
A Proof of Burns N-Process Mutual Exclusion Algorithm
Using Abstraction

Henrik E. Jensen 1 and Nancy A. Lynch 2

1 Department of Computer Science, Institute for Electronic Systems, Aalborg
University, DK-9220 Aalborg O, Denmark.

e-mMl: ejersbo@cs, auc .dk
2 Laboratory for Computer Science, Massachusetts Institute of Technology,

Cambridge, MA 02139 USA.
e-mail: lynch~theory. Ics. mit. edu

Abs t r ac t . Within the Input/Output Automata framework, we state
and prove a general abstraction theorem giving conditions for preser-
vation of safety properties from one automaton to another. We use our
abstraction theorem to verify that Burns distributed mutual exclusion al-
gorithm parameterized in the number of processes n satisfies the mutual
exclusion property. The concrete n-process algorithm is abstracted by a
simple 2-process algorithm which is property preserving with respect to
the mutual exclusion property. The condition for property preservation
is proved to be satisfied by use of the LP theorem prover with a mini-
mum of user assistance, and the 2-process abstraction is automatically
verified using the SPIN model checker.

1 Introduction

The major i ty of existing formal verification methods can be characterized as
being either theorem proving methods or model checking methods, each of these
having their own well-known advantages and disadvantages. Theorem proving
methods can be applied to arbi trary systems and provide good insight into the
systems at hand, but the methods require intelligent user interaction and are
therefore only computer-assis ted in a limited way. Model checking methods on
the other hand are fully automatic, but limited to systems with finite state
models or restricted kinds of infinite state models.

To benefit f rom the advantages of both methodologies there has recently been
an increasing interest into the development of verification frameworks integrating
theorem proving and model checking approaches, the key idea in this integration
being the use of abstraction.

Given a system model, too large to be verified automatically, abstract ion
techniques are used to reduce this concrete model to a smMl (finite-state) ab-
s tract model which is property preserving. Meaning, that if the abstract model
enjoys a property tha t implies, by the abstraction relation, the concrete property
of interest, then the concrete model enjoys the concrete property.

410

The abstract model provides insight, as it captures the essence of the behavior
of the concrete model with respect to the property of interest, and as it is finite
state it can be verified by model checking methods. Theorem proving methods
are used to prove, that the abstract model is indeed property preserving, and
as a result no restrictions need to be imposed on the kind of concrete system
models to which abstraction is amenable.

We propose a method, in the line of above, in the framework of Lynch and
Tutt le 's Input/Output Automata (IOA) [1,2]. We are interested in verifying
safety properties of IOA. Properties are expressed as sets of traces, and hence
verifying that an IOA A satisfies a trace safety property P amounts to proving
that the set of traces of A is included in the set of traces of P. Given a concrete
IOA C together with a safety property Pc , we give a general abstraction theo-
rem stating conditions for an abstract IOA A and an abstract property PA to
be property preserving in the sense of above.

The theorem allows for abstraction of concrete system models regardless
of the reason for their large size, being e.g. unbounded data structures or an
unbounded number of identical processes (parameterized systems). The theorem
states as a condition for property preservation the existence of a parameterized
simulation relation from the concrete IOA to the abstract one, which allows for
the abstraction of just a subset of the concrete behaviors.

We illustrate the use of our theorem on the case study of Burns distributed
mutual exclusion algorithm parameterized in the number n of processes. We pro-
vide a 2-process abstraction and prove using the Larch Proof Assistant [3] that
this abstraction satisfies the conditions for preservation of the mutual exclusion
property. We verify, using the SPIN [4] model checker, that the abstraction en-
joys the abstract mutual exclusion property, and by our abstraction theorem,
the n-process algorithm then enjoys the original property.

R e l a t e d W o r k

Property preserving abstraction methods have been studied e.g. in [5-10]. These
methods are, like ours, all based on proving the existence of some kind of 'mimic-
ing' relation from concrete system models to abstract ones. Different kinds of
relations such as simulation relations, homomorphic functions [I0, 8, 6, 7] and
Galois connections [9, 5] have been considered. Our notion of parameterized sim-
ulation relations is a generalization of standard simulation relations.

Fully algorithmic methods have been developed, that use automatic abstrac-
tion to construct finite state abstract models of restricted kinds of large concrete
models s.t. properties are preserved in both directions between the concrete and
abstract models. Almost all existing model checkers for dense reactive systems
(real- t ime/hybrid) are based on automatically constructed strongly preserving
abstractions [11-13]. The idea is to let abstract states be equivalence classes of
concrete states with respect to either some behavioral equivalence on concrete
states or with respect to an equivalence on concrete states induced by satisfaction
of the same properties in some property language.

4 t l

Structural induction techniques have, together with model checking tech-
niques, been used to verify parameterized systems. By model checking it is ver-
ified tha t one process enjoys the property of interest, and assuming that the
property holds for some number n of processes (induction hypothesis) one just
needs to prove that the property holds for n + 1 processes as well. Using a finite
representation of n processes assumed to enjoy the considered property, now
allows model checking to establish that this representation composed with just
one more process satisfies the property, and by induction principle this concludes
that the property holds for any number of composed processes. Works on such
techniques have been reported on in [14,15].

O u t l i n e

This paper is organized as follows. In Section 2 we give some mathemat ica l
preliminaries used in the rest of the paper. In Section 3 we give the formal
background of the IOA framework, and in Section 4 we present our abstract ion
theory. In Section 5 we present Burns n-process mutual exclusion algori thm
which will serve as case-study for the use of our abstraction theorem. Section 6
describes the property preserving abstraction of Burns algorithm and Section 7
describes how the condition for preservation is proved and how LP is used in the
proofi Section 8 describes the model checking of the abstract algorithm in the
SPIN tool and Section 9 concludes.

2 M a t h e m a t i c a l P r e l i m i n a r i e s

Relations

A relation over sets X and Y is defined to be any subset of the cartesian product
X • Y. If R is a relation over X and Y, then we define the domain of R to be
dora(R) = {x E X [(x,y) e R for some y e Y}, and the range of R to be
ran(R) = {y E Y [(z ,y) E R f o r some z e X}. If dora(R) = X we say tha t R
is total (on X). For x �9 X, we define R[z] = {y �9 Y I (z, y) �9 R}.

Sequences

Let S be any set. The set of finite and infinite sequences of elements of S is
denoted seq(S). The symbol A denotes the empty sequence and the sequence
containing one element s E S is denoted by s. Concatenation of a finite sequence
with a finite or infinite sequence is denoted by juxtaposit ion. A sequence cr is a
prefix of a sequence p, denoted by a < p, if either a = p, or ~ is finite and p =
~a~ for some sequence cr ~. A set 2Y of sequences is prefix closed if, whenever some
sequence is in ,U, all its prefixes are as well. A set Z of sequences is limit closed
if, an infinite sequence is in ~ whenever all its finite prefixes are.

I f a is a nonempty sequence then first (~) denotes the first element of a, and
tail(o') denotes the sequence obtained from ~ by removing first(~r). Also, if ~ is
finite, last (a) denotes the last element of a.

412

If tr �9 seq(S), and S' C S, then ~ r s ~ denotes the restriction of o~ to elements
in S f, i.e. the subsequence of a consisting of the elements of S ~. If ~ C seq(S),
then L~r S~ is the set {otis ~ [~ �9 X'}.

Assume R C_ S x S ~ is a total relation between sets S and Sq I f a = sosls2 .. �9
is a nonempty sequence in seq (S) then R(~r) is the set of sequences S~oS] s~ . . . over
ran(R) such tha t for all i, s~ �9 R[si]. If o = A then R(~r) = {A}. I f 57 _ seq(S),
then R(L') = U ~ R(~)

L e m m a 1. L e t s a n d s ~ be sets and let R C S x S ~ be some total relation. For
S and Z ~ non-empty subsets of seq (S), if Z C_ Z ' then R (S) C R (Z ') .

Proof. Follows from the fact that the set R(~r) is unique for any ~r �9 seq (S).

3 I / O A u t o m a t a

As we will only be considering safety issues, we will use simplified versions of
s tandard I / O au toma ta that do not incorporate notions of fairness.

D e f i n i t i o n 1. An I / O automaton A is a luple (sig(A), states(A), s tart(A),
lrans (A)) where,

- sig (A) is a tuple (in (A), out (A), int (A)), consisting of disjoint sets of input,
output and internal actions, respectively. The set exl(A) of external actions
of A is in (A) U out (a), and the set acts(A) of actions of A is ez l (A) U
mr(A) .

- states(A) is a set of states.
- start(A) C. states(A) is a nonempty set of start stales.
- trans(A) C_ states (A) x acts (A) x states(A) is a slate transilion relalion.

We let s, s ~, u, u~,.., range over states, and 7r, 7r I, . . . over actions. We write
re re 81 s ~A s', or just s ~ if A is clear from the context, as a shorthand for

(s, ~, s ') e trans (A).
An execution fragment solrxslr~s2 . . . of an I / O au tomaton A is a finite or

infinite sequence of alternating states and actions beginning with a state, and if
re t -~-1

it is finite also ending with a state, s.t. for all i, si ~ s~+l. An ezecution of A is
an execution fragment a where first(a) 6 start(A). A state s of A is reachable if
s = last (a) for some finite execution a of A. The trace of an execution a, written
trace (a) , is the subsequence consisting of all the external actions occurring in a.
We say tha t /3 is a trace of A if there is an execution a of A with t3 = trace (~).
We denote the set of traces of A by traces(A).

C o m p o s i t i o n

We can compose individual au toma ta to represent complex systems of interact-
ing components. We impose certain restrictions on the au toma ta that may be
composed.

413

Formally, we define a countable collection {Ai}iei of automata to be com-
patible if for all i , j E I, i ~ j , all of the following hold: int(Ai) fl acts(Aj) =
0, out(Ai) n out(Aj) = 0, and no action is contained in infinitely many sets
acls(Ai).

D e f i n i t i o n 2. The composition A = YIiex Ai of a countable, compatible collec-
tion of I /O automata {Ai}iet is the automaton with:

- in(A) -- Uiei in(Ai) - UielOUt(Ai)
- out(A) = Uieiout(Ai)
- int(A) = LJieiint(Ai))
- s t a t e s (A) = s t a t e s

- s t a r t (A) = 1-LeI start(A)
- trans(A) is the set of triples (s, ~r, s') such that, for alli E I, ifTr E acts(Ai),

then (si, ~r, s~) E trans(Ai); otherwise si = s~

The 1-[in the definition of states (A) and start (A) refers to ordinary Cartesian
product. Also, si in the definition of trans (A) denotes the ith component of state
vector s.

T r a c e P r o p e r t i e s

We will be considering properties to be proved about an I /O automaton A, as
properties about the ordering, in traces of A, of some external actions from a
subset of ext (A).

A trace property P is a tuple (sig(P), traces(P)) where, sig(P) is a pair
(in (P), out(P)), consisting of disjoint sets of input and output actions, respec-
tively. We let acts (P) denote the set in (P) U out (P). traces (P) is a set of (finite
or infinite) sequences of actions in acts (P). We will be considering only safety
properties, so we assume traces (P) is nonempty, prefix-closed, and limit-closed.

An I /O automaton A and a trace property P are said to be compatible if,
in (P) C in (A) and out (P) C_ out (A).

D e f i n i t i o n 3. Let A be an I /O automaton and P a trace property such that A
and P are compatible. Then A satisfies P if, traces(A)[acts(P) C_ traces(P).

4 A b s t r a c t i o n T h e o r y

Suppose A is an I /O automaton and P is a trace property such that A and P
are compatible. We will denote the pair (A, P) a verification problem. If (A, P)
and (A', P ') are two verification problems, we say that (A', P ') is safe for (A, P)
provided that A' satisfies P ' implies that A satisfies P. In this section we give
a generM abstraction theorem, stating when one verification problem is safe for
another.

If A and A' are two I /O automata and R is some relation from ext (A') to

ezt(A), we write, s ~=:~A' s I, when A' has a finite execution fragment a with
first(a) = s, last(a) = s' and trace (~)rdom (R) = 13.

414

We now define the notion of a parameterized simulation relation between two
automata A and A ~, and we give a soundness result needed for the abstraction
theorem.

D e f i n i t i o n 4. Let A and A' be two I / 0 automata and let R be a relation from
ezt(A') to ext(A). A relation fR C_ states(A) • states(A') is a simulation rela-
tion from A to A' parameterized by R provided,

1. I f s E start(A) then fR[s] N start(A') r 0.
2. I f s '~'A s I, u E fR[s], and s and u are reachable states of A and A'

respectively, then
9 I

(a) I f rc E ran(R), then 3re', u' such that u =::~a, u', (Tr', 7r) E R and
(s', u') e YR.

(b) If r ran (R), then 3u' such that and (s', e f R .

We write A <_R A r if there is a simulation from A to A ~ parameterized by R.

L e m m a 2. A <_R A' =~ traces(A)rran(R) C R(traces(A')rdom(R))

Proof. Analogous to proof for standard forward simulation [16]. []

T h e o r e m 1. Let (A, P) and (A', P') be two verification problems. Also, let R
be a relation from ext(A') to ext(A), with dom(R) = acts(P') and ran(R) =
acts(P), such that R(traces(P')) C_ traces(P). If,

A <_n A ~ and A' satisfies P~

then
A satisfies P

Proof. Assume that A _<R A ~ and that A ~ satisfies P~. From second assump-
tion we have traces(A')racts(P') C_ traces(P') and from Lemma 1 we get (.)
R(traces(A') r acts (P')) C_ R(traces (P')), as R is total on acts (P'). Also, from
Lemma 2, and the fact that dora (R) = acts (P') and ran (R) = acts (P) , we have
that traces (A)[acts (P) C_ R(traces (A')[acts (P')) and this together with (*) now
gives us that traces(A)[acts (P) C_ R(traces (P')) and finally as R(traces (P')) C
traces(P) we get the wanted result, namely traces(A)racts(P) C_ traces(P) i.e.
A satisfies P. [2

5 B u r n s N - P r o c e s s M u t u a l E x c l u s i o n A l g o r i t h m

In this section we present Burns n-process distributed mutual exclusion algo-
rithm, which we will verify with respect to the mutual exclusion property using
the abstraction approach from the previous section.

The algorithm runs on a shared memory model consisting of n processes
P t , - . . , Pn together with n shared variables f lagl, . . . , f lagn, each flag i writable
by process Pi and readable by all other processes. Each process Pi is acting

415

on behalf of a user process Ui which can be thought of as some application
program. The processes P 1 , . - - , P n competes for mutual exclusive access to a
shared resource by reading and writing the shared variables in a way determined
by the algorithm.

We model the algorithm formally as an I / O au tomaton BurnsME, which is
the composition of a shared memory au tomaton M and a set of user au toma ta
U 1 , . . . , Un. M models the n processes P1, �9 �9 Pn together with the set of shared
variables f lag1 , . . . , flagn, and it is modelled as one big I / O automaton, where the
process and variable structure is captured by means of some locality restrictions
on transitions. Each state in M consists of a state for each process Pi, plus a
value for each shared variable flag i. A state variable v of process Pi in au tomaton
M is denoted M.vi . Similarly, U.v~ denotes a state variable v of au tomaton Ui.
We omit the preceding U (M) and the subscripts i when these are clear from the
context.

The inputs to M are (for all 1 < i < n) actions ~ryi, which models a request
by user Ui to process Pi for access to the shared resource, and actions exiti,
which models an announcement by user Ui to process Pi that it is done with the
resource. The outputs of M are cr/t/, which models the granting from process Pi
of the resource to Ui, and rein/, which models Pi telling Ui that it can continue
with the rest of its work.

Each process Pi executes three loops. The first two loops involve checking
the flags of all processes with smaller indices, i.e. all flagj, 1 < j < i. The first
loop is actually not needed for the mutual exclusion condition, but is impor tan t
to guarantee progress. The two loops are modelled in M by internal actions
test-sml-fst(j) i and test-sml-snd(j) i , where j is a parameter denoting the index
of the flag to be read by process Pi. In between the first two loops process Pi
sets its own flag i to 1, modelled in M by internal action set-fig-1 i. If both loops
are successfully passed, meaning all the considered flags have value 0, then Pi
can proceed to the third loop, which involves checking the flags of all processes
with larger indices, i.e. flagj, i < j < n. This is modelled by internal action
test-lrg(j)i. If process Pi passes all three loops successfully, it proceeds to its
critical region. Process Pi keeps the value of its flag i to 1 from when it s tarts
testing flags with larger indices and until it leaves its critical region.

T h e U s e r A u t o m a t a : Each au tomaton Ui has as single state variable a pro-
gram counter pc initially having the value rein, indicating tha t Ui starts in its
remainder region ready to make a request for access to the shared resource.

output: try, output: exit,
Pre: pc = rera Pre: pc = crit
Eft: pc := try Eft: pc = exit

input: criti input : rem,
Eft: pc := crit Eft: pc := rein

The S h a r e d M e m o r y A u t o m a t o n : The state of each process Pi in M is
modelled by two state variables: a program counter pc initially having the value

416

rein, a n d a set S o f p rocess id ' s i n i t i a l l y e m p t y , used to keep t r ack o f t h e ind ices

o f a l l s h a r e d f lags t h a t h a v e successfu l ly been checked in one o f t h e t h r ee loops .

i n p u t : try~ i n t e r n a l : test-lrg(j)i
Eft: pc := set-flg-O Pre: pc = test-lrg

j C s
i n t e r n a l : set-fig-O, i + 1 < j < n

Pre: pc = set-flg-O Eft: if flagj = 1 then
Eft: flag, := 0 S := r

if i = 1 then else
pc := set-fig-1 S := S U {j}

else if [S [= n - i then
pc := test-sml-fst pc := leave-try

i n t e r n a l : test-smlffst(j)~ o u t p u t : criti
Pre: pc = test-sml-]st Pre: pc = leave-try

j r Eft: p c : = c r i t
l < j < i - 1

Eft: if flag~ = 1 then i n p u t : exit,
S := t~ Eft: pc := reset
pc := set-flg-O

else i n t e r n a l : reset,
S := S U {j} Pre: pc = reset

if I S I = i - 1 then Eft: flag, := 0
S : = r S : = r
pc := set-fig-1 pc := leave-exit

i n t e r n a l : set-fig-1 i
Pre: pc = set-fig-1
Eft: flag, := 1

if i = 1 then
pc := test-lrg

else
pc :-- test-sml-snd

i n t e r n a l : test-smi-snd(j) ,
Pre: pc = test-smi-snd

j C s
l < j < i - 1

Eft: if flag 3 = 1 then
S : = r

pc := set-flg-O
else

s := a u {j}
i f [S [= i - 1 then

S : = r
if i = n then
pc := leave-try

else
pc := test-lrg

o u t p u t : rem~
Pre: pc = leave-exit
Eft: pc := rem

417

The mutua l exclusion property for BnrnsME is a set of trace properties P{i,j },
one for each subset { i , j} i#j in the set of process indices { 1 , . . . , n}, such tha t
sig(P{ij}) has as its only actions the set of output actions from BurnsME with
indices i and j , and traces(P{ij}) is the set of sequences such that no two criti,
critj events occur (in that order) without an intervening exiti event, and similarly
for i and j switched.

6 A b s t r a c t i n g B u r n s M E

To construct a property-preserving abstraction of BurnsME we examine the
mutual exclusion property as s tated in the previous section. The property is the
conjunction of properties P(i,j}, one for each subset {i, j} of indices in { 1 , . . . , n},
with each P(i,j} saying that processes P~ and Pj can not both be in their critical
section at the same time.

The abstract ion idea is now as follows. We will construct a single finite-state
abstract ion which preserves the external behavior of any two concrete processes
Pi and Pj running in the environment of all other processes and users. This
abstract ion will then preserve the mutual exclusion property between any pair
of concrete processes and hence the complete property.

Formally, we construct an abstract au tomaton ABurnsME, which is the com-
position of a shared memory au tomaton AM, with two user au toma ta AUo and
AU1. A M models two abstract processes APo and AP1 together with two shared
variables flag o and flag 1. APo and AP1 are abstract representations of any pair
of concrete processes Pi and Pj within the environment of all other concrete
processes, such that APo represents the smaller process Pi and AP1 represents
the larger process Pj for i < j .

A state of A M consists of a state for each of the abstract processes APo and
AP1 together with values for each of the shared variables flag o and flag 1 . A state
variable v of process APi in au tomaton A M is denoted AM.vi. Similarly, AU.vi
denotes a variable v of au tomaton AUi. We omit the preceding AM(AU) and
the subscripts i when these are clear from the context.

The interface between AUo and APo (AU1 and AP1) is identical to the in-
terface between any concrete user au tomaton Ui and corresponding concrete
process Pi, except for a change of indices. Process APo has as actions abstracted
versions of all actions actions in any smaller process Pi, and AP1 has abstracted
versions of all actions in any larger process Pj.

The au toma ta AUo and AU1 of ABurnsME, are identical to each other and
to any concrete user au tomaton Ui except for a change of indices.

The Abstract Shared Memory Automaton: The state of each of the ab-
stract processes APo and AP1 is modelled, analogous to the state of concrete
processes, by two state variables: a program counter pc, initially rem and a set
S of indices, initially empty. The transitions for APo are as follows.

418

i n p u t : try o
Eft: pc := set-flg-O

i n t e rna l : set-flg-O o
Pre: pc = set-flg.O
Eft: flago := 0

pc := test-sml-fst

i n t e rna l : set-flg-O-smlo
Pre: pc = set-flg-O
Eft: flag o := 0

pc := set-fig-1

i n t e rna l : test-sml-]ai~
Pre: pc E { test-smi-fst, test-sml-snd}
Eft: pc := set-flg-O

internal: test-sml.fst-succ o
Pre: pc = test-sml-]st
Eft: pc := set-fig-1

i n t e rna l : set-fig-1 o
Pre: pc = set-fig-1
Eft: flag o := 1

pc := test-sml-snd

i n t e rna l : set-flg- l . sm l o
Pre: pc = set-fig-1
Eft: flag o := 1

pc := test-lag

i n t e rna l : test-sml-snd-succo
Pre: pc = test-sml-snd
Eft: pc := test-lag

in te rna l : test-other-rig a
Pre: pc = test-lag

S = r
Eft: if flag 1 = 0 then

S : = ' s o {1}

internal: test-lrg-]ai~)
Pre: pc = test-lrg
Eft: S : = r

in t e rna l : test-lrg-succ o
Pre: pc = test-lag

s = {1}
Eft: pc := leave-try

o u t p u t : crito
Pre: pc = leave-try
Eft: pc := crit

i n p u t : exito
Eft: pc := reset

in te rna l : reseto
Pre: pc = reset
Eft: flag o := 0

S : = r
pc := leave-exit

o u t p u t : rein0
Pre: pc = leave-exit
Eft: pc := rein

One of the consequences of A P o representing the behavior of any smaller
process is tha t APo has two actions for sett ing its own flag to 0 (1): set- f lg-O-sml o

(se t - f lg - l - smlo) and set-flg-O o (se t - f lg- lo) . The first representing tha t the concrete
process P1 (the one with smallest index) sets its flag to 0 (1), where after it skips
the test of flags with smaller indices, as there are none, and sets it p rog ram
counter to set-f ig-1 (test-lrg). The second representing tha t any other smaller
process sets it flag to 0 (1) and thereafter tests flags with smaller indices, which
do exist in this case. A P o represents tha t a smaller process fails or succeeds a
test of smaller flags by allowing abstract fail or succeed actions whenever its
p rogram counter is test-sml-fs~ or test-srnl .snd. No further precondit ions apply
to these actions as all informat ion about the actual values of smaller flags have
been abst racted away.

In order for A P o to succeed its test of flags with larger indices, it mus t test
the flag of abst ract process AP1 as AP1 represent some larger process. This test

419

is m o d e l l e d by the ac t ion t e s t -o ther - f ig o. Having read this flag successfully (i.e.
as O) A P o can now enter i ts cr i t ica l region. Also, as long as A P o has p r o g r a m
counter tes t - lrg i t can a t any t ime pe r fo rm an a b s t r a c t ac t ion tes t - l rg- fa iL

A b s t r a c t process AP1 is mode l l ed ana logous ly to APo , and i ts t r ans i t i ons are
as follows.

i n p u t : try 1 i n t e r n a l : test-sml-snd-succ-lrgi
Eft: pc :-- set-flg-O Pre: pc = tes t -sml-snd

s = {0}
i n t e r n a l : set-flg-O l Eft: pc := leave-try

Pre: pc = set-flg-O
Eft: f lag 1 := 0 i n t e r n a l : test-lrg-]ail l

pc = tes t -sml- fs t Pre: pc = test-lry
Eft: pc := test-lrg

i n t e r n a l : test-other-flg~
Pre: pc 6 { test-smi-]st, test-srnl-snd} i n t e r n a l : test- lrg-sucq

S = 0 Pre: pc = test-lrg
Eft: if f lag o = 0 then Eft: pc := leave-try

S : = S u { 0 }
o u t p u t : critl

i n t e r n a l : test-srnl-]ai~ Pre: pc = leave-try
Pre: pc 6 {test-sml-fs t , test-sml-snd} Eft: pc := crit
Eft: S : = 0

pc := set-flg-O i n p u t : exit1
Eft: pc := reset

i n t e r n a l : tes t -sml- fs t -sucq
Pre: pc = tes t -sml- fs t i n t e r n a l : reseh

S ---- {0} Pre: pc = reset
Eft: S : = 0 Eft: flag 1 : = 0

pc := set-fig-1 S :=
pc := leave-exit

i n t e r n a l : set-fig-11
Pre: pc = set-fig-1 o u t p u t : rein1
Eft: f lag 1 := 1 Pre: pc = leave-exit

pc := tes t -sml-snd Eft: pc := rein

i n t e r n a l : test-srnl-snd-succa
Pre: pc = tes t -sml-snd

s = {o}

Eft: pc := test-lrg

T h e a b s t r a c t m u t u a l exclusion p rope r ty for A B u r n s M E is the one t race
p r o p e r t y /19(0,1) with sig(P(o,1)) having as i ts only ac t ions the o u t p u t ac t ions
of A B u r n s M E and t races (P(o ,D) being the set of sequences such t h a t no two
cr/~0 and cri t l events occur (in t h a t order) w i thou t an in te rvening exito event ,
and s imi l a r ly for 0 and 1 switched.

Now, for any {i, j } we define a re la t ion R{ i j} f rom acts (P(0,1)) to acts (P{ i s}) '
We assume i < j .

(exit~ (e itl, (rem0,

420

By definition, R{i,j}(P(o,1)) C P{i,j}. We use R{~j} as parameter to a state
relation fR{,,~} defined as follows.

D e f i n i t i o n 5. fR(,,,} is a relation from states (BurnsME) to states (A B u r n s M E)
such that fnt, , j} (s, u) iff :

- u .AU.pc o - s.U.pc i and u.AU.pc 1 = s.U.pcj
- u . A M . p c o = s .M.pc i and u . A M . p c 1 = s .M.pcj
- u.flag o = s.flag i and u.flag 1 = s.flagj
- u . A U . S o = {1} i f j E s . i . S i and u .AM.S1 = {0} i f i E s . i . S j

Note, that we use dot notation to denote the value of a given variable in a
state.

T h e o r e m 2. For all { i , j } subsets o f { l , . . . , n}, fn{,.~} is a simulation relation
from B u r n s M E to A B u r n s M E parameterized by R (, j } .

7 T h e S i m u l a t i o n P r o o f

To prove Theorem 2 for all {i, j} we prove it for any {i, j } with i and j treated
as Skolem constants. The proof follows the line of a standard forward simulation
proof [2]. To see that fR{,,j} is in fact a parameterized simulation relation we
check the two conditions in Definition 4. The start condition is trivial, because
the initial states of B u r n s M E and A B u r n s M E have the value of pc set to rem
for all processes and users, and they have all flags set to 0 and all sets of indices
empty.

Now, for the step condition suppose that s E s ta tes (BurnsME) and u E
s ta~es(ABurnsME) s.t. fn{,.j} (s, u). We then consider cases based on the type

of action 7r, performed by s on a transition s ~=~ #. For each action 7r= we
consider z = i, x = j and x ~ {i, j}. The proof is relatively simple, as the
execution fragment corresponding to a certain concrete action 7r= for the most
cases can be picked to be the abstract version of the concrete action. So the proof
is a rather straightforward matching up of concrete actions with their abstract
counterparts.

In [17] a framework is introduced for specifying and reasoning about IOA
using the Larch tools. The notion of IOA is formalized in the Larch Shared
Language (LSL) [18] which is supported by a tool that produces input for LP.
LP is a theorem prover for first-order logic designed to assist users who employ
standard proof techniques such as proofs by cases, induction, and contradiction.

In [17] LP is used to construct standard simulation proofs, and we use the
framework introduced here to (re)do the proof of Theorem 2. Using LP for the
simulation proof allows us to disregard many of the routine steps which are
needed in the hand proof, as LP carries these out automatically. The main user
assistance that LP needs for the proof is the input of the corresponding abstract
execution fragment for each concrete action. The rest of the user guidance con-
sists of directing LP to break some proof parts into cases, and directing LP to

421

use whatever information it has already got to try and do some rewriting to
complete proof subgoals.

Having proved Theorem 2 now allows us to apply Theorem 1 and conclude
that if ABurnsME satisfies P(0,1) then BurnsME satisfies P{~,j} for all {i, j}
subsets of {1 , . . . , n}. That ABurnsME satisfies P(0,1) is model checked using
the SPIN model checker.

8 M o d e l C h e c k i n g A B u r n s M E

The SPIN verification tool relies on a simple yet powerful modelling language
based on processes communicating either on asynchronous channels or via shared
variables. As property language SPIN uses Linear Time Temporal Logic (LTL).

We translate the IOA description of ABurnsME into a SPIN model and we
translate the property P(0,D into an LTL formula suitable for SPIN. Automaton
ABurusME is translated into a SPIN model with two processes implementing
the behavior of the composition of AUo with APo, and AU1 with AP1, respec-
tively. Each process has variables representing the program counters and internal
index sets of the corresponding IOA. The SPIN processes each execute a loop
checking preconditions and performing effects of representations of the actions of
their corresponding IOA. For each action, checking preconditions and perform-
ing effects is done atomically, i.e. non-interleaved with any other actions, hence
preserving the exact IOA semantics.

The property P(0,1) is translated into an LTL property of the SPIN model.
From ABurnsME it is easy to see, that the property P(0,x) can be stated (equiv-
alently) as a property of states rather than actions. Recall, that P(0,1) is the set
of sequences of external actions such that no two crito and critl events occur
(in that order) without an intervening exito event, and similarly for 0 and 1
switched. But, if an action cr//~, i E {0, 1}, is performed then AM.pc i gets the
value crit and it can not change until an exiti action is performed. Consequently,
the property P(0,1) can equivalently be stated as an invariant saying that for any
state u it is the case that u.AM.pc o and u.AM.pc 1 can not both have the value
cr/i. This property is exactly in the form of an LTL property and can be stated
in the property language of SPIN without translation.

Using SPIN to analyse the abstracted algorithm with respect to its cor-
responding abstract property stated in LTL, immediately lead to a successful
verification result.

9 C o n c l u s i o n

In this paper we have presented a general abstraction theorem within the In-
pu t /Outpu t Automata framework, which gives conditions for preservation of
safety properties from one (abstract) automaton to another (concrete) automa-
ton. The preservation condition is expressed by the requirement of a parameter-
ized simulation relation from the concrete to the abstract automaton.

422

We have used our abstraction theorem to verify that Burns n-process mutual
exclusion algorithm enjoys the mutual exclusion property, by constructing and
proving a 2-process property preserving abstraction of the concrete algorithm.
We have used the Larch Proof Assistant, LP to prove the conditions for property
preservation, and by using the SPIN model checker we have successfully verified
the abstraction.

Using our abstraction approach to prove Burns algorithm led to a proof style
having the advantages of providing both essential insight into the algorithm and
some automatic verification. The insight gained in the case of Burns algorithm
is that its essential behavior with respect to the mutual exclusion property can
be abstracted to the behavior of just two processes.

In general, our abstraction approach does of course not guarantee the ex-
istence of finite state abstractions for any concrete system neither does it pro-
vide a method for finding such abstractions. Further case studies needs to be
considered to identify classes of systems to which certain specific abstraction
techniques/patterns can be applied. The specific approach applied to the Burns
algorithm has also been succesfully applied to the Bakery mutual exclusion algo-
rithm, and it seems to be useful in general to many parameterized systems where
the property of interest can be stated as a conjunction of equivalent properties
over a finite subset of components.

Tool support is essential to assist in the process of finding common abstrac-
tion patterns for classes of systems, and we are investigating approaches to fur-
ther integrate model checking facilities with the Larch tools.

References

1. Nancy Lynch and Mark Tuttle. An Introduction to Input/Output Automata. CWI-
Quarterly, 2(3)219-246, 1989.

2. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
3. S.J. Garland and J.V. Guttag. A Guide to LP, the Larch Prover. Technical Report,

Research Report 82, Digital Systems Research Center, 1991.
4. Gerard tIolzmann. The Design and Validation of Computer Protocols. Prentice

Hall, 1991.
5. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.

PhD thesis, Eindhoven University of Technology, 1996.
6. Jfirgen Dingel and Thomas Filkorn. Model checking for infinite state systems using

data abstraction, assumption-commitment style reasoning and theorem proving. In
Proe. of CAV'95, Lecture Notes in Computer Science, volume 939, pages 54-69,
1995.

7. E.M. Clarke, O. Grumberg and D.E. Long. Model Checking and Abstraction. In
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1992.

8. R.P. Kurshan. Analysis of Discrete Event Coordination. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Proceedings of the Workshop on Stepwise Re-
finement of Distributed Systems: Models, Formalisms, Correctness, Lecture Notes
in Computer Science, volume 430, pages 414--454. Springer Verlag, 1989.

423

9. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property Preserving
Abstractions for the Verification of Concurrent Systems. Formal Methods in System
Design, pages 6:11-44, 1995.

10. Olaf Mfiller and Tobias Nipkow. Combining Model Checking and Deduction for
I/O-Automata. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science, volume 1019, pages 1-16. Springer Vet-
lag, 1995.

11. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Uppaal - - a Tool Suite for Automatic Verification of ReaJ-Time Systems. In Proc.
of the ~th DIMACS Workshop on Verification and Control o] Hybrid Systems,
Lecture Notes in Computer Science, October 1995.

12. Thomas A. I-Ienzinger, Pei-Hsin Ho, and Howard Wong-Toi. A Users Guide to
HYTEcH. Technical Report, Department of Computer Science, Cornell University,
1995.

13. Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing
Simulations on Finite and Infinite Graphs. In 36th Annual Symposium on Founda-
tions of Computer Science, pages 453-462. IEEE Computer Society Press, 1995.

14. Pierre Wolper and Vincianne Lovinfosse. Verifying Properties of Large Sets of Pro-
cesses with Network Invariants. International Workshop on Automatic Verification
Methods for Finite State Machines, Lecture Notes in Computer Science, volume
407, 1989.

15. R.P. Kurshan and K. McMillan. A Structural Induction Theorem for Processes.
In Proceedings of the 8th Annual ACM Symposium on Principles of Distributed
Computing, 1989.

16. N. Lynch and M. Tuttle. Hierarchical Correctness Proofs for Distributed Algo-
rithms. In Proe. o] the 6th A CM Symposium on Principles of Distributed Compu-
tation, pages 137-151, 1987.

17. Jcrgen Scgaard-Andersen, Stephen J. Garland, John V. Guttag, Nancy A. Lynch,
and Anna Pogosyants. Computer-Assisted Simulation Proofs. In Costas Courcou-
betis, editor, Computer-Aided Verification (5th International Conference, CA V'93,
Elounda, Greece, June/July 1993}, Lecture Notes in Computer Science, volume
697, pages 305-319. Springer Verlag, 1993.

18. J.V. Guttag and J.J. Homing. Larch: Languages and Tools for Formal Specification.
Springer Verlag, 1993.

