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Abs t r ac t .  Within the Input/Output Automata framework, we state 
and prove a general abstraction theorem giving conditions for preser- 
vation of safety properties from one automaton to another. We use our 
abstraction theorem to verify that Burns distributed mutual exclusion al- 
gorithm parameterized in the number of processes n satisfies the mutual 
exclusion property. The concrete n-process algorithm is abstracted by a 
simple 2-process algorithm which is property preserving with respect to 
the mutual exclusion property. The condition for property preservation 
is proved to be satisfied by use of the LP theorem prover with a mini- 
mum of user assistance, and the 2-process abstraction is automatically 
verified using the SPIN model checker. 

1 Introduction 

The major i ty  of existing formal verification methods can be characterized as 
being either theorem proving methods or model checking methods, each of these 
having their own well-known advantages and disadvantages. Theorem proving 
methods can be applied to arbi trary systems and provide good insight into the 
systems at hand, but the methods require intelligent user interaction and are 
therefore only computer-assis ted in a limited way. Model checking methods  on 
the other hand are fully automatic,  but  limited to systems with finite state 
models or restricted kinds of infinite state models. 

To benefit f rom the advantages of both  methodologies there has recently been 
an increasing interest into the development of verification frameworks integrating 
theorem proving and model checking approaches, the key idea in this integration 
being the use of abstraction. 

Given a system model, too large to be verified automatically,  abstract ion 
techniques are used to reduce this concrete model to a smMl (finite-state) ab- 
s tract  model which is property preserving. Meaning, that  if the abstract  model 
enjoys a property tha t  implies, by the abstraction relation, the concrete property 
of interest, then the concrete model enjoys the concrete property. 
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The abstract model provides insight, as it captures the essence of the behavior 
of the concrete model with respect to the property of interest, and as it is finite 
state it can be verified by model checking methods. Theorem proving methods 
are used to prove, that  the abstract model is indeed property preserving, and 
as a result no restrictions need to be imposed on the kind of concrete system 
models to which abstraction is amenable. 

We propose a method, in the line of above, in the framework of Lynch and 
Tutt le 's  Input/Output Automata (IOA) [1,2]. We are interested in verifying 
safety properties of IOA. Properties are expressed as sets of traces, and hence 
verifying that  an IOA A satisfies a trace safety property P amounts to proving 
that  the set of traces of A is included in the set of traces of P.  Given a concrete 
IOA C together with a safety property Pc ,  we give a general abstraction theo- 
rem stating conditions for an abstract IOA A and an abstract property PA to 
be property preserving in the sense of above. 

The theorem allows for abstraction of concrete system models regardless 
of the reason for their large size, being e.g. unbounded data  structures or an 
unbounded number of identical processes (parameterized systems). The theorem 
states as a condition for property preservation the existence of a parameterized 
simulation relation from the concrete IOA to the abstract one, which allows for 
the abstraction of just  a subset of the concrete behaviors. 

We illustrate the use of our theorem on the case study of Burns distributed 
mutual  exclusion algorithm parameterized in the number n of processes. We pro- 
vide a 2-process abstraction and prove using the Larch Proof  Assistant [3] that  
this abstraction satisfies the conditions for preservation of the mutual  exclusion 
property. We verify, using the SPIN [4] model checker, that  the abstraction en- 
joys the abstract mutual  exclusion property, and by our abstraction theorem, 
the n-process algorithm then enjoys the original property. 

R e l a t e d  W o r k  

Property preserving abstraction methods have been studied e.g. in [5-10]. These 
methods are, like ours, all based on proving the existence of some kind of 'mimic- 
ing' relation from concrete system models to abstract ones. Different kinds of 
relations such as simulation relations, homomorphic functions [I0, 8, 6, 7] and 
Galois connections [9, 5] have been considered. Our notion of parameterized sim- 
ulation relations is a generalization of standard simulation relations. 

Fully algorithmic methods have been developed, that  use automatic abstrac- 
tion to construct finite state abstract models of restricted kinds of large concrete 
models s.t. properties are preserved in both directions between the concrete and 
abstract models. Almost all existing model checkers for dense reactive systems 
(real- t ime/hybrid)  are based on automatically constructed strongly preserving 
abstractions [11-13]. The idea is to let abstract states be equivalence classes of 
concrete states with respect to either some behavioral equivalence on concrete 
states or with respect to an equivalence on concrete states induced by satisfaction 
of the same properties in some property language. 
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Structural  induction techniques have, together with model checking tech- 
niques, been used to verify parameterized systems. By model checking it is ver- 
ified tha t  one process enjoys the property of interest, and assuming that  the 
property holds for some number  n of processes (induction hypothesis) one just  
needs to prove that  the property holds for n + 1 processes as well. Using a finite 
representation of n processes assumed to enjoy the considered property, now 
allows model checking to establish that  this representation composed with just  
one more process satisfies the property, and by induction principle this concludes 
that  the property holds for any number  of composed processes. Works on such 
techniques have been reported on in [14,15]. 

O u t l i n e  

This paper  is organized as follows. In Section 2 we give some mathemat ica l  
preliminaries used in the rest of the paper. In Section 3 we give the formal  
background of the IOA framework, and in Section 4 we present our abstract ion 
theory. In Section 5 we present Burns n-process mutual  exclusion algori thm 
which will serve as case-study for the use of our abstraction theorem. Section 6 
describes the property preserving abstraction of Burns algorithm and Section 7 
describes how the condition for preservation is proved and how LP is used in the 
proofi Section 8 describes the model checking of the abstract  algorithm in the 
SPIN tool and Section 9 concludes. 

2 M a t h e m a t i c a l  P r e l i m i n a r i e s  

Relations 

A relation over sets X and Y is defined to be any subset of the cartesian product  
X • Y. If R is a relation over X and Y, then we define the domain of R to be 
dora(R) = {x E X [ (x,y)  e R for some y e Y}, and the range of R to be 
ran(R) = {y E Y [ (z ,y)  E R f o r  some z e X}.  If  dora(R) = X we say tha t  R 
is total (on X). For x �9 X,  we define R[z] = {y �9 Y I (z, y) �9 R}. 

Sequences 

Let S be any set. The set of finite and infinite sequences of elements of S is 
denoted seq(S). The symbol A denotes the empty  sequence and the sequence 
containing one element s E S is denoted by s. Concatenation of a finite sequence 
with a finite or infinite sequence is denoted by juxtaposit ion.  A sequence cr is a 
prefix of a sequence p, denoted by a < p, if either a = p, or ~ is finite and p = 
~a~ for some sequence cr ~. A set 2Y of sequences is prefix closed if, whenever some 
sequence is in ,U, all its prefixes are as well. A set Z of sequences is limit closed 
if, an infinite sequence is in ~ whenever all its finite prefixes are. 

I f  a is a nonempty  sequence then first (~) denotes the first element of a,  and 
tail(o') denotes the sequence obtained from ~ by removing first(~r). Also, if ~ is 
finite, last (a) denotes the last element of  a.  
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If  tr �9 seq(S), and S' C S, then ~ r s  ~ denotes the restriction of o~ to elements 
in S f, i.e. the subsequence of a consisting of the elements of S ~. If  ~ C seq(S), 
then L~r S~ is the set {otis ~ [~  �9 X'}. 

Assume R C_ S x  S ~ is a total  relation between sets S and Sq I f a  = sosls2 .. �9 
is a nonempty  sequence in seq (S) then R(~r) is the set of sequences S~oS] s~ . . .  over 
ran(R)  such tha t  for all i, s~ �9 R[si]. If  o = A then R(~r) = {A}. I f  57 _ seq(S),  
then R(L')  = U ~  R(~) 

L e m m a  1. L e t s  a n d s  ~ be sets and let R C S x S ~ be some total relation. For 
S and Z ~ non-empty subsets of seq (S), if  Z C_ Z '  then R ( S )  C R ( Z ' ) .  

Proof. Follows from the fact that  the set R(~r) is unique for any ~r �9 seq (S). 

3 I / O  A u t o m a t a  

As we will only be considering safety issues, we will use simplified versions of 
s tandard I / O  au toma ta  that  do not incorporate notions of fairness. 

D e f i n i t i o n  1. An I / O  automaton A is a luple (sig(A), states(A),  s tart(A),  
lrans (A)) where, 

- sig (A) is a tuple (in (A), out (A), int (A)), consisting of disjoint sets of input, 
output and internal actions, respectively. The set exl(A) of external actions 
of A is in (A)  U out (a),  and the set acts(A) of actions of A is ez l (A)  U 
mr(A) .  

- states(A) is a set of states. 
- start(A)  C. states(A) is a nonempty set of start stales. 
- trans(A) C_ states (A) x acts (A) x states(A) is a slate transilion relalion. 

We let s, s ~, u, u~,.., range over states, and 7r, 7r I, . . .  over actions. We write 
re re 81 s ~A s', or just  s ~ if A is clear from the context, as a shorthand for 

(s, ~, s ')  e trans (A). 
An execution fragment solrxslr~s2 . . .  of an I / O  au tomaton  A is a finite or 

infinite sequence of alternating states and actions beginning with a state, and if 
re t -~-1 

it is finite also ending with a state, s.t. for all i, si ~ s~+l. An ezecution of A is 
an execution fragment  a where first(a) 6 start(A).  A state s of A is reachable if 
s = last (a) for some finite execution a of A. The trace of an execution a,  written 
trace (a) ,  is the subsequence consisting of all the external actions occurring in a.  
We say tha t /3  is a trace of A if there is an execution a of A with t3 = trace (~). 
We denote the set of traces of A by traces(A). 

C o m p o s i t i o n  

We can compose individual au toma ta  to represent complex systems of interact- 
ing components.  We impose certain restrictions on the au toma ta  that  may  be 
composed. 
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Formally, we define a countable collection {Ai}iei  of automata  to be com- 
patible if for all i , j  E I, i ~ j ,  all of the following hold: int(Ai) fl acts(Aj) = 
0, out(Ai) n out(Aj)  = 0, and no action is contained in infinitely many sets 
acls(Ai). 

D e f i n i t i o n  2. The composition A = YIiex Ai of a countable, compatible collec- 
tion of I /O  automata {Ai}iet is the automaton with: 

- in(A) -- Uiei in(Ai)  - UielOUt(Ai) 
- out(A) = Uieiout(Ai)  
- int(A) = LJieiint(Ai)) 
- s t a t e s  ( A )  = s t a t e s  

- s t a r t ( A )  = 1-LeI  start(A ) 
- trans(A) is the set of triples (s, ~r, s') such that, for alli E I, ifTr E acts(Ai), 

then (si, ~r, s~) E trans(Ai); otherwise si = s~ 

The 1-[ in the definition of states (A) and start (A) refers to ordinary Cartesian 
product. Also, si in the definition of trans (A) denotes the ith component of state 
vector s. 

T r a c e  P r o p e r t i e s  

We will be considering properties to be proved about an I /O automaton A, as 
properties about the ordering, in traces of A, of some external actions from a 
subset of ext ( A ). 

A trace property P is a tuple (sig(P), traces(P)) where, sig(P) is a pair 
(in (P), out(P)), consisting of disjoint sets of input and output  actions, respec- 
tively. We let acts (P) denote the set in (P) U out (P). traces (P) is a set of (finite 
or infinite) sequences of actions in acts (P). We will be considering only safety 
properties, so we assume traces (P) is nonempty, prefix-closed, and limit-closed. 

An I /O  automaton A and a trace property P are said to be compatible if, 
in (P) C in (A) and out (P) C_ out (A). 

D e f i n i t i o n  3. Let A be an I /O  automaton and P a trace property such that A 
and P are compatible. Then A satisfies P if, traces(A)[acts(P) C_ traces(P). 

4 A b s t r a c t i o n  T h e o r y  

Suppose A is an I /O automaton and P is a trace property such that  A and P 
are compatible. We will denote the pair (A, P )  a verification problem. If (A, P )  
and (A', P ' )  are two verification problems, we say that  (A', P ' )  is safe for (A, P )  
provided that  A' satisfies P '  implies that  A satisfies P.  In this section we give 
a generM abstraction theorem, stating when one verification problem is safe for 
another. 

If A and A' are two I /O automata  and R is some relation from ext (A') to 

ezt(A), we write, s ~=:~A' s I, when A' has a finite execution fragment a with 
first(a) = s, last(a) = s' and trace (~)rdom (R) = 13. 



414 

We now define the notion of a parameterized simulation relation between two 
automata  A and A ~, and we give a soundness result needed for the abstraction 
theorem. 

D e f i n i t i o n  4. Let A and A' be two I / 0  automata and let R be a relation from 
ezt(A') to ext(A). A relation fR C_ states(A) • states(A') is a simulation rela- 
tion from A to A' parameterized by R provided, 

1. I f  s E start(A) then fR[s] N start(A') r 0. 
2. I f  s '~'A s I, u E fR[s], and s and u are reachable states of A and A' 

respectively, then 
9 I 

(a) I f  rc E ran(R), then 3re', u' such that u =::~a, u', (Tr', 7r) E R and 
( s', u') e YR. 

(b) If r ran (R), then 3u' such that and (s', e f R .  

We write A <_R A r if  there is a simulation from A to A ~ parameterized by R. 

L e m m a  2. A <_R A' =~ traces(A)rran(R) C R(traces(A')rdom(R)) 

Proof. Analogous to proof for standard forward simulation [16]. [] 

T h e o r e m  1. Let (A, P) and (A', P') be two verification problems. Also, let R 
be a relation from ext(A') to ext(A), with dom(R) = acts(P') and ran(R) = 
acts(P), such that R(traces(P')) C_ traces(P). If, 

A <_n A ~ and A' satisfies P~ 

then 
A satisfies P 

Proof. Assume that A _<R A ~ and that A ~ satisfies P~. From second assump- 
tion we have traces(A')racts(P') C_ traces(P') and from Lemma 1 we get ( .)  
R( traces( A') r acts ( P') ) C_ R( traces ( P') ), as R is total on acts ( P'). Also, from 
Lemma 2, and the fact that  dora ( R) = acts ( P') and ran ( R ) = acts ( P ) , we have 
that  traces (A)[acts (P) C_ R(traces (A')[acts (P')) and this together with (*) now 
gives us that  traces(A)[acts (P) C_ R(traces (P')) and finally as R(traces (P')) C 
traces(P) we get the wanted result, namely traces(A)racts(P) C_ traces(P) i.e. 
A satisfies P.  [2 

5 B u r n s  N - P r o c e s s  M u t u a l  E x c l u s i o n  A l g o r i t h m  

In this section we present Burns n-process distributed mutual exclusion algo- 
rithm, which we will verify with respect to the mutual exclusion property using 
the abstraction approach from the previous section. 

The algorithm runs on a shared memory model consisting of n processes 
P t , - . . ,  Pn together with n shared variables f lagl, . . . , f lagn, each flag i writable 
by process Pi and readable by all other processes. Each process Pi is acting 
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on behalf  of a user process Ui which can be thought  of as some application 
program. The processes P 1 , . - - , P n  competes for mutual  exclusive access to a 
shared resource by reading and writing the shared variables in a way determined 
by the algorithm. 

We model the algorithm formally as an I / O  au tomaton  BurnsME,  which is 
the composition of a shared memory  au tomaton  M and a set of user au toma ta  
U 1 , . . . ,  Un. M models the n processes P1, �9 �9 Pn together with the set of shared 
variables f lag1 , . . .  , flagn, and it is modelled as one big I / O  automaton,  where the 
process and variable structure is captured by means of some locality restrictions 
on transitions. Each state in M consists of a state for each process Pi, plus a 
value for each shared variable flag i. A state  variable v of process Pi in au tomaton  
M is denoted M.vi .  Similarly, U.v~ denotes a state variable v of au tomaton  Ui. 
We omit  the preceding U ( M )  and the subscripts i when these are clear from the 
context. 

The inputs to M are (for all 1 < i < n) actions ~ryi, which models a request 
by user Ui to process Pi for access to the shared resource, and actions exiti, 
which models an announcement by user Ui to process Pi that  it is done with the 
resource. The outputs  of M are cr/t/, which models the granting from process Pi 
of the resource to Ui, and rein/, which models Pi telling Ui that  it can continue 
with the rest of its work. 

Each process Pi executes three loops. The first two loops involve checking 
the flags of all processes with smaller indices, i.e. all flagj, 1 < j < i. The first 
loop is actually not needed for the mutual  exclusion condition, but  is impor tan t  
to guarantee progress. The two loops are modelled in M by internal actions 
test-sml-fst( j) i  and test-sml-snd(j) i ,  where j is a parameter  denoting the index 
of the flag to be read by process Pi. In between the first two loops process Pi 
sets its own flag i to 1, modelled in M by internal action set-fig-1 i. If  both  loops 
are successfully passed, meaning all the considered flags have value 0, then Pi 
can proceed to the third loop, which involves checking the flags of all processes 
with larger indices, i.e. flagj, i < j < n. This is modelled by internal action 
test-lrg(j)i.  If  process Pi passes all three loops successfully, it proceeds to its 
critical region. Process Pi keeps the value of its flag i to 1 from when it s tarts  
testing flags with larger indices and until it leaves its critical region. 

T h e  U s e r  A u t o m a t a :  Each au tomaton  Ui has as single state variable a pro- 
gram counter pc initially having the value rein, indicating tha t  Ui starts  in its 
remainder region ready to make a request for access to the shared resource. 

output: try, output: exit, 
Pre: pc = rera Pre: pc = crit 
Eft: pc := try Eft: pc = exit 

input: criti input :  rem, 
Eft: pc := crit Eft: pc := rein 

The S h a r e d  M e m o r y  A u t o m a t o n :  The state of each process Pi in M is 
modelled by two state  variables: a program counter pc initially having the value 
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rein, a n d  a set  S o f  p rocess  id ' s  i n i t i a l l y  e m p t y ,  used  to  keep t r ack  o f  t h e  ind ices  

o f  a l l  s h a r e d  f lags  t h a t  h a v e  successfu l ly  been  checked in one  o f  t h e  t h r ee  loops .  

i n p u t :  try~ i n t e r n a l :  test-lrg(j)i 
Eft: pc :=  set-flg-O Pre: pc = test-lrg 

j C s  
i n t e r n a l :  set-fig-O, i + 1 < j < n 

Pre: pc = set-flg-O Eft: if flagj = 1 then 
Eft: flag, :=  0 S :=  r 

if  i = 1 then else 
pc :=  set-fig-1 S := S U {j} 

else if [ S [ =  n - i then 
pc :=  test-sml-fst  pc :=  leave-try 

i n t e r n a l :  test-smlffst(j)~ o u t p u t :  criti 
Pre: pc = test-sml-]st Pre: pc = leave-try 

j r  Eft: p c : = c r i t  
l < j < i - 1  

Eft: if  flag~ = 1 then i n p u t :  exit, 
S :=  t~ Eft: pc :=  reset 
pc :=  set-flg-O 

else i n t e r n a l :  reset, 
S :=  S U {j} Pre: pc = reset 

if  I S I =  i - 1 then Eft: flag, :=  0 
S : = r  S : = r  
pc :=  set-fig-1 pc :=  leave-exit 

i n t e r n a l :  set-fig-1 i 
Pre: pc = set-fig-1 
Eft: flag, :=  1 

if  i = 1 then 
pc :=  test-lrg 

else 
pc :-- test-sml-snd 

i n t e r n a l :  test-smi-snd(j) ,  
Pre: pc = test-smi-snd 

j C s  
l < j < i - 1  

Eft: if  flag 3 = 1 then 
S : = r  

pc :=  set-flg-O 
else 

s := a u {j} 
i f [ S [ =  i -  1 then 

S : = r  
if i = n then 
pc :=  leave-try 

else 
pc :=  test-lrg 

o u t p u t :  rem~ 
Pre: pc = leave-exit 
Eft: pc :=  rem 
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The mutua l  exclusion property for BnrnsME is a set of trace properties P{i,j }, 
one for each subset { i , j} i#j  in the set of process indices { 1 , . . . ,  n}, such tha t  
sig(P{ij}) has as its only actions the set of output  actions from BurnsME with 
indices i and j ,  and traces(P{ij}) is the set of sequences such that  no two criti, 
critj events occur (in that  order) without an intervening exiti event, and similarly 
for i and j switched. 

6 A b s t r a c t i n g  B u r n s M E  

To construct a property-preserving abstraction of BurnsME we examine the 
mutual  exclusion property as s tated in the previous section. The  property is the 
conjunction of properties P(i,j}, one for each subset {i, j} of indices in { 1 , . . . ,  n}, 
with each P(i,j} saying that  processes P~ and Pj can not both  be in their critical 
section at the same time. 

The abstract ion idea is now as follows. We will construct a single finite-state 
abstract ion which preserves the external behavior of any two concrete processes 
Pi and Pj running in the environment of all other processes and users. This 
abstract ion will then preserve the mutual  exclusion property between any pair 
of concrete processes and hence the complete property. 

Formally, we construct an abstract  au tomaton  ABurnsME, which is the com- 
position of a shared memory  au tomaton  AM,  with two user au toma ta  AUo and 
AU1. A M  models two abstract  processes APo and AP1 together with two shared 
variables flag o and flag 1. APo and AP1 are abstract  representations of any pair 
of concrete processes Pi and Pj within the environment of all other concrete 
processes, such that  APo represents the smaller process Pi and AP1 represents 
the larger process Pj for i < j .  

A state of A M  consists of a state for each of the abstract  processes APo and 
AP1 together with values for each of the shared variables flag o and flag 1 . A state 
variable v of process APi in au tomaton  A M  is denoted AM.vi. Similarly, AU.vi 
denotes a variable v of au tomaton  AUi. We omit  the preceding AM(AU) and 
the subscripts i when these are clear from the context. 

The interface between AUo and APo (AU1 and AP1) is identical to the in- 
terface between any concrete user au tomaton  Ui and corresponding concrete 
process Pi, except for a change of indices. Process APo has as actions abstracted 
versions of all actions actions in any smaller process Pi, and AP1 has abstracted 
versions of all actions in any larger process Pj. 

The au toma ta  AUo and AU1 of ABurnsME, are identical to each other and 
to any concrete user au tomaton  Ui except for a change of indices. 

The Abstract  Shared Memory  Automaton:  The state of each of the ab- 
stract  processes APo and AP1 is modelled, analogous to the state of concrete 
processes, by two state variables: a program counter pc, initially rem and a set 
S of indices, initially empty. The transitions for APo are as follows. 
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i n p u t :  try o 
Eft: pc :=  set-flg-O 

i n t e rna l :  set-flg-O o 
Pre: pc = set-flg.O 
Eft: flago :=  0 

pc :=  test-sml-fst  

i n t e rna l :  set-flg-O-smlo 
Pre: pc = set-flg-O 
Eft: flag o :=  0 

pc := set-fig-1 

i n t e rna l :  test-sml-]ai~ 
Pre: pc E { test-smi-fst, test-sml-snd} 
Eft: pc := set-flg-O 

internal: test-sml.fst-succ o 
Pre: pc = test-sml-]st 
Eft: pc := set-fig-1 

i n t e rna l :  set-fig-1 o 
Pre: pc = set-fig-1 
Eft: flag o :=  1 

pc := test-sml-snd 

i n t e rna l :  set-flg- l . sm l  o 
Pre: pc = set-fig-1 
Eft: flag o :=  1 

pc :=  test-lag 

i n t e rna l :  test-sml-snd-succo 
Pre: pc = test-sml-snd 
Eft: pc :=  test-lag 

in te rna l :  test-other-rig a 
Pre: pc = test-lag 

S = r  
Eft: if flag 1 = 0 then 

S : = ' s  o {1} 

internal: test-lrg-]ai~) 
Pre: pc = test-lrg 
Eft: S : = r  

in t e rna l :  test-lrg-succ o 
Pre: pc = test-lag 

s = {1} 
Eft: pc := leave-try 

o u t p u t :  crito 
Pre: pc = leave-try 
Eft: pc :=  crit 

i n p u t :  exito 
Eft: pc :=  reset 

in te rna l :  reseto 
Pre: pc = reset 
Eft: flag o :=  0 

S : = r  
pc :=  leave-exit 

o u t p u t :  rein0 
Pre: pc = leave-exit 
Eft: pc :=  rein 

One of  the consequences of  A P o  representing the behavior  of  any smaller 
process is tha t  APo  has two actions for sett ing its own flag to 0 (1): set- f lg-O-sml o 

( se t - f lg - l - smlo)  and set-flg-O o (se t - f lg- lo) .  The first representing tha t  the concrete 
process P1 (the one with smallest index) sets its flag to 0 (1), where after it skips 
the test of  flags with smaller indices, as there are none, and sets it p rog ram 
counter to set-f ig-1 (test-lrg).  The second representing tha t  any other  smaller 
process sets it flag to 0 (1) and thereafter tests flags with smaller indices, which 
do exist in this case. A P o  represents tha t  a smaller process fails or succeeds a 
test of  smaller flags by allowing abstract  fail or succeed actions whenever its 
p rogram counter is test-sml-fs~ or test-srnl .snd.  No further  precondit ions apply  
to these actions as all informat ion about  the actual  values of  smaller flags have 
been abst racted away. 

In  order for A P o  to  succeed its test of  flags with larger indices, it mus t  test 
the flag of  abst ract  process AP1 as AP1  represent some larger process. This test 
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is m o d e l l e d  by  the  ac t ion  t e s t -o ther - f ig  o. Having  read  this  flag successfully (i.e. 
as O) A P o  can now enter  i ts  cr i t ica l  region.  Also,  as long as A P o  has  p r o g r a m  
counter  tes t - lrg  i t  can a t  any  t ime  pe r fo rm an a b s t r a c t  ac t ion  tes t - l rg- fa iL 

A b s t r a c t  process  AP1  is mode l l ed  ana logous ly  to  APo ,  and  i ts  t r ans i t i ons  are  
as follows. 

i n p u t :  try 1 i n t e r n a l :  test-sml-snd-succ-lrgi 
Eft: pc :-- set-flg-O Pre: pc = tes t -sml-snd 

s = {0} 
i n t e r n a l :  set-flg-O l Eft: pc := leave-try 

Pre: pc = set-flg-O 
Eft: f lag 1 := 0 i n t e r n a l :  test-lrg-]ail l 

pc = tes t -sml- fs t  Pre: pc = test-lry 
Eft: pc :=  test-lrg 

i n t e r n a l :  test-other-flg~ 
Pre: pc 6 { test-smi-]st, test-srnl-snd} i n t e r n a l :  test- lrg-sucq 

S = 0 Pre: pc = test-lrg 
Eft: if f lag o = 0 then Eft: pc := leave-try 

S : = S u { 0 }  
o u t p u t :  critl 

i n t e r n a l :  test-srnl-]ai~ Pre: pc = leave-try 
Pre: pc 6 {test-sml-fs t ,  test-sml-snd} Eft: pc := crit  
Eft: S : = 0  

pc := set-flg-O i n p u t :  exit1 
Eft: pc := reset 

i n t e r n a l :  tes t -sml- fs t -sucq 
Pre: pc = tes t -sml- fs t  i n t e r n a l :  reseh 

S ---- {0} Pre: pc = reset  
Eft: S : = 0  Eft: flag 1 : = 0  

pc := set-fig-1 S :=  
pc := leave-exit  

i n t e r n a l :  set-fig-11 
Pre: pc = set-fig-1 o u t p u t :  rein1 
Eft: f lag 1 :=  1 Pre: pc = leave-exit  

pc := tes t -sml-snd Eft: pc := rein 

i n t e r n a l :  test-srnl-snd-succa 
Pre: pc = tes t -sml-snd 

s = {o} 

Eft: pc :=  test-lrg 

T h e  a b s t r a c t  m u t u a l  exclusion p rope r ty  for A B u r n s M E  is the  one t race  
p r o p e r t y  /19(0,1) with  sig(P(o,1))  having  as i ts  only  ac t ions  the  o u t p u t  ac t ions  
of  A B u r n s M E  and  t races (P(o ,D)  being the  set of  sequences such t h a t  no two 
cr/~0 and  cri t l  events  occur  (in t h a t  order)  w i thou t  an in te rvening  exito event ,  
and  s imi l a r ly  for 0 and  1 switched.  

Now, for any  {i, j }  we define a re la t ion  R{ i j}  f rom acts  (P(0,1)) to  acts  (P{ i s} ) '  
We  assume i < j .  

(exit~ (e itl, (rem0, 
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By definition, R{i,j}(P(o,1)) C P{i,j}. We use R{~j} as parameter to a state 
relation fR{,,~} defined as follows. 

D e f i n i t i o n  5. fR(,,,} is a relation from states (BurnsME)  to states ( A B u r n s M E )  
such that fnt, , j} (s, u) iff  : 

- u .AU.pc o - s.U.pc i and u.AU.pc 1 = s.U.pcj 
- u . A M . p c  o = s .M.pc  i and u . A M . p c  1 = s .M.pcj  
- u.flag o = s.flag i and u.flag 1 = s.flagj 
- u . A U . S o  = {1} i f j  E s . i . S i  and u .AM.S1  = {0} i f i  E s . i . S j  

Note, that  we use dot notation to denote the value of a given variable in a 
state. 

T h e o r e m  2. For all { i , j }  subsets o f { l , . . . ,  n},  fn{,.~} is a simulation relation 
from B u r n s M E  to A B u r n s M E  parameterized by R ( , j } .  

7 T h e  S i m u l a t i o n  P r o o f  

To prove Theorem 2 for all {i, j} we prove it for any {i, j }  with i and j treated 
as Skolem constants. The proof follows the line of a standard forward simulation 
proof [2]. To see that  fR{,,j} is in fact a parameterized simulation relation we 
check the two conditions in Definition 4. The start condition is trivial, because 
the initial states of B u r n s M E  and A B u r n s M E  have the value of pc set to rem 
for all processes and users, and they have all flags set to 0 and all sets of indices 
empty. 

Now, for the step condition suppose that  s E s ta tes (BurnsME)  and u E 
s ta~es(ABurnsME)  s.t. fn{,.j} (s, u). We then consider cases based on the type 

of action 7r, performed by s on a transition s ~=~ #.  For each action 7r= we 
consider z = i, x = j and x ~ {i, j}.  The proof is relatively simple, as the 
execution fragment corresponding to a certain concrete action 7r= for the most 
cases can be picked to be the abstract version of the concrete action. So the proof 
is a rather straightforward matching up of concrete actions with their abstract 
counterparts. 

In [17] a framework is introduced for specifying and reasoning about IOA 
using the Larch tools. The notion of IOA is formalized in the Larch Shared 
Language (LSL) [18] which is supported by a tool that produces input for LP. 
LP is a theorem prover for first-order logic designed to assist users who employ 
standard proof techniques such as proofs by cases, induction, and contradiction. 

In [17] LP is used to construct standard simulation proofs, and we use the 
framework introduced here to (re)do the proof of Theorem 2. Using LP for the 
simulation proof allows us to disregard many of the routine steps which are 
needed in the hand proof, as LP carries these out automatically. The main user 
assistance that  LP needs for the proof is the input of the corresponding abstract 
execution fragment for each concrete action. The rest of the user guidance con- 
sists of directing LP to break some proof parts into cases, and directing LP to 
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use whatever information it has already got to try and do some rewriting to 
complete proof subgoals. 

Having proved Theorem 2 now allows us to apply Theorem 1 and conclude 
that  if ABurnsME satisfies P(0,1) then BurnsME satisfies P{~,j} for all {i, j} 
subsets of {1 , . . . ,  n}. That  ABurnsME satisfies P(0,1) is model checked using 
the SPIN model checker. 

8 M o d e l  C h e c k i n g  A B u r n s M E  

The SPIN verification tool relies on a simple yet powerful modelling language 
based on processes communicating either on asynchronous channels or via shared 
variables. As property language SPIN uses Linear Time Temporal Logic (LTL). 

We translate the IOA description of ABurnsME into a SPIN model and we 
translate the property P(0,D into an LTL formula suitable for SPIN. Automaton 
ABurusME is translated into a SPIN model with two processes implementing 
the behavior of the composition of AUo with APo, and AU1 with AP1, respec- 
tively. Each process has variables representing the program counters and internal 
index sets of the corresponding IOA. The SPIN processes each execute a loop 
checking preconditions and performing effects of representations of the actions of 
their corresponding IOA. For each action, checking preconditions and perform- 
ing effects is done atomically, i.e. non-interleaved with any other actions, hence 
preserving the exact IOA semantics. 

The property P(0,1) is translated into an LTL property of the SPIN model. 
From ABurnsME it is easy to see, that  the property P(0,x) can be stated (equiv- 
alently) as a property of states rather than actions. Recall, that  P(0,1) is the set 
of sequences of external actions such that no two crito and critl events occur 
(in that  order) without an intervening exito event, and similarly for 0 and 1 
switched. But, if an action cr//~, i E {0, 1}, is performed then AM.pc i gets the 
value crit and it can not change until an exiti action is performed. Consequently, 
the property P(0,1) can equivalently be stated as an invariant saying that  for any 
state u it is the case that  u.AM.pc o and u.AM.pc 1 can not both have the value 
cr/i. This property is exactly in the form of an LTL property and can be stated 
in the property language of SPIN without translation. 

Using SPIN to analyse the abstracted algorithm with respect to its cor- 
responding abstract property stated in LTL, immediately lead to a successful 
verification result. 

9 C o n c l u s i o n  

In this paper we have presented a general abstraction theorem within the In- 
pu t /Outpu t  Automata  framework, which gives conditions for preservation of 
safety properties from one (abstract) automaton to another (concrete) automa- 
ton. The preservation condition is expressed by the requirement of a parameter- 
ized simulation relation from the concrete to the abstract automaton. 
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We have used our abstraction theorem to verify that  Burns n-process mutual  
exclusion algorithm enjoys the mutual exclusion property, by constructing and 
proving a 2-process property preserving abstraction of the concrete algorithm. 
We have used the Larch Proof  Assistant, LP to prove the conditions for property 
preservation, and by using the SPIN model checker we have successfully verified 
the abstraction. 

Using our abstraction approach to prove Burns algorithm led to a proof style 
having the advantages of providing both essential insight into the algorithm and 
some automatic verification. The insight gained in the case of Burns algorithm 
is that  its essential behavior with respect to the mutual  exclusion property can 
be abstracted to the behavior of just  two processes. 

In general, our abstraction approach does of course not guarantee the ex- 
istence of finite state abstractions for any concrete system neither does it pro- 
vide a method for finding such abstractions. Further case studies needs to be 
considered to identify classes of systems to which certain specific abstraction 
techniques/patterns can be applied. The specific approach applied to the Burns 
algorithm has also been succesfully applied to the Bakery mutual  exclusion algo- 
rithm, and it seems to be useful in general to many parameterized systems where 
the property of interest can be stated as a conjunction of equivalent properties 
over a finite subset of components. 

Tool support is essential to assist in the process of finding common abstrac- 
tion patterns for classes of systems, and we are investigating approaches to fur- 
ther integrate model checking facilities with the Larch tools. 
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