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Abst rac t .  Registering 3D point sets is a common problem in computer 
vision. The case of two point sets has been analytically well solved by 
several authors. In this paper we present an analytic solution for solving 
the problem of a simultaneous registration of M point sets, M > 2, by 
rigid motions. The solution is based on the use of unit quaternions for 
the representation of the rotations. 
We show that the rotation optimization can be decoupled from the trans- 
lation one. The optimal translations are given by the resolution of a linear 
equation system which depends on the rotated centroid of the overlaps. 
The unit quaternions representing the best rotations are optimized by 
applying an iterative process on symmetric 4 • 4 matrices. The matrices 
correspond to the mutual overlaps between the point sets. 
We have applied this method to the registration of several overlapping 
3D surfaces sampled on an object. Our results on simulated and real data 
show that the algorithm works efficiently. 

1 Introduction 

Registering 3D point sets with 3D rigid motions is a common problem in com- 
puter vision and robotics. This problem typically occurs when 3D data are ac- 
quired from different viewpoints by stereo, range sensing, tactile sensing, etc. 

We call pa i rwi se  r e g i s t r a t i o n  the registration of two points sets. However, 
the case of a larger number of point sets overlapping each other occurs often. 
We can sequentially apply a pairwise registration by matching two by two the 
diffe-ent sets. This widely used scheme doesn't take into account the whole 
correspondences between the data sets during a registration step. It remains 
essentially a local approach and it may cause error-distribution problems as 
pointed out in [10, 4, 15, 3]. For example the residual error of each individual 
pairwise registration can be low but unfortunately we have frequently observed 
a propagation and a cumulation of the registration errors. 

Thus it appears to be much more efficient to register simultaneously the mul- 
tiple point sets in order to keep the residual registration errors homogeneously 
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distributed. We call global regis t ra t ion  the simultaneous registration of mul- 
tiple point sets which partially overlap each other and for which we know a 
correspondence between their points into each overlap. 

In this paper we propose an analytic quaternion-based solution to solve the 
problem of the global registration of M point sets, with know correspondences, 
M > 2. The correspondence establishment depends on the type of data to be 
registered. To determine the correspondence between several point sets sampled 
on an object surface, the authors have proposed an efficient method based on 
a space partitioning with a multi-z-buffer technique [1,3]. By combining this 
fast correspondence establishment and the quaternion based global registration, 
the ICP (Iterative Closest Point) algorithm originally proposed by Besl and 
McKay [5] to register two point sets can be conveniently generalized to globally 
register multiple point sets. 

The next section describes previous works on the registration of multiple 
data sets. We then recall some properties of the unit quaternions in section 3 
and the classic quaternion-based solution for registering two point sets [7, 8] in 
section 4 . In section 5 we state the problem of the global registration. The 
optimal solutions for the translations and then for the rotations are detailed in 
sections 6 and 7, respectively. Finally, experimental results on both synthetic 
and real data are shown in section 8. 

2 L i t e r a t u r e  R e v i e w  

Different analytic methods -singular value decomposition, polar decomposition 
and quaternion representation- have been proposed for registering two point sets 
with known correspondences. Each of them computes the rigid transformation, 
as a solution to a least squares formulation of the problem. For an overview and a 
discussion of these techniques see Kanatani [11] and references therein. Recently 
a comparative analysis of the various method was given in [12]. It was concluded 
that no one algorithm was found to be superior in all cases to the other ones. 

Only few authors have investigated the registration of multiple point sets as 
a global problem. We may distinguish three different categories in the literature: 
(a) dynamic-system-based global registration, (b) iterative global registration, 
and (c) analytic global registration. 

Kamgar-Parsi et al. [10] have developed a global registration method using 
a dynamic system for the 2D registration of multiple overlapping range images. 
The position of each range image is then optimized according to a 2D rigid 
transformation with three degrees of freedom (one for the rotation and two for 
the translation). 

Recently Stoddart and Hilton [15] have also proposed a method in category 
(a) for the 3D global registration of multiple free-form surfaces. Their dynamic 
system is made of a set of springs of length null and whose extremities are 
connected between pairs of corresponding points on two overlapping surfaces. 
The registration is then obtained by solving the equation of the Lagrangian 
mechanic with an iterative Euler resolution. 
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In category (b), Bergevin et al. [4] have proposed an iterative algorithm 
based on a modified ICP algorithm to register multiple range images. At each 
iteration, each range image is successively matched with all the others, and its 
rigid transformation is estimated. The surfaces are simultaneously moved only 
at the end of the iteration, after the estimation of the complete set of rigid 
transformations. 

Inspired by this work [4], the authors have developed an iterative method 
to simultaneously register multiple 3D unstructured data  scattered on the sur- 
face of an object from different viewpoints [3]. This method is dramatically 
accelerated by using a multi-z-buffer space partitioning. Unlike Bergevin et al.'s 
method, each surface is immediately transformed when its rigid motion has been 
estimated. This way, the convergence is accelerated. In order to not favor any 
surface, its registration order is randomly chosen at each iteration. 

The authors have recently proposed an analytic global registration solution 
based on a linearization of the rotations [2]. The optimal rigid transformation 
values are given by the simple resolution of two linear-equation systems. It is 
assumed that  the rotation angles are small. Thus the method performs only 
when data  sets are not too far from each others. 

The global registration method presented in this paper belongs also to cat- 
egory (c) but the assumption of small rotation angles is not necessary. It is a 
generalization of the quaternion-based solution of the pairwise registration which 
has been independently proposed by Faugeras and Hebert [6, 7] and Horn [8]. 

3 Representing rotations by unit quaternions 

The reader not familiar with quaternions can refer to [9, 14, 8, 13]. Quaternions 
will be denoted here by using symbols with dots above them. 

A quaternion q can be seen as either a four-dimensional vector (qo, qx, qy, qz) t, 
or a scalar q0 and a tri-dimensional vector (qx, qy, qz) t, or a complex number with 
three different imaginary parts (q = qo § iq~ § jqy + kqz). 

The product on the left or on the right of a quaternion q by another quater- 
nion § = (ro, rx, ry, r~) t, can conveniently be expressed in terms of the following 
products of the vector ~ by a 4 x 4 orthogonal matrix ]R or ]~ respectively: 

§ 

ro  - r x  - r y  - r z  

r x r 0 - r  z ry 
ry rz ro - r x  
rz - r y  rx ro 

= ITS/, (1) 

o r  

I 
_rz]  r 0 --r x --ry 

~§ rx ro rz - r y  q = ~ q .  (2) 
ry --rz ro rx 
rz ry --r x ro 
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The unit quaternions are an elegant representation of rotation. Let recall 
some of their fundamental properties. A rotation R of angle 0 around axe u can 
be represented by the unit quaternion 0 = (cos t~/2, sin O/2u). This rotation 
applied to a vector r is then expressed as a multiplication of quaternions : 
R ( r )  = q§ where § is a pure imaginary quaternion (r0 = 0) and q* denotes 
the conjugates of 0 (0* = qo - iqx - jqu  - kqz) .  

The scalar product  h of two vectors r i = (x  i, yi, z i )  t and r j = (x  5, yJ zJ) t 
which are transformed by the rotations R i and R j respectively: 

h = R i ( r i )  �9 R S ( r J ) ,  

can be written as: 
h = (qi§ �9 (0~§ 

where 0 i and 05 are the unit quaternions corresponding to R i and R 5 and § and 
§ are the pure imaginary quaternions corresponding to r i e t  r 5, respectively. 

Given that  the dot product between two quaternions is preserved when mul- 
tiplied by an unit quaternion, we can rewrite h in the following form 

h = (0"50ii'~) �9 (§ 

Considering the matrix forms (1) and (2) of the quaternion product, it follows 
that  

h = (R'O*JO') �9 (~Jq*JOi), 

which also can be written in the form 

h = (O*jqi)t~ j (O*jqi), 

where N/~ = ~ i~ ~5 is a symmetric matrix having the form 

where 

and 

(3) 

N/j b fh 
= h c  ' 

k l  

a = x i x J T y i y j _ 4 _ z ~ z j ,  b = x i x  j _ y i y j _ z i z  j ,  
c . . = - x i x J - 4 - y i y 3  - z i z  j ,  d - _ - x i x  j _ y i y J - t - z i z J  ' 

e -~ y izJ  -- z i y  j ,  f = z i x  j - x i z  j ,  g = x i y  j -- y ixJ ,  
h -= x i y  j + y ixJ ,  k = z i x  j + x i z  j ,  l = yizJ  -4- z i y  j .  

By permuting the indexes i and j ,  the matrix N/i = ]~J~ R i can be written as 
follow: 

N i l =  - e  b h 
- f h  c 
- g  k l 
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This allows us to simply verify the useful following property: 

4t~4 =C~~C, Vq. (4) 

4 Pairwise registration using quaternions 

Faugeras and Hebert [7], and Horn [8], have proposed a quaternion-based solu- 
tion to register a set of n points S 2 = {p2} with a set of n points S 1 = {P)} 
where each point p2 is in correspondence with the point P} with the same index. 
The rigid transformation T 2 to be applied to S 2, defined by the rotation R 2 and 
the translation t 2 , is optimized by minimizing the following cost function: 

n 

E = ~ II P: - R~(P 2)  - t ~ II ~. (5) 
i = l  

The optimal translation is given by the difference between the centroid of S 1 
and the transformed centroid of S 2 

t ~ = f '  - R~(P2) .  (6) 

The unit quaternion representing the best rotation is the unit eigenvector 
corresponding to the maximum eigenvalue of the following 4 x 4 matrix: 

[ S~ + Syy + S,~ Sy, - S~y 
Sy~ - S~y S~ - S~y - S~ 
S** - S~ S.~ + S~ 
S~y - Sy. S~. + S~ 

S Z X  -- SXZ 
S.~ + S~. 

S.y -- Sy. ] 
S~. + S.~ J Syz + Szy 

- S * *  - S ~  + Sz~ 

where Sxx n _ 1 2 _ 1 1  Sxy n 12 tl iJ tJ '~ being the = = ~ ' ~ i = l x i y i ,  . , x i , y ~  a n d z i  Z i = I  y': i ~ ~ ' " " 

centered coordinates of the points PJ, i -- 1..n; j -- 1..2. 

5 Specification of the global registration problem 

We assume that  there are M overlapping sets of points S 1 , S 2, . . . ,  S M . The global 
registration process must find the best rigid transformations T 1, T 2, ..., T M to 
be applied to each point set. 

We denote O az C S a the overlap of S ~ with S ~, a,/3 6 [1..M]. O ~ is 
composed of N a~ points P ~  6 S a, i = 1..N ~z. Each point P~Z is matched 
with a point P ~  belonging to O ~ C S z. Mutually, the point P ~  is matched 
with P ~ .  Then we have N ~ = N z~. 
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The optimal rigid transformations are usually specified as the minimum of 
an objective function which can be chosen as the sum of the squared Euclidean 
distances between the matched points of all the overlaps: 

M M N ~'~ 

= Z r/3(pfo)ll 
a = l / 3 = 1  i = 1  

(7) 

In order to simplify the notations, we introduce here O ~a the overlap of the 
point set S a with itself. Its contribution to error E having to remain always 
null, we just impose for each a E [1..M]: 

N ~a = 0. (8) 

This cost function takes simultaneously into account the motions of the M sur- 
faces. The residual errors will be homogeneously distributed in the whole mutual 
overlaps. One can notice that  by taking M = 2 and by setting the transformation 
T 1 to the identity transformation, we retrieve equation (5). 

6 O p t i m i z a t i o n  o f  t r a n s l a t i o n s  

We are looking for the translations which minimize the cost function (7). We 
show that  this set of optimal translations is given by solving a linear equation 
system. We also show that  the optimization of the rotations can be decoupled 
from the values of the translations. 

6.1 Solution of  opt imal  translations 

Suppose that  each rigid transformation T ~ (a = 1 , . . . ,  M) is composed of the 
rotation R a and the translation t ~, the cost function E,  defined in equation (7) 
can be written: 

or, 

M M N ~ 

= Z Z ZI ItR~ R (PO + '~ -,/311', 
~----1/3=1 i = 1  

M M N aB N a/3 

E = ~ ~--~.(~-~. IIR~ (P7 ~) - R~(P~)II 2 + 2[t ~ - t~] �9 ~ [R~ (P7 ~) - RB(P/Z~)] 
~=1  /3=1 z= l  i = l  

+y~Zllt~ _ tZlll2). 

However the right term of the scalar product can be expressed by N ~/3 [R ~ (/5~/3)_ 
R/3(/5/3~)] where/5~/3 a n d / 5 ~  are the centroid of 0 ~ and 0 ~ respectively; 

Nc, B 
/~/3 __ 1 

i = 1  
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The cost function E can be written in the form: 

where 

and 

E : ER + Et,R, 

M M N ' ~  

E 5: E ,,R~ ') - 
a = 1 ~ = 1  i = 1  

M M 

Et,R = ~ ~ N~Z(2[t ~ - t~] �9 [R~(P ~z) - R ~ ( P ~ ) ]  + l i t  ~ - t ~ l 1 2 ) ,  
a : l / 3 = 1  

We notice that  ER does not depend on translations. So the values of translations 
which minimize the cost function E will be given by the minimization of Et,n. 
Let rewrite Et,R as follows: 

where 

C1 

and 

Z t , R  = C1 -~- 6 2 ,  

M M 

= 2 E E Na~[ta - tZ]" [Ra(PaZ) - R~(Pfla)] '  
a = l ~ = l  

M M 

: 4 E [ t  ~. E N ~ ( R ~ ( P ~ )  - R ~ ( P ~ ) ) ] '  
~ = 1  ~ = 1  

M M 

C2 = ~ ~ N~Zllt~-tZll 2, 
c~=1 ~ = 1  

M M M M 

= 2 E [ t a2 (E  Ne~)]- 2 E E N e Z t a "  t f l "  

c~:1 f l = l  c~----1/~:1 

We have used here the data  property N a~ : N ~ .  Et,R can then be written in 
matrix form 

Et,R = 2 ( X t A X  + 2XtB) ,  

where, X = (p , t2 , . . .  , t M )  t ,  

A = 

N 1 _ N  12 . . .  - N  1M 
_ N  21 N 2 . . .  - N  2M 

: : ".. : 

_ N  M1 _ N M 2  . . .  N M 

(9) 
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(where N a M = )-'~Z=I N~/~) and 

= ] (p-)- B ~ff:IN2Z[R2 

~ ~Aff=I NM/3[RM ( pMZ) _ RZ(pZM)] 

Minimizing Et,Ris equivalent to the minimization of the function Q(X):  

Q(X) = X t A X  + 2XtB. (10) 

It should be noted that  the matrix A is not invertible; its determinant is null, the 
sum of each line or each column being null. The cost function E is unchanged if 
the same rigid transformation is applied simultaneously to all M point sets. The 
reference frame of one point set should be chosen as an absolute one and only 
the (M - 1) other sets should be moved. The choice of this set is arbi t rary and 
does not affect the registration solution. Let fix the first set by setting R 1 = I 
and t I = 0. Equation (10) becomes, 

O ( 2 )  = 2 ~ - ~ k  + 2Xt/3, (11) 

where )~ and /~  are the vectors X and B deprived from their first element, and 
where 

N2 .. .  _ N  2M- 

- N  M2 . . .  N M 

It may be of interest to note that  despite the suppression of the first line and 
the first column of A, the matrix fi_ still contains the terms N ~1 in the diagonal 
elements. Therefore the overlaps with the set S 1 are still considered. 

Q()()  is a quadratic form which is minimal when A X  = - /3 .  So, the value 
of the translations are simply obtained by the inversion of the matrix A.: 

)(rain = - A  -1/~. (12) 

The translations are given by a linear combination of the differences between 
the rotated centroids of the overlaps O az and O za. Again if M -- 2, we retrieve 
equation (6)) for a pairwise registration. 

6.2 Decoupling between rotations and translations 

Using the result of optimal translations, we show now that  the optimization of 
the rotations can be decoupled from the translations. 

For X = )(min, equation (11) becomes 

Q,(ff(.min) : - - J~ t f ik - lB .  (13) 
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We then obtain for the global cost function E: E(Xmin) = ER + Et,R = ER + 
2Q( f(mi,~); i.e. finally: 

M M N a~ 

E(Xm,,~) = ~ ~ ~ I t R " ( P ~  z) - R~(P[(~)II2 - 2/~t2~-~/~. (14) 
a = l  f l = l  i = l  

The function E depends no more on translations as shown in equation (14). The 
rotations can then be optimized independently from translations. 

7 Optimization of rotations using unit quaternions 

In this section we solve the problem of the optimization of rotations by mini- 
mizing the cost function E defined in equation (14). 

We start by rewriting expressing E as a function of quaternions in section 7.1. 
We show that minimizing E is equivalent to maximizing another cost function. 
Then a sequential algorithm is proposed in section 7.2 in order to maximize this 
new cost function. Finally, in section 7.3 we prove that this algorithm usually 
converges to a local minimum. 

7.1 Rewrit ing expressing E with unit quaternions 

Let e~ ~ = IIRc~(P~ ~) - R~(P~)II 2. 
Using the preservation of norm by the rotations, we have: 

e7 z = IIP~II 2 + IIP~II ~ - 2R~(p/~) .  RZ(P~'~). 

The first term of E becomes, 

M M N ~f~ M M N ctf~ 

E E E e~Z = -2 E E E Ra(P:Z)" RZ(P~'~) § K (15) 
a = l , G = l  i=1 a=l /5 '=1 i=1 

2 M M x "N~ I I P ~ l l  2 is a constant which does  not d e p e n d  on where K = }--~-~=1 }'-~=1 z-.i--1 
rotations. By combining equations (14) and (15) and by ignoring the constant 
term K, minimizing E is equivalent to maximizing 

M M N ~ 

H = E E E R'~(P:Z)" RZ(Pi~) + [~tA-l[~. (16) 
c~=l/3----1 i = l  

Considering relation (3), the first term of H, 

M M N '~f3 

: E E E 
a = l  ~ = 1  i = 1  
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can be written by using unit quaternions: 

M M N a~ 

a = l  ~=1 i=1 

or also, by integrating the sum over i, 

M M 

H~ : E E (q,ZO~)tQ~Z (q,Z(~), 

"~Na~ ~i. i9 :_ where Q~{z = A-~i:l 

S~z - S~ 
.qa{~ _ ,qa~ 

~ x y  - - y x  

N ~  

a : l f l : l  

s 2- s2  
+ 

- S ~  + S~ 

(17) 

- 

- S i x  - ~ y y  - ~ z z  

Na~ Na~  

= x i  x i  , S x y  = x i  Yi  , S x z  = x i  z i  , . . . ,  
i= l  i-- ,  ~:1 

with (x~,y]~, - ~ t  = Pi a~ and (x~ ~, Yi ~ ,  zi~'t) P~ .  In another side, ~i  ) = a s  

shown in appendix A, the quantity ~9t~_-1/~ can be expressed in the form: 

(is) 
M M 

~ = I ~ = i  

a~ 
(c/. appendix A for the expression of Q~ ). According to equations (17) and 
(18), equation (16) becomes : 

(19) H = ~M__ 1 )-~4=, (q,~0a)tQ~((~,~q~) ] 

where Qa~ = Q ~  + Q ~ .  
Q ~  and Qt az are 4 x 4 symmetrical matrices which have the same form than 

I~J (cf. section 3). So Qa~ verify the property (4). 

7.2 Sequential algorithm 

Let consider now the problem of maximizing the function H of equation (19) 
subject to the 4 ( M - l )  vector q = (q2, 03, .-., 0M) t. The quaternion ql is set to the 
identity quaternion, the reference frame of S1 being chosen as the absolute one. 
We propose a sequential method to optimize the (M - 1) quaternions defined 
by the vector q. The approach is the following one: at each iteration all the 
quaternions qJ are fixed excepted one of them. We determine this last one so 
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that H is maximized. To be more precise, we start with an initial vector qo which 
is arbitrarily defined or provided by a pre-computing step. We then construct 
a sequence of vectors qm, m = 1, 2 , . . .  where the transition from qm to qm+l 
is done in (M 1) steps: .2 - qm+l is determined in the first step, then .3 q m +  l , " �9 ", 

and finally .U qm+l" The quaternion "3 qm+l is the unique solution of the following 

maximization problem: determine the quaternion ~m+l belonging to the unit 
quaternion set Q such as: 

�9 H .2 . j - 1  H ( q 2 m + l ,  " ' "  , ~ m + l ,  C)Jm+l, . .  " ,  (~M) --> ( q m + l ,  " �9 " ,qm+l, (~J, "lrn~J+l , ' ' ' , q m ) , ' M  

( v 0  j e Q 
(20) 

When all the quaternions are fixed except oJ, maximizing H ( equation (19)) 
according to 0 j becomes a simple problem. By ignoring the constant terms, this 
maximization is equivalent to the maximization of the following function H(q j): 

M 

H(qJ) = E (gl*~glJ)t~z(il*~glJ) + 

M 

=2 

M 

(O*JO")ttW (WO"), 
c~=l,aCj 

(according property (4)). 

Then by using the matrix form of the quaternion product (1) : 

M 

g(0  j) = 2  E (Q*f~(lJ)t(~z(Q*z(tJ), 
Z=I,Zr 

M 
=2 y~ OJ'(Q*~tl~ZQ'Z)O i, 

f~=1,/35s 

which can be written into the form, 

H(O j) = 2il j* NJo j, (21) 

where N j ~-'~M O.f~t r O,/3 
= A . a j 3 = l , ~ j ~  ' ~  ' ~  " 

H(O j) is a quadratic form. The optimal unit quaternion which maximizes 
this function is then just the eigenvector corresponding to the highest eigenvalue 
of the matrix N j .  

7 . 3  A l g o r i t h m  c o n v e r g e n c e  

We show that the sequential algorithm proposed in the previous section does 
always converge monotonically to a local maximum. 
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"2 Let qm,j = ( q m + l , ' " ,  ~m+l, qJm+l, "'" , qM). We start  to prove that  the cost 
function H of equation (19) is upper bounded. Using the fact that  the product  
of two unit quaternions is still a unit quaternion, we see that  each quadratic 
term of the double sum of H is always smaller than the highest eigenvalue A ~ x  
of the 4 • 4 symmetric matrix Qaz. By doing the summation over a and ~ we 
verify that  for any set of quaternions ~1, q 2 . . .  , oM: 

M M 

" -<  Z 
o~=1/3=1 

(22) 

Thus the cost function H is upper bounded by the sum of the highest eigenvalue 
of the matrices (~aZ. Since, the series H ( q m s )  is increasing by construction, this 
proves that  our algorithm converges to a local maximum. If it converges to a 
global maximum is still an open question. 

8 E x p e r i m e n t a l  r e s u l t s  

We have performed a global registration of M -- 4 simulated sets containing each 
nine 3D points. Each set partially overlaps all the other ones. There are then 
C 2 = 6 different overlaps described by the subsets O a~. Each subset contains 
only 3 points in this simulation. The point coordinates vary between -100 and 
+100 units. The first point set is chosen as reference frame and is fixed. Each one 
of the three other sets is rotated by a random unit quaternion and translated by 
a random distance. In this example we do not add noise, thus the misregistration 
error value is expected to be very low. 

We found that  only 50 iterations were necessary to reduce the residual error 
from an initial value of 843 units to 0.2 10 -3 unit. The CPU time needed is very 
low, it is lower than one millisecond for each iteration on a Sun Sparc Station 
running at 300 MHz. It does not depend on the number of points taken into 
account in the overlaps, the matrices ~ being precomputed. 

In this problem ground t ruth is available and so we can compute the residual 
error of the obtained solution from the true values for the unit quaternions and 
the translations. The relative residual error for the angle of the quaternion is 
about 10 -5 and the one for the translations is about 10-% These results show 
that  the intrinsic precision of the algorithm is very high. Its accuracy allows its 
use for many registration applications in computer vision. 

We have for example applied this quaternion-based global registration on 3D 
points sampled on surface of real objects with a laser range finder. The Greek 
bust shown in Figure 2 is a difficult object to scan due to the presence of deep 
concavities. In this example 12 different scans have been recorded by using trans- 
lational motions with a step of 0.1 mm. They contain more than 2 million points. 
The resulting partially overlapping parts of the object are illustrated in Figure 1. 
A quick and rough interactive registration was first performed (Figure 2-1eft). 
Then all the scans were registered simultaneously (Figure 2-right) by using an 
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ICP approach. This global registration is an extension of the classical ICP al- 
gorithm proposed by Besl and McKay [5] to register two sets. Two steps are 
i terated until convergence. In the first step, a point-to-point correspondence is 
efficiently established between the mutual overlaps of the sampled surfaces by 
using the multi-z-buffer space partitioning described in [3]. In the second step, 
the quaternion-based registration proposed in this paper is applied to simulta- 
neously optimize the rigid motions. Figure 3 shows the convergence of the ICP 
algorithm by displaying a curve of pseudo-time against RMS residual global er- 
ror. The initial RMS error was 0.68 mm and after one iteration falls down to 
0.19 mm. The RMS error for the 12 scans is 0.11 mm after 20 iterations. The 
CPU time required for each iteration of the global ICP registration is 15 seconds 
on a Sun Sparc Station running at 300 M H z .  

Fig. 1. Some pieces of a Greek bust mosaic (Hygia, Dion Museum, Greece). 

A statuette  was also digitized along 6 different views shown in Figure 4. 
Only four ICP iterations were needed to globally register these 6 views, the 
global RMS error decreasing from 0.61 mm to 0.21 mm. Figure 5 shows three 
renderings from different viewpoints of the registered data  of the statuette.  

9 C o n c l u s i o n  

We have proposed in this paper a complete solution to the problem of the global 
registration of multiple 3D point sets with known correspondences. It is based 
on the representation of the rotations by unit quaternions. Compared to our 
previous work based on a linearization of the rotations [2], this new approach 
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Fig. 2. The Greek bust after interactive (left) and global (right) registration of 12 
s c a n s .  

! ! i 
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Fig. 3. ICP algorithm convergence of the 12 scans of the Greek bust. 

does not require any assumption on the initial position of the point sets. It works 
well even when the data are initially faraway. 

The experimental results have shown the excellent behaviour of the proposed 
algorithm to reach the optimum. With this solution the classic ICP algorithm 
which register only two point sets can be easily generalized into a k-ICP algo- 
rithm to register simultaneously k point sets (k > 2). 

This method which has been successfully applied to the registration of several 
overlapping 3D sampled surfaces could be also very useful for other applications 
in computer vision. 
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Fig. 4. Rendering of six views of a statuette (courtesy of the artist, Roland Coignard). 

Fig. 5. Three different Renderings of the fusion of the six views of the statuette after 
their global registration. 
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Appendix A : development of/~*~--~/~ 

We look here for the development of the form/~t]~-~/~ defined in section 6. Let 
denote c az = R a ( N a ~ P  c~) the transformed centroid of the overlap O az by the 
rotation R ~, multiplied by the number of points of O ~z. We associate to each 
rotation R a its unit quaternion ~ .  Let denote aij the element (i, j )  of the matrix 
]k -~ where i and j ~ [2..M]. In order to homogenize the indices of the sums, we 
introduce the following null terms with an index 1, al j  = au = 0. Then: 

M M M M 

= E E o ,IE( - 

k:l I:I a:l J:l 

M M M M 

k = l  I=1  c~=l/3=1 

M M M M M M M M 

a=l ~=I k=l I=i ot=l l=l k=l/3=1 

M M M M M M M M 

k = l / 7 = 1  a = l  /=1  k = l  / = 1  a = l / ~ = 1  

By appropriately changing some indices, this last quantity can be trans- 
formed into: 

M M M M 

a = l  f l = l  k = l  I : 1  

where #k'~f__ = ak~ -- ak~ -- aat + a ,~.  Since A - t  is a symmetric matrix (aij = aji ), 
~a we have #kaf = #~k " Let use now equation (3) to develop/~t ~ - i / ~ :  

M M M M 

= E ~ k ~  ~ t ~  ~ ~ . R ~ ( N ~ D ~ ) ,  
a=l/~=1 k : l  l = l  

M M M M 

a : l / ~ = 1  k : l  /=1  

M M 

where, 

a=13=l 

M M 

, ~ c ~ a k f ,  ak N~lD~h 

k=-I / = 1  

r.r . . . . .  .4- . r  .r .r _ .r D~<,n _ $ ~ n  s__~.-<'~ - s__~-~n l 
= I D~ n _ D ~  ~ - , ,  -y~ -** - * , - - v *  S,= + S = :  

J D<~n .4- D<*n _R<~n _ D ~ n  4- D'~,n 
I- - - I  v ~ / l  ~ Z l  - - ~ I Z  --Z/I - - - - I Z /  + I t  --~/y - -  
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where, -aZ M ~kl  ' S z y  : E k = l  E ~ : : I  "~ t*kl ~ ,Y , ' ' "  
with ( ~ ,  ~k ,  2~k)t = N~kp~k and (~Zl, ~Zl, 2Z~)t = NZ~p~I. 

Q ~  has the same form as N ij (c]. section 3) so it verifies the proper ty  (4). 
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