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A b s t r a c t .  We present a flexible curve matching algorithm which per- 
forms qualitative matching between curves that are only weakly similar. 
While for model based recognition it is sufficient to determine if two 
curves are identical or not, for image database organization a continuous 
similarity measure, which indicates the amount of similarity between the 
curves, is needed. We demonstrate how flexible matching can serve to 
define a suitable measure. Extensive experiments are described, using 
real images of 3D objects. Occluding contours are matched under par- 
tial occlusion and change of viewpoint, and even when the two objects 
are different (such as the two side views of a horse and a cow). Using 
the resulting similarity measure between images, automatic hierarchical 
clustering of an image database is also shown, which faithfully capture 
the real structure in the data. 

1 I n t r o d u c t i o n  

Contour  match ing  is an impor t an t  problem in computer  vision with a variety of 
applications,  including model  based recognition, depth from stereo and tracking. 
In these applicat ions the two matched  curves are usually very similar. For exam- 
ple, a typical  appl icat ion of  curve match ing  to model  based recognition would 
he to decide whether  a model  curve and an image curve are the same, up to an 
image t ransformat ion  (e.g., t ranslat ion,  ro ta t ion  and scale) and some permi t ted  
level of  noise. 

In this paper  we are pr imari ly  interested in the case where the similari ty 
between the two curves is weak. This is the si tuation,  for example,  when a 
recognition sys tem is equipped with p ro to type  shapes instead of  specific exem- 
plars. In this case the goal is to classify a given shape as belonging to a certain 
family, which is represented by the prototype.  Another  example  (demonst ra ted  
in section 3) is the organizat ion of  an image da tabase  in a hierarchy of shape 
categories. 

We use flexible curve match ing  to relate between feature points  tha t  are ex- 
t racted on the boundar ies  of objects.  We do not have a precise definition of what  
a reasonable match ing  between weakly similar curves is. As an illustrative exam- 
pie, consider two curves describing the shape of two different mammals :  possibly 
we would like to see their limbs and head correspondingly matched.  The  matched  
pairs of points  are then aligned using an opt imal  similari ty t ransformat ion.  Front 
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the residual distances between corresponding features we compute a robust dis- 
similarity measure between silhouettes. 

To put our method in the context of existing curve matching methods, we 
first distinguish between dense matching and feature matching. Dense matching 
is usually formulated as a parameterization problem, with a cost function to be 
minimized. The cost might be defined as "elastic energy" needed to transform 
one curve to the other [4, 7], but other alternatives also exist [2, 10, 9]. The main 
drawbacks of these methods are their high computational complexity (which is 
reduced significantly if only key points are matched), and the fact that  none of 
them is invariant under both rotation and scaling. Computation of elastic energy 
(which is defined in terms of curvature) also requires an accurate evaluation of 
second order derivatives. 

Feature matching methods may be divided into three groups: proximity 
matching, spread primitive matching, and syntactic matching. The idea behind 
proximity matching methods is to search for the best matching while permitting 
the rotation, translation and scaling (to be called alignment transformation) of 
each curve, such that the distances between matched key points are minimized 
[13, 3, 25]. The method is rather slow, and if scaling is permitted an erroneous 
shrinking of one feature set may result, followed by the matching of this set with 
a small number of features from the other set. One may avoid these problems by 
excluding many-to-one matches and by using the order of points, but then the 
method becomes syntactic (see below). As an alternative to the alignment trans- 
formation, features may be mapped to an intrinsic invariant coordinate frame 
[17,20, 21]; the drawback of this approach is that it is global, the entire curve is 
needed to compute the mapping. 

Features can be used to divide the curves into shape elements, or primitives. 
If a single curve is decomposed into shape primitives, it is reasonable to constrain 
the matching algorithm to preserve their order (see below). In the absence of 
any ordering information (like in stereo matching of many small fragments of 
curves), the matching algorithm may be called "spread primitive matching". 
In this category we find algorithms that seek isomorphism between attributed 
relational graphs [5, 15, 8], and algorithms that  look for the largest set of mutually 
compatible matches. Here, compatibility means an agreement on the induced 
coordinate transformation, and a few techniques exist to find the largest set of 
mutually compatible matches (e.g., by constructing an association graph and 
searching for the maximal clique [14]). 

For our purpose of matching complex outlines, it is advantageous to use 
the natural order of primitives and there is no need to solve the more general 
problem, which requires additional computational cost. Note that  isomorphism of 
attributed relational graphs is found by different relaxation methods (sometimes 
called "relaxation labeling"), and they depend on successful choice of initial 
conditions. Scale and rotation invariance is achieved in these methods by using 
invariant relations, which suffer fi'om the same drawbacks as invariant attributes 
(see below). 
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A syntactical representation of a curve is an ordered list of shape elements, 
having attributes like length, orientation, bending angle etc. Hence, many syn- 
tactical matching methods are inspired by efficient and well known string com- 
parison algorithms, which use edit operations (substitution, deletion and inser- 
tion) to transform one string to the other [26, 18, 12]. The pattern recognition 
problem is different from the string matching problem in two major aspects, 
however: first, in pattern recognition invariance to certain geometrical transfor- 
mations is desired; second, a resolution degradation (or smoothing) may create 
a completely different list of elements in the syntactical representation. 

There are no syntactic algorithms available which satisfactorily solve both of 
these problems. If invariant attributes are used, the first problem is immediately 
addressed, but then the resolution problem either remains unsolved [1, 11, 16] or 
it is addressed by constructing for each curve a cascade of representations at dif- 
ferent scales [24]. Moreover, invariant attributes are either non-local (e.g., length 
that is measured in units of the total curve length), or they are non-interruptible 
(see discussion in section 2.5). Using variant attributes is less efficient, but pro- 
vides the possibility to define a merge operator which can handle noise [19, 22, 
23], and might be useful (if correctly defined) in handling resolution change. 
However, the methods using variant attributes could not ensure rotation and 
scale invariance. 

In this paper we present a local method which can cope both with occlusion 
and with image similarity transformations, and yet uses variant attributes that 
make it possible to cope with true scale (resolution) changes. The algorithm is 
presented in section 2. We are primarily concerned with the amount of flexibility 
that  our method achieves, since we aim to apply it to weakly similar curves. Sec- 
tion 3 shows extensive experiments with real images, where excellent matching 
is obtained between weakly similar shapes. We demonstrate silhouette matching 
under partial occlusion, under substantial change of viewpoint, and even when 
the occluding contours describe different (but related) objects, like two different 
cars or mammals. Our method is efficient and fast, taking only a few seconds to 
match two curves. 

2 T h e  p r o p o s e d  m e t h o d  

The occluding contours of objects are extracted in a pre-processing stage. In the 
examples shown below, objects appear on a dark background, and segmentation 
is done using a standard clustering algorithm. The occluding contour is then 
approximated automatically by a polygon whose vertices are either points of 
extreme curvature, or points which are added to refine the approximation. 

The polygon is our syntactic representation: the primitives are line segments, 
and the attributes are length and absolute orientation. The number of segments 
depends on the chosen scale and the shape of the contour, but typically is around 
50. Coarser scale descriptions may be obtained using merge operators. 

Our algorithm uses a variant of the edit algorithm, dynamic programming 
and heuristic search. We define a novel similarity measure between primitives, 
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a novel merge operation, and introduce a penalty for interrupting a contour (in 
addition to the regular deletion/insertion penalty). The result is an algorithm 
that is robust, invariant ~ under scaling and rigid transformations, suitable for 
partial matching, and fast. 

2.1 S i m i l a r i t y  b e t w e e n  p r i m i t i v e s  

The similarity between two line segments is a function of their orientation and 
length attributes (0, e) and (0 ' ,g)  respectively. Since global rotation and scale 
are arbitrary, the similarity between the segments cannot be determined inde- 
pendently, and at least one other pair of segments is needed for meaningful 
comparison. We pick two reference segn, ents, (00, g0) and (0~, e~), which define 
the reference rotation 00 - 0~ and reference scale g0/e~. The similarity between 
(0, g) and (0', f ') is determined with respect to these reference segments. 

Local and scale-invariant matcl{ing methods usually replace ~ by the nor- 
malized length e/g0, defining the scale similarity function as S~(g/go, e'/e'o). For 

e/go example, the ratio between normalized lengths ~ is used in [16, 15] (with 

global normalization the difference le/L- e'/L'l can be used The ratio 
between normalized lengths may be viewed as the ratio between the relative 
scale c = g/g' and the reference relative scale co = e0/e~. 

We define a different measure of similarity between the two scales. Instead of 
dividing c by Co, we map each scale factor to a direction in the (e, e')-plane, and 
we measure the angle between the two directions. The cosine of twice this angle 
is our measure of scale similarity (figure 1). This measure is numerically stable. 
It is not sensitive to small scale changes, nor does it diverge when co is small. 
It is measured in intrinsic units between - 1  and 1, in contrast with the scale 
ratio which is not bounded. The measure is symmetric, so that the labeling of 
the contours as "first" and "second" is arbitrary. 

Let 6 be the angle between the vectors [e, 6'] and [e0, e~]. Our scale similarity 
measure can be expressed as: 

sale ,  e'le0, = cos 25 = 
4cco+(c  2 - 1)(c~ - 1) 

( c 2 + 1 ) ( 4 +  1) 
(1) 

The factor of 2 in the cosine argument simplifies the expression, lets it take 
values in the whole [ -1 ,  1] range (since 0 < 5 < rr/2), and reduces the sensitivity 
at the extreme cases (similar or unsimilar scales). Se thus depends explicitly on 
the scale values c and co rather than on their ratio, hence it cannot be computed 
from the invariant attributes g/go and g'/g'o. The arbitrariness of labeling can 
be readily verified, since Se(c, co) = Sg(c -1, col) .  Note that this property is not 
shared by the quantity [e - c01, which is not a good measure also because it 
depends explicitly on g0 and e~ rather than on their ratio. 

We are familiar with only one other definition of a symmetric, bounded and 
scale invariant measure for segment length similarity [15]. The matching algo- 
r i thm there is not syntactic and very different from ours. In addition, there is 
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Fig. 1. Length similarity is mea- 
sured by comparing the reference 
relative scale co = g0/g~ with the 
current relative scale c = t/g'. 
Each scale is mapped to a direc- 
tion in the plane, and similarity 
is defined as cos(25). This value is 
bounded by -1 and 1. 

~ x a  

Fig.  2. Scale similarity: the scale c = g/e' is com- 
pared with the reference scale co = go/g'o. Left: The 
binary relation used by Li [15] to measure scale sim- 
ilarity is exp(-[log(c/cO)l/~r ) with ~r = 0.5. Right: 
Our measure function (equation 1) is not sensitive 
to small scale changes, since it is flat neat- the line 
C ~ - C o .  

all impor t an t  qual i tat ive difference between the two definitions (see figure 2), 
where our measure is more  suitable for flexible matching.  

We turn now to the or ientat ion similari ty So between two line segments  whose 
at t r ibutes  are 0 and 0' respectively. The  relative or ientat ion between them is 
measured in the t r igonometr ic  direction (denoted 0 --~ 0')  and compared  with 
the reference ro ta t ion (O0 --+ O~): 

s o ( e ,  o ' lo0 ,  ca )  = cos  [(e  - +  e ' )  - (e0 + ca)]  

As with the scale similari ty measure,  the use of  the cosine introduces non- 
linearity; we are not  interested in fine similari ty measurement  when the two 
segments are close to being parallel or anti parallel. Our  ma tch ing  a lgor i thm is 
designed to be flexible, in order to match  curves tha t  are only weakly similar; 
hence we want to encourage segment  match ing  even if there is a small  discrep- 
ancy between their orientations.  Similarly, the degree of dissimilarity between 
two nearly opposi te  directions should not depend too much on the exact  angle 
between them. On the other  hand,  the point  of  t ransi t ion f rom acute to obtuse 
angle between the two orientat ions seems to have a significant effect on the de- 
gree of  similarity, and therefore the derivative of  So is max ima l  when the line 
segments  are perpendicular .  

We note tha t  a similar linear measure has been widely used by others [22, 
23, 16, 8]. The  non linear measure  used by [15] differs f rom ours in exactly the 
same way as discussed above concerning length. 

Finally, the combined similari ty measure is defined as the weighted sum: 

S = wl S~ + & 

The weight wl (which equals 1 in all our experiments)  controls the decoupling of  
scale and orientat ion similarity. In [19] a coupled measure is used: the segments 
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are superimposed at one end, and their dissimilarity is proportional to the dis- 
tance between their other ends. However, this measure is too complicated for 
our case, and it has the additional drawback that  it is sensitive to the arbi trary 
reference scale and orientation (in the character recognition task of [19] it is 
assumed that  characters are in the same scale and properly aligned). 

2.2 S y n t a c t i c  o p e r a t i o n s :  g a p s  a n d  m e r g e s  

The goal of a classical string edit algorithm is to find a sequence of elementary 
edit operations, which transform one string into the other at a minimal cost. The 
elementary operations are substitution, deletion and insertion. Converting the 
algorithm to the domain of pat tern  recognition, substitution is interpreted as 
matching two shape primitives, and the symbol substitution cost is replaced by 
the dissimilarity between matched primitives. In our scheme we use a similarity 
function (instead of dissimilarity) and maximize the t ransformation gain (instead 
of minimizing cost). The similarity measure was discussed in the previous section. 
We now discuss the insertion/deletion gain, and the novel merge operation. 
G a p  o p e n i n g :  In string matching,  the null string A serves to define deletion 
and insertion operations, a ---+ A and A --+ a respectively, where a is a string of 
length 1. In our case, a is a line segment and A is interpreted as a "gap element".  
We define, customarily, the same gain for both operations, making the insertion 
of a into one sequence equivalent to the deletion of it from the other. This means 
that  either the segment a is matched with some a'  on the other curve, or the 
other curve is interrupted and a gap element A is inserted into it, to be matched 
with a. 

All the syntactical shape matching algorithms that  we are familiar with make 
use of deletions and insertions as purely local operations, like in classical string 
matching.  Tha t  is, the cost of inserting a sequence of gaps into a contour is equal 
to the cost of spreading the same number  of gap elements in different places 
along the contour. We distinguish the two cases, since the first typically arises 
from occlusion or partial  matching,  while the second arises typically from curve 
dissimilarity. In order to make the distinction we adopt a technique frequently 
used in protein sequence comparison, namely, we assign a cost to the contour 
interruption itself, in addition to the deletion/insertion gain. 

The gain from interrupting a contour and inserting { connected gap elements 
into it ( that  are matched with ~ consecutive segments on the other curve) is taken 
to be w2 �9 { - wa. Tha t  is, a gain of w2 for every individual match with a gap 
element, and a penalty of wa for the single interruption. This pre-defined quan- 
t i ty competes with continuous matching of the ~ segments (by substitutions),  
whose gain is lower only if the matching is poor. Note that  w2 �9 { - w3 is scale 
independent, since w2 is a constant that  does not depend on the length of the 
segment which is matched with the gap. 

In all our experiments we used w2 = 0.8 and wa = 8.0. (These values were 
determined in an ad-hoc fashion, and not by systematic optimization tuning, 
which is left for future research.) These numbers make it possible to match a 
gap with a long sequence of segments, as required when curves are partially 
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occluded. On the other hand, isolated gaps are discouraged due to the high 
interruption cost. The parameters were so chosen because this mechanism is not 
intended to handle noise. Noise is better handled by the merging mechanism 
that we describe next. 

S e g m e n t  m e r g i n g :  One advantage of using variant attributes (length and ab- 
solute orientation) is that segment merging becomes possible. We use segment 
merging as the syntactic homologue of curve smoothing, accomplishing noise re- 
duction by local resolution degradation. Segment merging, if defined correctly, 
should simplify a contour representati,'n by changing its scale from fine to coarse. 

A similar approach was taken in [24], but their use of invariant attributes 
made it impossible to realize the merge operator as an operation on attributes. 
Specifically, there is no analytical relation between the attributes being merged 
to the attributes of the equivalent primitive. Instead, a cascade of alternative 
representations is used, each one obtained by a different Gaussian smoothing of 
the two dimensional curve; a primitive sequence is replaced by its "ancestor" in 
the scale space description a. 

Merging was defined as an operation on attributes by [22], who also applied 
the technique to Chinese character recognition [23]. Their algorithm suffers from 
some drawbacks concerning invariance and locality2; below we concentrate on 
their merging mechanism, and compare it to our own. 

Assume that the two line segments characterized by (g~, 01) and (62, 02) are 
to be merged into one segment (g, 0). In [22] g = 61 + g2, and 0 is the weighted 
average between 01 and 02, with weights 61/(61+g2) and g2/(61 +g2), and with the 
necessary cyclic corrections a. Usually, the polygonal shape that is obtained using 
this simple ad-hoc merging scheme cannot approximate the smoothed contour 
very well. Satisfactory noise reduction is achieved in one of the two extreme 
cases: either one segment is dominant (much longer than the other one). or the 
two segments have similar orientation. If two or more segments having large 
variance are merged, the resulting curve may not bear a direct relation to the 
shape of the original curve (figure 3). Hence, by performing segment merging on 

1 The primitive elements used in [24] are convex and concave fragments, which are 
bounded by inflection points. The attributes are the fragment length divided by 
total curve length (a non-local attribute), and the accunmlated tangent angle along 
the fragment (a non-interruptible attribute). The algorithm cannot handle occlusions 
or partial distortions, and massive preprocessing is required to prepare the cascade 
of syntactical representations for each curve, with consistent fragment hierarchy. 

2 The primitives used by [22] are line segments, the attributes are relative length 
(with respect to the total length) and absolute orientation (with respect to the first 
segment). The relative length is, of course, a non-local attribute, and in addition 
the algorithm uses the total number of segments, meaning that the method can- 
not handle occlusions. The problem of attribute variance due to a possible rotation 
transformation remains in fact unsolved. The authors assume that the identity of 
the first segments is known. They comment that if this information is missing, one 
may try to hypothesize an initial match by labeling the segment that is near the 
most salient feature as segment number one. 

3 For example, an equal weight average between 0.9zr and -0.97r is rr and not zero. 
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Fig. 3. Comparison between merging 
rules: (a) A polygonal approximation of 
a curve, with two dotted segments which 
are to be merged. (b) Merging result 
according to our scheme. A coarser ap- 
proximation is obtained. (c) Merging ac- 
cording to Tsai and Yu [22]. The new 
polygon is not a good approximation. 

�9 ] - - 1  f - -  [_J t 
L ,  I , ............... ........... 

Fig. 4. When the primitive attribute is 
measured relative to a preceding prim- 
itive, interrupting the sequence creates 
problems. Here, for example, the orien- 
tation information is lost when the dot- 
ted segment is matched with a gap ele- 
ment. As a result, the two contours may 
be matched almost perfectly to each 
other and considered as very similar. 

a fine scale polygonal approximation,  one typically does not obtain an acceptable 
coarse approximat ion of the shape. 

We define a different merging rule: two adjacent line segments are replaced by 
the line connecting their two furthest endpoints. If the line segments are viewed 
as vectors oriented in the direction of propagat ion along the contour, then the 
merging operation of any number of segments is simply their vectorial sum. 

Compare  the polygonal approximation after merging with the polygon that  
would have been obtained if the curve was first smoothed and then approximated.  
The two polygons are not identical, since smoothing may cause displacement of 
features (vertices). However, a displaced vertex cannot be too far from a feature 
of the finest scale; the location error caused by "freezing" the feature points is 
clearly bounded by the length of the longest f ragment  in the initial (finest scale) 
representation. 

To ensure good multi  scaled feature matching our sub-optimal  polygonal ap- 
proximation is sufficient, and the expensive generation of the multi  scale cascade 
is not necessary. Instead, the attr ibutes of the coarse scale representation may 
be computed directly from the at tr ibutes of the finer scale. 

2.3 T h e  o p t i m i z a t i o n  a l g o r i t h m  

The optimization problem is constructed of two parts: 

- finding the two reference segments a0 = (Q,00) on contour A and a~ = 
G ,  on contonr A '  

- finding the syntactic operations which maximize the matching gain. 

The first part  solves for the global alignment between the two curves, since 
matching the features a0 and a~ uniquely determines the relative global rotat ion 
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and scale of the curves. If A (A') is constructed of N (N' )  segments, then we 
assume that the optimal alignment transformation is approximated well by at 
least one of the N - N '  possible selections of a0 and a~. 

We combine the alignment step and the matching step into one optimizatioa 
problem. An optimal sequence of edit operations is found by standard dynamic 
programming, while at the same time a good reference pair is found by heuristic 
search. 
Bes t  s y n t a c t i c  o p e r a t i o n s :  Let us assume for the moment that a reference 
pair of segments is given. Thus the optimal edit transformation between the 

I i sequence {a0, a l , . . . , a N - i }  and the sequence {a0 ,%, . . . , a 'N,_~}  can be found 
by dynamic programming. A virtual array I~Nx N, is assigned (it is virtual since 
only a fraction of it really exists in memory),  where the entry R[i, j] holds the 
maximal gain that can be achieved when the first i elements of A are matched 
with the first j elements of A'. The updating scheme of R is "block completion", 
meaning that  the upper left block of size p • u holds the evaluated elements, 
and in the next updating step the block is extended to size (/_t + 1) x u or to 
/* x (u + 1). Every single entry is updated according to the following rule: 

R[i, j] = max{r1, r2, r3} (2) 

where r I = max {R[c~, fl] + S(ed, flj)} 
c , , f l C f 2  

r2 = max {R[c~, j] + w2- (i - c~) - w3} 
O < c ~ < z  

ra = max {R[i, fl] + w2. ( j -  fl) - wa} 
0<fl<a 

x--~ denotes the vectorial sum of the segments (x + 1 ) , . . . ,  y. 
Unlike in the "classical" editing algorithm, the term Vl is computed over a 

domain/'2, generalizing the simple substitution operation to the substitution of 
merged ~egments. If K - 1 is the maximal number of segments that may be 
merged together, then 

[ 2 =  {c~,fll 0 <  c~< i, 0 < / 3 < j ,  ( i - a ) + ( j - f l ) < K }  

and the computation of ra involves K ( K  - 1)/2 evaluations of alternatives 
merges. 

The single element deletion operation is generalized to the deletion of ~ con- 
secutive elements, which is associated with an interruption penalty (wa) and 
pre-insured gain (w2~). We keep one index (~0) for each column j ,  such that 
r2 = R[~0,j] + w2(i - ~0) - w3. The initial value of ~0 is 1, and after entry 
R[i, j] has been updated, the value of ~0 should be set to i if R[i, j] - R[c~0, j] _> 
w2(i - ~0)- A similar procedure applies to the computation of ra. Hence both 
the computation of r2 and r3 have complexity O(1). 
A l i g n m e n t  o f  cu rves :  The updating scheme of the virtual array RNxN' is 
therefore completely defined, and only the last [K/2] rows and columns of R 
need to be stored in memory. We next show how to determine the pair of reference 
segments, a0 and a~. A naive approach would be to try all the N N '  possible 
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selections of reference pairs (candidate alignments). One would then compute 
the matching gain for each candidate, and select the best result at the end. To 
avoid this massive computat ion we use two complementary strategies: heuristic 
search and statistical filtering. 

The heuristic search is the familiar A* algorithm, where the updat ing pro- 
cess of all the arrays R~ (I <_ N N ' )  becomes competitive. We define a potential 
function ("optimistic est imation")  f(Rz),  which decreases monotonically during 
the update,  and which gives an upper bound on Rt's score. The potential  f (Rl )  
is re-evaluated (decreased) after every block completion, which in turn is per- 
formed for the array with the largest potential.  The process terminates when all 
the potentials are below the best score that  has been already achieved, and an 
opt imal  solution is guaranteed, since f(R~) is based on optimistic estimation. 

The potential  f (R )  is defined as the m a x i m u m  over entry potentials fl,j (R), 
where i (j) belongs to the last [K/2J rows (columns). The entry potential  f i , j(R) 
is defined as4: 

fi,j (R) = R[i, j] + e(, 1 - 1) + w2(~ - 7/) 

r / =  min (N - i, N '  - j )  

= max  (N - i, N '  - j )  

and e denotes the maximal  segment similarity value (e = 1 + wl = 2 in our case). 
While the heuristic search is only effective at the later stages, the comple- 

mentary filtering strategy is effective at the initial stages. Assume that  we try to 
match the first few (say, 10) segments in each array. Acquiring high score after 
an occasional (wrong) match  of about  10 segments must be rare, and on the 
other hand the number  of feasible start ing points is of the order of rain(N, N ' ) .  
Hence, the major i ty  of the arrays which are associated with high potentials (af- 
ter few updeting steps) will agree on the same global t ransformation (rotation 
and scale). As a result, we can rely on the high potential  arrays for a reliable 
estimation of these global parameters.  

Our statistical filtering strategy is therefore the following: we perform 10 
updat ing steps for all the arrays, without evaluating their potentials. Then we 
look for central tendency among the rotations associated with the "best" arrays, 
and if such tendency is found - we eliminate all the arrays that  are associated 
with a very different rotat ion angle. 

2.4 O u t l i e r s  r e m o v a l  

Since wrong matches are unavoidable, we use two different techniques for outliers 
detection. The first one is iterative elimination: in every iteration the matched 

4 Here we assume the worst case scenario, where [i, j] is in a gap. Hence it is possible 
to increase the gain by extending the gap first, leaving space for a diagonal path of 
length r / -  1 (the longest diagonal path from [z, 3] to the edge of R). We also assume 
that w3 > (w2 - e / 2 ) r a i n  (N, N'), otherwise the pre-insured gain is always higher 
than any other gain. In our case, since e = 2, this relation holds for w2 < 1 and any 
value of N and N'. 
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pairs that  are most distant are eliminated, and the rest are re-aligned. We chose 
to eliminate 10% of the pairs at every iteration. The motivat ion is the following: 
features are matched when the local pieces of curve around them have similar 
shape; if after aligmnent they are also proximal, meaning that  they agree with 
the global alignment, then the match  is likely to be correct. 

Another pruning technique can be used when three related images are avail- 
able (and not only two). Assume that  a feature point p on contour 1 is matched 
with the point p'  on contour 2, and pl is matched with p" on contour 3. If the 
matching between 1 and 3 supports the mapping  between p and p ' ,  then the 
involved correspondences (p - p~, p~ - p ' ,  p - p ' )  are accepted. Note that  the 
order of matching is arbitrary. 

2.5 D i s c u s s i o n  a n d  c o m p a r i s o n  t o  o t h e r  m e t h o d s  

Available syntactic matching methods usually achieve scale and rotation invari- 
ance (if at all) by using invariant attributes.  The drawback is that  invariant 
at tr ibutes cannot be smoothed by merging, and they are either non local or non 
interruptible. For example, in [16] the orientation of a line segment is measured 
with respect to its successor, hence the opening of a gap between segments in- 
troduces ambiguity into the representation (see figure 4). In [11] the at tr ibutes 
which describe curve fragments are Fourier coefficients, in [1] it is a measure 
called "sphericity". Both are invariant attributes,  but non-interruptible 5. 

Moreover, it seems to be impossible to find operators on invariant at tr ibutes 
that  are equivalent to smoothing in real space. Instead, a cascade of different 
scale representations nmst be used [24], where few fragments may be replaced by 
a single one which is their "ancestor" in a scale space description. This requires 
massive preprocessing, building a cascade of syntactical representations for each 
curve with consistent fragment hierarchy. 

The benefit of using invariant at tr ibutes is efficiency. Yet our algorithm is 
invariant with respect to scaling, rotat ion and translation without relying on 
invariant attributes,  and is still efficient, capable of comparing complex real 
image curves in a few seconds. Furthermore,  a novel merging operation was 
defined, which accomplished curve simplification and helped in noise reduction 
and resolution change. 

5 The Fourier coefficients are normalized individually, which means that if every frag- 
Inent undergoes a different rigid or scaling transformation, the representation remains 
unchanged. The sphericity representation behaves in the same way. The relative size 
and orientation information is preserved as long as the sequence is not interrupted, 
since overlapping fragments are used. Note that in spite of this property the algo- 
rithms are applied to partial matching in the framework of model based recognition, 
since the solution that preserves the correct relative size and orientation information 
between primitives remains a valid solution, and the danger of finding an undesired 
solution (as is demonstrated in figure 4) is small. 



134 

Fig. 5. Qualitative matching between toy models of a horse and a wolf. Note the 
correct correspondence between the feet of the wolf to those of the horse, and the 
correspondence between the tails. The results are shown without outliers pruning. In 
this example, all the features to which no number is attached had been merged; e.g. the 
segment 9-10 on the horse outline was matched with 3 segments on the wolf outline. 

3 R e s u l t s  

In Section 3.1 we present a few image pairs and triplets together with the match-  
ing results. This is a direct evaluation of the algorithm, using a highly subjective 
notion of success (as there is no "correct" way to match weakly similar curves). 
In Section 3.2 we present an indirect objective examinat ion using the matching 
of a few thousands image pairs. 

3.1 Subjective investigation 

Figure 5 shows two images of different objects. There is geometrical similarity 
between the two silhouettes, which has nothing to do with the semantic similarity 
between them. The geometrical similarity includes five approximately vertical 
swellings or lumps (which describe the four legs and the tail). In other words, 
there are many  places where the two contours may be considered locally similar. 
This local similarity is captured by our matching algorithm. 

The two occluding contours of the two mammals  and the feature points were 
automatical ly  extracted in the pre-processing stage. Corresponding points are 
marked in figure 5 by the same numbers. Hence the tails and feet are nicely 
matched, although the two shapes are only weakly similar. The same match- 
ing result is obtained under arbitrarily large rotat ion and scaling of one image 
relative to the other. 

Figure 6 demonstrates  the local nature of onr algorithm, namely, that  partial  
matching can be found when objects are occluded. Since our method does not 
require global image normalization, the difference in length between the silhou- 
ette outlines does not impede the essentially perfect matching of the common 
parts.  Moreover, the conunon parts are not identical (note the distance between 
the front legs and the number of ears) due to a small difference in viewpoint; 
this also does not impede the performance of our algorithm. 
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Fig. 6. Partial matching between three images. Points 
are mapped from (a) to (b) to (c) and back to (a). 
Only points which are mapped back to themselves are 
accepted (order is not important). The points on the 
tail in ta) are matched with the shadow (pointed by 
tl,e ar, ow)in  (b) , but matching (b) with (c) leaves 
the ~hadow unmatched. Hence the tail is not matched 
back to itself, and the correspondence with the shadow 
i- rejected. 

Figure 6 also demonstrates  outliers pruning using three images. In image 6b 
there is a shadow between two of the leaves (pointed by the arrow), and as a 
result the outline penetrates inward. The feature points along the penetrat ion 
are (mistakenly) matched with features along the tail in image 6a, since the two 
parts  are locally very similar. However, we map  the points of 6a to 6b, then to 6c 
and back to 6a. Only points which are mapped  back to themselves are accepted 
as correct matches, which appear  as common numbers in figure 6. 

Figures 7 and 9 show the application of the algorithm to match images taken 
from very different points of view of different rigid objects. In figure 7 two differ- 
ent views of the same object are matched, and the method of iterative elimination 
of distances is demonstrated.  Figure 9 shows matching between three different 
cars, subjected to both different orientations and to occlusion. Matching under a 
large viewpoint per turbat ion can be successful as long as the silhouettes remain 
similar enough. Note that  preservation of shape under change of viewpoint is a 
quality that  defines "canonical" or "stable" views. Stable images of 3D objects 
were proposed as the representative images in an appearance based approach to 
object representation [27]. 

The last example (figure 8) shows matching of human limbs at different body 
configurations. 

We note again that  all these examples were generated with the same values 
of parameters:  Wl = 1, w2 = 0.8, w3 = 8.0 and K = 4 (with the exception of 
figure 9, where K = 5). Each pairing assignment took only a few seconds (see 
next section). 

3.2 O b j e c t i v e  i n v e s t i g a t i o n  

The test presented in this section is based on automat ic  matching of thousands 
of contours. The task was the parti t ioning of 90 images into hierarchical clus- 
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Fig. 7. Matching two views subjected to 
a large forthshortening effect. Rejected 
pairs (in circles) were detected in four it- 
erations of eliminating the (10%) most 
distant pairs and re-aligning the others. 
aa and 35 features were extracted on 
the two outlines; 32 pairs were initially 
matched, and 9 pairs were rejected (28%). 

Fig. 8. Matching of human limbs at dif- 
ferent body configurations. In this case 
the outlines were extracted with snakes 
rather than by gray level clustering (see 
acknowledgments). Original images are 
not shown. 

ters. These were 90 images of 6 different objects (toy models of a cow, wolf, 
h ippopotamus,  two different cars, and a child). Each object contributed 15 im- 
ages, taken from different points of view (in a sector range of 40 ~ azimuth and 
20 ~ elevation). 

The outlines were automatical ly  extracted, and every two different contours 
were matched. The task involves matching 4005 image pairs, which took 6.5 hours 
on an INDY R4400 175Mhz workstation (5.8 seconds per match,  on average). 

Based on the matching results, a dissimilarity value was assigned to every 
pair of images, yielding a 90 • 90 dissimilarity matr ix.  It  is beyond our scope here 
to describe in details how this value is defined. For our purpose it is sufficient to 
say that  the dissimilarity value is computed from the residual distances between 
matched features. Hence, correct feature pairing is essential to achieve reliable 
dissimilarity est imation.  

The dissimilarity mat r ix  constituted the input to a newly developed clus- 
tering algorithm [6]. The algorithm has an additional scale parameter  (called 
" temperature")  which defines the level of specification. When this parameter  is 
varied, the dendrogram shown in figure 10 is obtained. In the final level of clas- 
sification (the lowest level in the hierarchy), the 90 images are grouped precisely 
according to their identity. Even the very similar car images are correctly sepa- 
rated at this level. More interesting is the hierarchical structure, which reflects 
our intuition regarding families of objects. 

This kind of database structuring could not have emerged without the reli- 
able est imation of the dissimilarities between weakly similar images. Hence the 
classification tree is an indirect and objective evidence to the quality of our 
matching method.  
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Fig. 9. Combination of various challenges: different mod- 
els, different views and partial matching. The merging 
utility is used to overcome the different nmnber of fea- 
ture points around the wheels; the gap insertion utility is 
used to ignore the large irrelevant part. 

4 C o n c l u s i o n s  

This paper is concerned with a problem that  is inherently ill posed, the matching 
of weakly similar curves. A simple heuristic was used, guided by the principle 
that  matched features should lie on locally sinfilar pieces of curve. Naturally, this 
principle cannot guarantee that  results would agree with our own human intu- 
ition for "good" matching in specific examples, but our examples demonstrate  
that  satisfactory and intuitive results are typically obtained. Note that  "success- 
ful" matching depends on the application that  the matching is used for. Our 
method is not suitable for recovering depth from stereo, but it is well suited for 
more qualitative tasks, such as the organization of image database,  the selection 
of prototypical  shapes, and image morphing for graphics or animation.  

In order to achieve large flexibility we introduced a non linear measure of 
similarity between line segments, which was not sensitive to either very small 
or very large differences in their scale and orientation. Our specific choice of 
segment similarity, combined with a novel merging mechanism and an improved 
interruption operation, added up to a powerful and successful algorithm. 

We demonstrated excellent results, matching similar curves under partial  oc- 
clusion, matching similar curves where the curves depict the occluding contours 
of objects observed from different viewpoints, and matching different but re- 
lated curves (like the silhouettes of different mammals  or cars). Furthermore,  
we used the method to compare a range of curves, some of them very different, 
others rather similar. We then used the results to classify the data  with an auto- 
matic  hierarchical clustering algorithm, getting excellent results which faithfully 
captured the real structure in the data. This serves as indirect evidence to the 
quality of our matching algorithm. 
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Fig. 10. The classification tree (dendrogram) obtained by hierarchical clustering al- 
gorithm, using the pairwise dissimilarity matrix of 90 images of 6 objects. The tem- 
perature axis (unscaled) determines the level of specification. At T1 three groups are 
identified, separating the pictures of the boy, animals and cars. At T2 and T3 the 
animal group is segmented into three sub groups, corresponding to the pictures of 
cow, wolf and hippo. Finally, at T4 the car group is segmented into two sub-groups, 
each containing images of a different car. The numerical values of the transitions are: 
T1=0.018, T2=0.029, T3=0.037 and T4=0.078. The final automatic classification is 
100% correct, and the hierarchy reflects the true structure of the database. 
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