
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We want our wavelet r  to have most of its energy on the positive frequency 
peak, and we want to keep the relationship r = 2 Re(~b#), the same way as for 
the true Hilbert transform, r = 2 Re(C+). 

Starting from any FIR filter pair m0 and ml defining a wavelet as 

= m l  m 0  ( 2 4 )  

r and its Fourier transform are displayed in (7-a,b). 
If m2 is a Deslauriers-Dubuc interpolation filter, then r  (~) = ~(~)m2 ( ~ / 2 -  

~r/4) is a good approximation of r  (~), since most of the negative frequency peak 
of r is canceled by a vanishing m2 (~). r (solid) and m2 (~ - 7~/4) (dashed) are 

displayed together in 8-a, and the resulting r  in 8-b. The remaining negative 
frequency content of r  is not 0, but  is less than 2% of r  total L2 norm. 
Also we have the relationship r = 2 Re(C#),  because 

m 2 ( ~ ) + m 2 ( ~ + T r ) = l  and m 2 ( ~ ) = m 2 ( - ~ )  V~ 

Thanks to the way r  is defined, inner products f I(x)r are com- 
puted the same way as f I(x)r up to a single additional discrete filtering 
step. 

C o n c l u s i o n  

The method presented in this paper is an improvement of the existing ones in 
terms of reduced computational complexity. This reduction is gained because 

- the optic flow is computed with only two frames. 
- the pyramid filtering and subsampling scheme structure allows to measure 

displacements at several scales without massive convolutions. As a conse- 
quence, optic flow of a standard sequence can be computed on a single pro- 
cessor computer in few seconds. 
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