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Abs t rac t .  This paper discusses our experience with literate program- 
ming tools in the realm of the modelling and validation of systems. We 
propose the use of literate programming techniques to structure and con- 
trol the validation trajectory. The use of literate programming is illus- 
trated by means of a running example using Promela and Spin. The paper 
can also be read as a tutorial on the application of literate programming 
to formal methods. 

1 I n t r o d u c t i o n  

In the past years, we have been involved in several industrial projects concerning 
the modelling and validation of (communication) protocols [3, 10, 18]. In these 
projects we used modelling languages and tools - like Pmmela, Spin [5, 7] and 
UPPAAL [13] - to specify and verify the protocols and their properties. During 
each of these projects we encountered the same practical problems of keeping 
track of various sorts of information and data, for example: 

- many documents, which describe parts of the system; 
- many versions of the same document; 
- consecutive versions of validation models; 
- results of validation runs. 

The problems of managing such information and data  relate to the maintenance 
problems found in software engineering [15]. This is not surprising as, in a sense, 
validation using a model checker involves the analysis of many successive versions 
of the model of a system. 

This paper discusses our experience with literate programming techniques to 
help us tackle these information management problems. 

Literate Programming. Literate programming is the act of writing computer pro- 
grams primarily as documents to be read by human beings, and only secondarily 
as instructions to be executed by computers. 

The term "literate programming" was coined by D.E. Knuth, when he de- 
scribed WEB [11, 12] the tool he created to develop the ~ typesett ing software. 

In general, l i terate programs combine source code and documentation in 
a single file. Literate programming tools then parse the file to produce either 
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readable documentation or compilable source code. One of advantages of literate 
programming is that  we are not longer forced to comply with the syntactical 
order of the programming language. Types, variables and constructs can be 
introduced at alternative locations where they serve the purpose of the literate 
document better, e.g. where they are best understood by a human reader. The 
literate programming tool will reassemble the source parts into their formally 
correct order. 

A literate style of programming has proven very helpful, especially for terse 
and/or  complex programs. In the area of functional programming - where, by 
nature, programs are often quite terse - the art of writing functional scripts has 
become quite popular (see for instance [8]). It is remarkable that  in the domain 
of formal methods, which deals with the specification of complex and safety- 
critical systems, the benefits of literate programming techniques have not yet 
been acknowledged. 

In Sect. 2 we will discuss the application of literate programming in the modelling 
phase. In Sect. 3 we sketch how the same techniques can be used to structure the 
validation process. The use of literate programming in the validation trajectory 
is illustrated by means of a running example using Promela and Spin. 1 The paper 
is concluded in Sect. 4 where some conclusions and future work are discussed. 

2 L i t e r a t e  M o d e l l i n g  

In a way, the literate style of specification has already reached the formal meth- 
ods community. For example, a Z specification [19] can he considered as a liter- 
ate specification. The "source code" of a Z specification consists of Z construc- 
tions like schema's and constraints, whereas the intertwining documentation (in 
I-4TF_,X) can be regarded as "literate comments". Type checking tools for Z - like 
fUZZ and ZTC - discard these explaining comments when type checking a Z 
specification. 

The use of literate programming techniques in the modelling phase has several 
advantages. Several parties are involved in the design of a system, e.g. users, 
designers, programmers, testers, etc. It is important that  they all agree on the 
same specification of the system. For that  reason the specification should be 
readable and acceptable for all parties. In this way, literate modelling helps to 
explain formal specifications. 

Besides making the documentation more easily accessible, using literate mod- 
elling gives us the possibility to annotate the specification or model in a struc- 
tured way without obscuring the formal specification with too many comments. 
Common forms of annotations include: 

- identifying the source of information, which is especially useful when the 
specification or model is based on different documents from different parties; 

1 This document itself is written as a literate specification. This means that not only 
the document you are reading now, but also the validation results of the rlmning 
example have been generated from a single source file. 
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- discussing modelling choices, e.g. the abstractions from the design, or as- 
sumptions on the environment.  

- identifying points of attention, e.g. for a future validation phase, or when 
documents  contain contradictory information. 

In our modelling work we used the literate programming tool noweb [9, 16, 
17] developed by Norman Ramsey. noweb is a li terate programming tool like 
Knuth ' s  ~T_~, only simpler. Unlike ~EB, noweb is independent of the programming 
language to be literated, noweb has been used in combination with Pascal, C, 
C + + ,  Modula-2, Icon, ML, Promela and others. A recent book-length example  
of l i terate programming using noweb is Fraser and Hanson's  book on l c c  [4]. 

2.1 E x a m p l e  - M o d e l l i n g  

To il lustrate the use and benefits of li terate techniques in the modelling phase, we 
present an example using noweb. First we give a specification of the specification 
problem in natural  language. Next, we present a li terate specification of the 
model in Promela. In the next section we show how to include validation results 
into the l i terate document.  Consider the following scheduling problem. 

Problem: 
Four soldiers who are heavily injured, try to flee to their home land. The enemy 
is chasing them and in the middle of the night they arrive at a bridge that 
spans a river which is the border between the two countries at war. The bridge 
has been damaged and can only carry two soldiers at a time. b-hrthermore, 
several lauelmines have been placed on the bridge and a torch is needed to 
sidestep all the mines. The enemy is on their tail, so the soldiers know that 
they have only 60 minutes to cross the bridge. The soldiers only have a single 
torch and they are not equally injured. The following table lists the crossing 
times (one-way!) for each of the soldiers: 

soldier So 5 minutes 
soldier $I IO minutes 
soldier $2 20 minutes 
soldier $3 25 minutes 

Does a schedule exist which gets all four soldiers to the safe side within 60 
minutes? 

Hint: Before proceeding it may be instructive to try to solve the "soldiers" 
problem on paper. 

During the modelling phase we are not interested in the 60 minutes constraint,  
but  we only want to model how we can get the four soldiers from the unsafe to 
the safe side of the bridge. 

Please note tha t  the specification of the problem is straightforward, and 
consequently, the noweb specification may  be trivial and even overly simple in 
some places. This is deliberately done to give a bet ter  overview of a complete 
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l i terate validation t rajectory with noweb. A less trivial example of such t ra jectory 
can be found in [2]. 

x (sotdiers.pr I)=- (20) 
(r~t~de 2) 
(procgypes 8) 
(i.it 27) 

Our Promela specification s o l d i e r s . p r  consists of a (prelude), some process 
definitions (proetypes} and an initialization process (init). 

In the left margin, noweb identifies the number of the code chunk. 2 In the 
right margin of the definition of a code chunk, between parenthesis, the number 
of the code chunk is listed, which uses this particular code chunk. All code chunks 
with the same name will be collected by noweb and put  in the place where the 
chunk is used. 

2 (pr~l~e 2)=- (I) 
(constants 4) 
(macros 13} 
( t ~ s  5) 
(channels 3) 
(globals 6) 

The Promela (prelude) of the specification consists of constants, macros, types, 
channels and global variables. These parts will be defined when they are needed 
in the process definitions of the specification. We start  our model of the "soldiers" 
problem by modelling the bridge. 

3 (channels 3}~ (2) 
chart unse~e_to_sa .~e  = [0]  o f  { s o l d i e r .  s o l d i e r }  ; 
chart s a f e _ t o _ u n s a f e  = [0 ]  o f  ~ s o l d i e z ' }  ; 

The bridge is modelled with two channels. The channel u n s a f e _ t o _ s a f e  models 
the unsafe --~ safe direction, whereas s a f e _ t o _ u n s a f e  models the safe --+ unsafe 
direction. 

Every t ime two soldiers have made it to the safe side, one of the men on the 
safe side has to go back with the torch. It  is clear that  it is not very helpful to go 
back with two men. For that  reason, the channel s a f e _ t o _ u n s a f e  only passes a 
single s o l d i e r .  

The four soldiers are identified by integers in the range 0 . .  N-l,  where N is 
defined as follows: 

4 (constants 4)~ (2) 
#de f i ne  N 4 

This means that  a s o l d i e r  can be represented by a by te :  

5 (ty~, 5)-- (2) 
#define so ld ie r  byte  

~ In this paper the WEB style of chunk numbering is used. Another popular way of 
ch, mk identification is a tag page.n, where n indicates the n-th chunk on page page. 
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6 (globals 6) = (2) 
b y t e  time ; 
b y t e  v a l  IN] ; 

The variable t ime is the number of minutes that  have elapsed since the soldiers 
have started to move. Every time a soldier reaches the other side of the bridge, 
the variable t ime is updated. 

The array v a l  holds the times it takes the soldiers to cross the bridge. Because 
Prome[a doesn't  support constant arrays, the array va l  has to be initialized in 
the i n i t  process: 

7 (init vat r)= (27) 
val[O] = 5 ; val[Z] = 10 ; val[2]  = 20 ; val[3]  = 25 ; 

As specified in the problem description, the times for the soldiers to cross the 
bridge are 5, 10, 20 and 95 minutes, respectively. 

8 (proetypes 8)---- (1) 
(proct!tpe Unsafe 9) 
(proct~e Safe 25) 

Crossing the bridge is modelled by s o l d i e r s  that  are passed between two pro- 
cesses: Unsafe  and Safe.  In the beginning, all soldiers are at the Unsafe  side, 
and the goal is to get all soldiers to the Safe  side. 

In the remainder of this section we only define the chunk (proctype Unsafe). 
For completeness, we have included the chunks (proctype Safe) and (init) in the 
Appendix. 

9 (proctype Unsafe 9)-- (8) 
p r o c C y p e  Unsafe O 
( 

(Unsafe: locals 10) 
( Unsafe: body 11) 

} 

We model the location of the soldiers by the bit-array here. If here [i] is 1, 
then soldier i is at the unsafe side of the bridge. 

10 (Unsafe: locals 10)---- (9) 15~, 
b i ~  h e r e i N ]  ; 

Initially, all soldiers are on the unsafe side of the bridge, so the body of Unsafe  
starts by initializing the array h e r e :  s 

11 (Unsafe: body 11)---- (9) 12D 
h e r e [ 0 ]  = 1 ; h e r e [ l ]  = 1 ; h e r e [ 2 ]  = 1 ; h e r e [ 3 ]  = 1 ; 

Note that noweb has added new information in the right margin. The t~ indicates the 
next chunk with the same name. Similarly, a ~ symbol indicates the previous eh, mk 
with the same name. 
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The rest of Unsafe ' s  body is responsible for crossing the bridge. 

12 (Unsafe: body 11)+--= (9) < i I  
do 
: : (Unsafe: send ~wo soldiers 14} 

(Unsafe: one soldier arrives back 18) 
od 

In every i teration two soldiers are sent to the other side and one soldier is ex- 
pected back with the torch. In the (Unsafe: send two soldiers) part ,  we need to 
randomly choose a soldier tha t  is still at  the unsafe side. For this purpose we 
introduce the macro s e l e c t  s o l d i e r ( x ) :  

13 (macros 13)----- (2) 17t> 
#define select_soldier(x) \ 
i f  \ 
:: here[O] ->  x=O \ 
:: h e r e [ l ]  ->  x= l  \ 
: :  he re [2 ]  ->  x=2 \ 
::  here [3] ->  x=3 \ 
fi ; \ 
hereEx] = 0 

Only the guards for which h e r e  [ i ]  is 1 are executable. One of these executable 
guards is randomly chosen and the variable x gets the number  of this soldier. 
Now we can define the (Unsafe: send two soldiers) chunk: 

14 (Unsafe: send ~ o  soldiers 14)-- = (12) 16~, 
se lec t_so ld ie r  ( s l )  ; 
select_soldier (s2) ; 
unsafe_to_safe ! sl, s2 ; 

where s l  and s2 are soldiers: 

15 (Unsafe: locals 10)+ = (9) ,~10 
s o l d i e r  s l ,  s2 ; 

16 (Unsafe: send two soldiers 14}+ = (12) ,~14 
IF a l l _ g o n e  -> break F I  ; 

If  there are no soldiers left at  the unsafe side, the do-loop of the Unsa fe  pro- 
cess should be terminated.  This b r e a k  is really needed here, because other-  
wise the Unsa fe  process will be blocked (i.e. an invalid endstate  in Spin) by 
s e l e c t  s o l d i e r ( s 2 )  if there is only one soldier at the unsafe side. 
This last construction uses the following macro definitions: 

17 (macros l3)+---- (2) ,~13 26~ 
#define IF i f  : : 
#define FI : : else fi 
#define all_gone (!here[O] kk !here[ l ]  kk !here[2] &k !here[S]) 
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The IF-FI combination implements a single IF clause and the all_gone predi- 
cate is true when all values in the here array are 0. 

18 (Unsafe: one soldier arrives back 18)-- = (12) 
sa -~e~ to_unsa~e  ? s l  ; 
here[sl] = 1 ; 

time = time + val[sl] ; 

The soldier sl is the soldier that gets back with the torch. The time is updated 
accordingly to the time it took soldier s I to cross the bridge. 

The process Safe just mirrors the operations of the Unsafe process. The 
body of Safe - together with init - can be found in the Appendix. 

This concludes our literate model of the "soldiers" example. The observant reader 
will have noticed that the literate style of specification allows us to introduce 
types, variables, etc. at the location where they are needed, and not where the 
Promela grammar would have forced us to do so. 

noweb provides index and cross-reference features for code chunks and iden- 
tifiers. The "soldiers" example only uses cross-references to code chunks. Larger 
programs or models are easier to understand if identifiers are also cross-referenced. 

3 L i t e r a t e  V a l i d a t i o n  

Although the advantages of literate specification techniques in the modelling 
phase already proved quite useful in our projects, we have also tried to use 
literate programming in the validation trajectory. 

As mentioned in the introduction, one of the difficulties of using model check- 
ers is the management of all (generated) data during the validation trajectory. It 
is important that the validation results obtained using the model checker should 
always be reproducable [6]. Without tool support for the validation phase, one 
has to resort to general engineering practices and record all validation activities 
into a log-book. 

Recording all this information requires rigorous discipline. The quality of the 
validation depends on the logging discipline of the validation engineer. Moreover, 
there remains the problem that after the validation phase one has to compose a 
coherent validation report from this huge collection of validation data. Experi- 
ence has shown that this is not easy. In our validation projects, we have profited 
from literate techniques to help us record the collection of data involved in the 
validation trajectory: 

- validation models. As discussed in Sect. 2, literate programming can be used 
to explicitly specify and annotate a model. Moreover, the differences between 
several validation models can be elegantly presented in a report containing 
several versions of the model. An example of this can be found in Sect. 3.2 
(viz. <soldiers-6Omin.pr)) and in [2]. 

- validation results. The results of validation runs, e.g. simulation traces, counter- 
examples can be included into the literate validation report. 
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- directives f o r  the validation runs.  The - often cryptic - directives and op- 
tions to control validation tools usually end up in a Makef i le .  The rationale 
behind such directives, however, is usually not recorded. In a literate specifi- 
cation these directives can be annotated together with them. See for instance 
the code chunks (directives.dat)  in Sect. 3.2. 

Recall that  the information above is usually scattered over several files, simula- 
tion traces, entries in log-books, etc. When using a literate style of validation, all 
this information can be collected into a single, literate document. Thus, not only 
do literate techniques solve the management of validation data, it also releases 
much of the burden of writing a validation report. 

A validation report  is especially needed when no 'serious' errors have been 
found during the validation of a system. A simple "no errors found" doesn't  
suffice. In such cases, the validation report  should describe all the succesful 
scenarios to identify exactly those parts of the model which have been validated 
thoroughly. An example of a report  of a validation t rajectory of a "correct" 
model can be found in [21 . 

3 . 1  V a l i d a t i o n  A p p r o a c h e s  

Before we continue with our (running) example, we discuss the two - extreme 
- validation approaches that  can be followed when using a model checker: the 
verification approach and the falsification approach. 

The purpose of the verification approach is to come up with a correct mode] 
on a certain level of abstraction. The verification approach is characterized by 
the following: 

- During the validation phase the model of the system is fixed at a certain 
level of abstraction. 

- All aspects of the model are systematically validated. 
- During the validation of a certain aspect of the model, abstractions have to 

be made of other parts of the model. 

The falsification approach aims at finding errors and weaknesses in the (initial) 
design of a system. The falsification approach focuses its at tention on those parts 
of the system where flaws are most likely to occur. This approach is characterized 
by the following: 

- The validation phase is started with a model on a high level of abstraction. 
- During the validation phase, one zooms in at certain aspects of the model 

using local refinement techniques. 
- Only a limited part  of the system is validated and no information is obtained 

about  the non-validated components. 

Summarizing, the verification approach tries to ascertain the correctness of a de- 
tailed model, whereas the falsification approach tries to find errors in a model. 
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( Verification approach)- 
(Start with detailed model) 
(Simulate) 
while not (convinced by results) 
do 

(Focus on particular aspects of the model) 
(Make abstractions of the other parts as needed) 

[ (Introduce errors into the environment) ] 
(Simulate and model check) 

od 

Fig. 1. Pseudo-algorithm for the verification approach. 

In other words, the verification approach is specification-driven, whereas the fal- 
sification approach is error-driven. Please note that both approaches prescribe 
extreme methods for validation. In practice, one usually adopts a combination 
of both approaches. We have used both approaches in our validation work. 

Figure 1 presents a pseudo-algorithm for the verification approach whereas 
Fig. 2 presents a pseudo-algorithm for the falsification approach. 

The verification approach starts with a detailed model of the system. Be- 
fore starting the actual validation loop in the verification approach, the detailed 
model is simulated to obtain an initial degree of correctness. In general, the state 
space of such a detailed model will be too large for an exhaustive search by a 
model checker [5]. In the validation loop of the verification approach, one makes 
abstractions of parts of the complete model to zoom in on certain aspects of the 
model. These abstractions are needed to allow an exhaustive search by a model 
checker. The validation phase is ended when all crucial aspects of the model have 
been verified. 

The falsification approach starts with an abstract model of the system. In the 
validation loop, the falsification approach tries to find errors by adding details to 
the model or by introducing errors into the environment. The validation phase 
of the falsification approach is ended when (enough) errors have been exposed or 
when resources (e.g. time, money) have run out. 

In the (Introduce errors into the environment) step of both approaches, ex- 
ceptional behaviour of the environment is introduced to validate the robustness 
of the system. When errors are found in the (Simulate and model check) step, 
these errors should be corrected, and the simulation and validation step should 
be started again. 

Not surprisingly, the usage of literate programming techniques is different 
for both approaches. Using the verification approach, the initial model benefits 
from all annotation facilities of literate programming. Along the validation path, 
subsequent validation models will be built by making abstractions from the 
initial model. Using the falsification approach, the initial literate model may 
only contain annotations identifying the parts (i.e. abstractions) of the system 
that are missing. During the validation trajectory, consecutive validation models 



402 

(Falsification approach)-- 
(Start with abstract model) 
(Simulate and model check) 
while not (errors found) and (resources available) 
do 

( (Zoom in on certain aspects of the model) 
or (Introduce errors into the environment) ) 
(Simulate and model check) 

od 

F i g .  2. Pseudo-algorithm for the falsification approach. 

will be constructed by adding details to the initial model. The annotations of 
the initial model should guide the details to be added. 

When errors are found in the model they should be corrected. The literate 
document (together with dependency rules in a l~akef i le )  will make sure that  
all previous results will be re-validated. For the verification approach this means 
that  the initial model will be modified, whereas in the falsification approach it 
does not necessarily mean that  the initial abstract model needs to be corrected. 
For example, an error may be detected in a particular refinement of the previous 
validation model. Moreover, the purpose of applying the falsification approach is 
to expose errors, not to come up with a correct model. 

3 . 2  E x a m p l e  - V a l i d a t i o n  

To illustrate the process of literate validation, we continue our example and t ry  
to find a solution which brings t he  soldiers to the safe side within 60 minutes. 
The validation of the "soldiers" problem uses the verification approach. 

First, we assure ourselves that  our original specification s o l d i e r s ,  p r  does 
not contain any errors. This means that  we have to check for possible deadlocks 
(i.e. invalid endstates) in our specification. 

The validation results themselves are meaningless if we cannot reproduce 
them. In the realm of Spin this means that  we also have to record: 

- the directives for the C compiler to build the pan analyser 4 ; and 
- the run-time options for the pan analyser. 

For the verification runs with Spin we use a data  file (i.e. d i r e c t i v e s . d a t ) ,  
which contains for each Promela validation model these directives and options. 
A simple script is used to translate this data  file into a Make f i l e  tha t  drives 
the complete validation process. For the Promela specification s o l d i e r s ,  p r  the 
directives and options are the following: 

4 The pan analyser is the validation program which is generated by Spin [5]. It is the 
program that performs the validation of a system. 
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19 (directives.dat 19)~  24 
s o l d i e r s  
-D_PGSIX_SOURCE -DSAFETY -DNOFIIE -DMEMCNT=22 
- e l  - v l 5  -ml000 -n  

For this paper, the meaning of the Spin directives is not important.  In a validation 
report,  however, an explanation and reasoning behind these directives may be 
needed. Running the pan analyser produces the following (stripped) output:  

(Spin  V e r s i o n  3 . 0 . 5  - -  5 November 1997) [ run on 07-January-98  17:36:18]  

S t a t e - v e c t o r  52 b y t e ,  depth  reached  66, e r r o r s :  0 
5072 states,  stored 
438 s t a t e s ,  matched 

5510 t r a n s i t i o n s  (= s tored+matched)  
i atomic steps 

hash c o n f l i c t s :  1432 ( r e s o l v e d )  
(max size 2"15 states)  

S t a t s  on memory usage  ( i n  Megabytes) :  
0 .304 e q u i v a l e n t  memory usage  f o r  s t a t e s  ( s t o r s d e ( S t a t e - v e c t o r  + overhead) )  
0 .204 a c t u a l  memory usage  f o r  s t a t e s  (compress ion :  67.14~) 

S t a t e - v e c t o r  as  s t o r e d  = 32 byte  + 8 by te  overhead 
0.131 memory used f o r  h a s h - t a b l e  ( -v15)  
0.024 memory used  f o r  DFS s t a c k  (-ml000) 
0.438 t o t a l  a c t u a l  memory usage  

Command being timed: "./soldiers.pan -cl -e15 -mlO00 -n" 
User time (seconds): 0.14 
System time (seconds): O.OS 

Within 60 minutes. Now we t ry  to find the schedule that  get all soldiers to the 
safe side within 60 minutes. Our idea is to t ry  to verify that  "eventually, the 
t ime  will be be greater than 60". This property can easily be formulated as a 
Linear Time Logic (LTL) formula: o(time > 60). The LTL property is violated 
if all soldiers are at the safe side and the t ime elapsed is less then or equal to 60. 
To let Spin find a counterexample which violates the property, the LTL property 
is translated to a Promela never claim which is simply added to our original 
Promela specification: 

20 (soldiers-6Omin.pr 20)----- 
(soldiers.Ire I) 
(never 22) 

We use Spin's -F option to translate the LTL property to a never claim. The 
claim is the following: 

21 (60rnin.claim 2 1 ) -  
! C<> p) 

where p is defined as follows: 

22 (never 22)---- (20) 23 t> 
#define p (time > 60) 
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With (60rain.claim) as input, "Spin -F" generates the following 'never claim': 

23 (never 22)+-- (20) 422 
never { I* ! (<> p) *I 
a c c e p t _ i n i t :  

TO_init: if 
:: (! ((p))) -> go~o accept_St 
fi; 

a c e e p t _ S l :  

TO_S1: s 
:: (! ((p))) -> goto accept_S1 
fi; 

accept_all: skip 
} 

The  verif ication of s o l d i e r s - 6 0 m i n . p r  involves the fo l lowing directives and 
options:  

24 (directives. dat 19)+ = ~ 19 
soldiers-6Omin 
-D_POSIX_SOURCE -DNOFAIR -DMEMCIIT=22 

-a  -cl -wl5 -mlO00 -n  

The pan analyser will try to prove that o(time > 60) holds for all possible execu- 
tions of the model. Running the pan analyser on so ldiers-60min,  pr produces 
the following (stripped) output: 

(Spin Vers ion 3 . 0 . 5  - -  5 November 1997) [run on 07-January-98  17:36:39] 

S t a t e - v e c t o r  56 b y t e ,  depth roached 127, e r r o r s :  l 
291 s t a t e s ,  s t o r e d  (522 v i s i t e d )  
230 states, matched 
752 t r a n s i t i o n s  (ffi v i s i t ed+matched)  

i a tomic s t eps  
hash c o n f l i c t s :  79 ( r e s o l v e d )  
(max s i z e  2"15 s t a t e s )  

0 .336 memory usage ( l~y to )  

Command be ing  t imed:  " . / s o l d i e r s - 6 O m i n . p a n  - a  -c1 -w15 -mlO00 -n"  
User time (seconds):  0.04 
System time ( seconds) :  0.02 

And we see that  Spin has found an error in one of possible  execut ions  of  the  
model. We let Spin generate a simulation trace leading to this error. 

Running "Spin -M - t "  on s o l d i e r s - 6 0 m i n . p r  results in the  Message  Se- 
quence Chart (MSC) of Fig. 3. The MSC shows a possible schedule to get all 
soldiers to the safe side within 60 minutes. 

4 C o n c l u s i o n s  

In this paper we have discussed our experience with the literate programming 
tool noweb in validation projects. Using a simple model as a running example, 
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Spin Version 3.0.5 -- 5 November 1997 -- soldiers-6Omln.pr -- MSC -- 1 

Fig. 3. Schedule to cross the bridge in 60 minutes. 

we have introduced the use of literate techniques in the modelling and validation 
of systems. 

The use of literate programming tools in the modelling phase has proven 
quite valuable. Especially the possibility to annotate the model has proven quite 
helpful to make the models more accessible and readable for all parties that are 
involved in the design of a system. 

Literate techniques are also useful during the validation trajectory. All details 
on validation runs can be nicely structured into a validation report. However, 
essentially, the management of the validation trajectory is nothing more than 
the management of different versions of the model together with the validation 
results. For this class of management problems several so-called source-control 
tools [1] are available. One may argue that the use of literate programming 
techniques in the validation trajectory implements a source-control system by 
hand. To a certain degree this is true. When using literate techniques, the val- 
idation models are incrementally constructed, which could be automated using 
source-control tools. 

However, a literate style of validation has several advantages over source- 
control tools alone: 
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- most source-control systems lack the possibility of annotating and describing 
modelling and validation choices; 

- the management of validation results is more problematic; 

- a source-control system typically does not help in composing a validation 
report.  

On the other hand, using literate techniques during the complete validation 
t ra jectory may become tedious and time-consuming. Furthermore, it is probably 
not desirable (and helpful) that  all validation results end up in a single document. 
One may wish to prune the validation tree to only include those results and 
models that  are meaningful. Here, a source-control system could be helpful. 

So far, validation activities in our group have been conducted by a single 
person at a time. As soon as more than one person is working on the validation 
of the same project, source-control systems are indispensable with respect to the 
management of the validation process. 

The bot tom line is that  using literate programming techniques alone or using 
source-control systems alone are both not ideal. A combination of a source- 
control system and a literate programming tool probably works best to support  
a structured validation methodology. 

In our current approach, all details on validation results of Spin have to be 
manually included into the literate specification. We are working on enhance- 
ments to Spin and XSpin to have these results automatically generated and in- 
cluded into a literate specification. Furthermore, we are trying to combine a 
source-control system like RCS [20] or PRCS [14] with XSpin. 
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A p p e n d i x  

The  Sa fe  process is defined as follows: 

25 (proct~pe Safe 25)- (8) 
proctype Safe()  
{ 

b i t  h e r e  IN] ; 
s o l d i e r  s l ,  s2 ; 
do 
: : ~asafe_to_safe  ? s l ,  s2 ; 

here [s1 ]  = 1 ; 

here [s2 ]  = 1 ; 

t ~ e  = t i m e  + u ~ ( v a l [ s l ] ,  v a l [ s 2 ] )  ; 
IF  a l l _ h e r e  -> b r e a k  FX ; 

s e l e c t _ s o l d i e r  ( e l )  ; 
s a f e _ t o _ u n s a f e  ! s l  

od 
} 

where the  macro  max and a l l _ h e r e  are defined as: 

26 (macros 1 3 ) + - -  (2) ~17 
# d e f i n e  maxCx,y) ( (x>y)  ->  x : y) 
# d e f i u e  a l l _ h e r e  (he re [O]  && h e r e [ l ]  ~k h e r e [ 2 ]  l k  h e r e [ 3 ] )  

The  i n i t  process init ializes the  array v a l  and s tar ts  the  processes Unsafe  and Safe .  

27 (in~t 2?)-- = ( I )  
i u i t  { 

(init val 7) 
a tomic  ( run  U a s ~ e O  ; r u n  S a f e ( )  ; } 

} 


