
Experience with Literate Programming in the
Modelling and Validation of Systems

Theo C. Ruys and Ed Brinksma

Faculty of Computer Science, University of Twente.
P.O. Box 217, 7500 AE Euschede, The Netherlands.

{ r u y s , brinksma}@cs, utwente, nl

Abs t rac t . This paper discusses our experience with literate program-
ming tools in the realm of the modelling and validation of systems. We
propose the use of literate programming techniques to structure and con-
trol the validation trajectory. The use of literate programming is illus-
trated by means of a running example using Promela and Spin. The paper
can also be read as a tutorial on the application of literate programming
to formal methods.

1 I n t r o d u c t i o n

In the past years, we have been involved in several industrial projects concerning
the modelling and validation of (communication) protocols [3, 10, 18]. In these
projects we used modelling languages and tools - like Pmmela, Spin [5, 7] and
UPPAAL [13] - to specify and verify the protocols and their properties. During
each of these projects we encountered the same practical problems of keeping
track of various sorts of information and data, for example:

- many documents, which describe parts of the system;
- many versions of the same document;
- consecutive versions of validation models;
- results of validation runs.

The problems of managing such information and data relate to the maintenance
problems found in software engineering [15]. This is not surprising as, in a sense,
validation using a model checker involves the analysis of many successive versions
of the model of a system.

This paper discusses our experience with literate programming techniques to
help us tackle these information management problems.

Literate Programming. Literate programming is the act of writing computer pro-
grams primarily as documents to be read by human beings, and only secondarily
as instructions to be executed by computers.

The term "literate programming" was coined by D.E. Knuth, when he de-
scribed WEB [11, 12] the tool he created to develop the ~ typesett ing software.

In general, l i terate programs combine source code and documentation in
a single file. Literate programming tools then parse the file to produce either

394

readable documentation or compilable source code. One of advantages of literate
programming is that we are not longer forced to comply with the syntactical
order of the programming language. Types, variables and constructs can be
introduced at alternative locations where they serve the purpose of the literate
document better, e.g. where they are best understood by a human reader. The
literate programming tool will reassemble the source parts into their formally
correct order.

A literate style of programming has proven very helpful, especially for terse
and/or complex programs. In the area of functional programming - where, by
nature, programs are often quite terse - the art of writing functional scripts has
become quite popular (see for instance [8]). It is remarkable that in the domain
of formal methods, which deals with the specification of complex and safety-
critical systems, the benefits of literate programming techniques have not yet
been acknowledged.

In Sect. 2 we will discuss the application of literate programming in the modelling
phase. In Sect. 3 we sketch how the same techniques can be used to structure the
validation process. The use of literate programming in the validation trajectory
is illustrated by means of a running example using Promela and Spin. 1 The paper
is concluded in Sect. 4 where some conclusions and future work are discussed.

2 L i t e r a t e M o d e l l i n g

In a way, the literate style of specification has already reached the formal meth-
ods community. For example, a Z specification [19] can he considered as a liter-
ate specification. The "source code" of a Z specification consists of Z construc-
tions like schema's and constraints, whereas the intertwining documentation (in
I-4TF_,X) can be regarded as "literate comments". Type checking tools for Z - like
fUZZ and ZTC - discard these explaining comments when type checking a Z
specification.

The use of literate programming techniques in the modelling phase has several
advantages. Several parties are involved in the design of a system, e.g. users,
designers, programmers, testers, etc. It is important that they all agree on the
same specification of the system. For that reason the specification should be
readable and acceptable for all parties. In this way, literate modelling helps to
explain formal specifications.

Besides making the documentation more easily accessible, using literate mod-
elling gives us the possibility to annotate the specification or model in a struc-
tured way without obscuring the formal specification with too many comments.
Common forms of annotations include:

- identifying the source of information, which is especially useful when the
specification or model is based on different documents from different parties;

1 This document itself is written as a literate specification. This means that not only
the document you are reading now, but also the validation results of the rlmning
example have been generated from a single source file.

395

- discussing modelling choices, e.g. the abstractions from the design, or as-
sumptions on the environment.

- identifying points of attention, e.g. for a future validation phase, or when
documents contain contradictory information.

In our modelling work we used the literate programming tool noweb [9, 16,
17] developed by Norman Ramsey. noweb is a li terate programming tool like
Knuth ' s ~T_~, only simpler. Unlike ~EB, noweb is independent of the programming
language to be literated, noweb has been used in combination with Pascal, C,
C + + , Modula-2, Icon, ML, Promela and others. A recent book-length example
of l i terate programming using noweb is Fraser and Hanson's book on l c c [4].

2.1 E x a m p l e - M o d e l l i n g

To il lustrate the use and benefits of li terate techniques in the modelling phase, we
present an example using noweb. First we give a specification of the specification
problem in natural language. Next, we present a li terate specification of the
model in Promela. In the next section we show how to include validation results
into the l i terate document. Consider the following scheduling problem.

Problem:
Four soldiers who are heavily injured, try to flee to their home land. The enemy
is chasing them and in the middle of the night they arrive at a bridge that
spans a river which is the border between the two countries at war. The bridge
has been damaged and can only carry two soldiers at a time. b-hrthermore,
several lauelmines have been placed on the bridge and a torch is needed to
sidestep all the mines. The enemy is on their tail, so the soldiers know that
they have only 60 minutes to cross the bridge. The soldiers only have a single
torch and they are not equally injured. The following table lists the crossing
times (one-way!) for each of the soldiers:

soldier So 5 minutes
soldier $I IO minutes
soldier $2 20 minutes
soldier $3 25 minutes

Does a schedule exist which gets all four soldiers to the safe side within 60
minutes?

Hint: Before proceeding it may be instructive to try to solve the "soldiers"
problem on paper.

During the modelling phase we are not interested in the 60 minutes constraint,
but we only want to model how we can get the four soldiers from the unsafe to
the safe side of the bridge.

Please note tha t the specification of the problem is straightforward, and
consequently, the noweb specification may be trivial and even overly simple in
some places. This is deliberately done to give a bet ter overview of a complete

396

l i terate validation t rajectory with noweb. A less trivial example of such t ra jectory
can be found in [2].

x (sotdiers.pr I)=- (20)
(r~t~de 2)
(procgypes 8)
(i.it 27)

Our Promela specification s o l d i e r s . p r consists of a (prelude), some process
definitions (proetypes} and an initialization process (init).

In the left margin, noweb identifies the number of the code chunk. 2 In the
right margin of the definition of a code chunk, between parenthesis, the number
of the code chunk is listed, which uses this particular code chunk. All code chunks
with the same name will be collected by noweb and put in the place where the
chunk is used.

2 (pr~l~e 2)=- (I)
(constants 4)
(macros 13}
(t ~ s 5)
(channels 3)
(globals 6)

The Promela (prelude) of the specification consists of constants, macros, types,
channels and global variables. These parts will be defined when they are needed
in the process definitions of the specification. We start our model of the "soldiers"
problem by modelling the bridge.

3 (channels 3}~ (2)
chart unse~e_to_sa .~e = [0] o f { s o l d i e r . s o l d i e r } ;
chart s a f e _ t o _ u n s a f e = [0] o f ~ s o l d i e z ' } ;

The bridge is modelled with two channels. The channel u n s a f e _ t o _ s a f e models
the unsafe --~ safe direction, whereas s a f e _ t o _ u n s a f e models the safe --+ unsafe
direction.

Every t ime two soldiers have made it to the safe side, one of the men on the
safe side has to go back with the torch. It is clear that it is not very helpful to go
back with two men. For that reason, the channel s a f e _ t o _ u n s a f e only passes a
single s o l d i e r .

The four soldiers are identified by integers in the range 0 . . N-l, where N is
defined as follows:

4 (constants 4)~ (2)
#de f i ne N 4

This means that a s o l d i e r can be represented by a by te :

5 (ty~, 5)-- (2)
#define so ld ie r byte

~ In this paper the WEB style of chunk numbering is used. Another popular way of
ch, mk identification is a tag page.n, where n indicates the n-th chunk on page page.

397

6 (globals 6) = (2)
b y t e time ;
b y t e v a l IN] ;

The variable t ime is the number of minutes that have elapsed since the soldiers
have started to move. Every time a soldier reaches the other side of the bridge,
the variable t ime is updated.

The array v a l holds the times it takes the soldiers to cross the bridge. Because
Prome[a doesn't support constant arrays, the array va l has to be initialized in
the i n i t process:

7 (init vat r)= (27)
val[O] = 5 ; val[Z] = 10 ; val[2] = 20 ; val[3] = 25 ;

As specified in the problem description, the times for the soldiers to cross the
bridge are 5, 10, 20 and 95 minutes, respectively.

8 (proetypes 8)---- (1)
(proct!tpe Unsafe 9)
(proct~e Safe 25)

Crossing the bridge is modelled by s o l d i e r s that are passed between two pro-
cesses: Unsafe and Safe. In the beginning, all soldiers are at the Unsafe side,
and the goal is to get all soldiers to the Safe side.

In the remainder of this section we only define the chunk (proctype Unsafe).
For completeness, we have included the chunks (proctype Safe) and (init) in the
Appendix.

9 (proctype Unsafe 9)-- (8)
p r o c C y p e Unsafe O
(

(Unsafe: locals 10)
(Unsafe: body 11)

}

We model the location of the soldiers by the bit-array here. If here [i] is 1,
then soldier i is at the unsafe side of the bridge.

10 (Unsafe: locals 10)---- (9) 15~,
b i ~ h e r e i N] ;

Initially, all soldiers are on the unsafe side of the bridge, so the body of Unsafe
starts by initializing the array h e r e : s

11 (Unsafe: body 11)---- (9) 12D
h e r e [0] = 1 ; h e r e [l] = 1 ; h e r e [2] = 1 ; h e r e [3] = 1 ;

Note that noweb has added new information in the right margin. The t~ indicates the
next chunk with the same name. Similarly, a ~ symbol indicates the previous eh, mk
with the same name.

398

The rest of Unsafe ' s body is responsible for crossing the bridge.

12 (Unsafe: body 11)+--= (9) < i I
do
: : (Unsafe: send ~wo soldiers 14}

(Unsafe: one soldier arrives back 18)
od

In every i teration two soldiers are sent to the other side and one soldier is ex-
pected back with the torch. In the (Unsafe: send two soldiers) part , we need to
randomly choose a soldier tha t is still at the unsafe side. For this purpose we
introduce the macro s e l e c t s o l d i e r (x) :

13 (macros 13)----- (2) 17t>
#define select_soldier(x) \
i f \
:: here[O] -> x=O \
:: h e r e [l] -> x= l \
: : he re [2] -> x=2 \
:: here [3] -> x=3 \
fi ; \
hereEx] = 0

Only the guards for which h e r e [i] is 1 are executable. One of these executable
guards is randomly chosen and the variable x gets the number of this soldier.
Now we can define the (Unsafe: send two soldiers) chunk:

14 (Unsafe: send ~ o soldiers 14)-- = (12) 16~,
se lec t_so ld ie r (s l) ;
select_soldier (s2) ;
unsafe_to_safe ! sl, s2 ;

where s l and s2 are soldiers:

15 (Unsafe: locals 10)+ = (9) ,~10
s o l d i e r s l , s2 ;

16 (Unsafe: send two soldiers 14}+ = (12) ,~14
IF a l l _ g o n e -> break F I ;

If there are no soldiers left at the unsafe side, the do-loop of the Unsa fe pro-
cess should be terminated. This b r e a k is really needed here, because other-
wise the Unsa fe process will be blocked (i.e. an invalid endstate in Spin) by
s e l e c t s o l d i e r (s 2) if there is only one soldier at the unsafe side.
This last construction uses the following macro definitions:

17 (macros l3)+---- (2) ,~13 26~
#define IF i f : :
#define FI : : else fi
#define all_gone (!here[O] kk !here[l] kk !here[2] &k !here[S])

399

The IF-FI combination implements a single IF clause and the all_gone predi-
cate is true when all values in the here array are 0.

18 (Unsafe: one soldier arrives back 18)-- = (12)
sa -~e~ to_unsa~e ? s l ;
here[sl] = 1 ;

time = time + val[sl] ;

The soldier sl is the soldier that gets back with the torch. The time is updated
accordingly to the time it took soldier s I to cross the bridge.

The process Safe just mirrors the operations of the Unsafe process. The
body of Safe - together with init - can be found in the Appendix.

This concludes our literate model of the "soldiers" example. The observant reader
will have noticed that the literate style of specification allows us to introduce
types, variables, etc. at the location where they are needed, and not where the
Promela grammar would have forced us to do so.

noweb provides index and cross-reference features for code chunks and iden-
tifiers. The "soldiers" example only uses cross-references to code chunks. Larger
programs or models are easier to understand if identifiers are also cross-referenced.

3 L i t e r a t e V a l i d a t i o n

Although the advantages of literate specification techniques in the modelling
phase already proved quite useful in our projects, we have also tried to use
literate programming in the validation trajectory.

As mentioned in the introduction, one of the difficulties of using model check-
ers is the management of all (generated) data during the validation trajectory. It
is important that the validation results obtained using the model checker should
always be reproducable [6]. Without tool support for the validation phase, one
has to resort to general engineering practices and record all validation activities
into a log-book.

Recording all this information requires rigorous discipline. The quality of the
validation depends on the logging discipline of the validation engineer. Moreover,
there remains the problem that after the validation phase one has to compose a
coherent validation report from this huge collection of validation data. Experi-
ence has shown that this is not easy. In our validation projects, we have profited
from literate techniques to help us record the collection of data involved in the
validation trajectory:

- validation models. As discussed in Sect. 2, literate programming can be used
to explicitly specify and annotate a model. Moreover, the differences between
several validation models can be elegantly presented in a report containing
several versions of the model. An example of this can be found in Sect. 3.2
(viz. <soldiers-6Omin.pr)) and in [2].

- validation results. The results of validation runs, e.g. simulation traces, counter-
examples can be included into the literate validation report.

400

- directives f o r the validation runs. The - often cryptic - directives and op-
tions to control validation tools usually end up in a Makef i le . The rationale
behind such directives, however, is usually not recorded. In a literate specifi-
cation these directives can be annotated together with them. See for instance
the code chunks (directives.dat) in Sect. 3.2.

Recall that the information above is usually scattered over several files, simula-
tion traces, entries in log-books, etc. When using a literate style of validation, all
this information can be collected into a single, literate document. Thus, not only
do literate techniques solve the management of validation data, it also releases
much of the burden of writing a validation report.

A validation report is especially needed when no 'serious' errors have been
found during the validation of a system. A simple "no errors found" doesn't
suffice. In such cases, the validation report should describe all the succesful
scenarios to identify exactly those parts of the model which have been validated
thoroughly. An example of a report of a validation t rajectory of a "correct"
model can be found in [21 .

3 . 1 V a l i d a t i o n A p p r o a c h e s

Before we continue with our (running) example, we discuss the two - extreme
- validation approaches that can be followed when using a model checker: the
verification approach and the falsification approach.

The purpose of the verification approach is to come up with a correct mode]
on a certain level of abstraction. The verification approach is characterized by
the following:

- During the validation phase the model of the system is fixed at a certain
level of abstraction.

- All aspects of the model are systematically validated.
- During the validation of a certain aspect of the model, abstractions have to

be made of other parts of the model.

The falsification approach aims at finding errors and weaknesses in the (initial)
design of a system. The falsification approach focuses its at tention on those parts
of the system where flaws are most likely to occur. This approach is characterized
by the following:

- The validation phase is started with a model on a high level of abstraction.
- During the validation phase, one zooms in at certain aspects of the model

using local refinement techniques.
- Only a limited part of the system is validated and no information is obtained

about the non-validated components.

Summarizing, the verification approach tries to ascertain the correctness of a de-
tailed model, whereas the falsification approach tries to find errors in a model.

401

(Verification approach)-
(Start with detailed model)
(Simulate)
while not (convinced by results)
do

(Focus on particular aspects of the model)
(Make abstractions of the other parts as needed)

[(Introduce errors into the environment)]
(Simulate and model check)

od

Fig. 1. Pseudo-algorithm for the verification approach.

In other words, the verification approach is specification-driven, whereas the fal-
sification approach is error-driven. Please note that both approaches prescribe
extreme methods for validation. In practice, one usually adopts a combination
of both approaches. We have used both approaches in our validation work.

Figure 1 presents a pseudo-algorithm for the verification approach whereas
Fig. 2 presents a pseudo-algorithm for the falsification approach.

The verification approach starts with a detailed model of the system. Be-
fore starting the actual validation loop in the verification approach, the detailed
model is simulated to obtain an initial degree of correctness. In general, the state
space of such a detailed model will be too large for an exhaustive search by a
model checker [5]. In the validation loop of the verification approach, one makes
abstractions of parts of the complete model to zoom in on certain aspects of the
model. These abstractions are needed to allow an exhaustive search by a model
checker. The validation phase is ended when all crucial aspects of the model have
been verified.

The falsification approach starts with an abstract model of the system. In the
validation loop, the falsification approach tries to find errors by adding details to
the model or by introducing errors into the environment. The validation phase
of the falsification approach is ended when (enough) errors have been exposed or
when resources (e.g. time, money) have run out.

In the (Introduce errors into the environment) step of both approaches, ex-
ceptional behaviour of the environment is introduced to validate the robustness
of the system. When errors are found in the (Simulate and model check) step,
these errors should be corrected, and the simulation and validation step should
be started again.

Not surprisingly, the usage of literate programming techniques is different
for both approaches. Using the verification approach, the initial model benefits
from all annotation facilities of literate programming. Along the validation path,
subsequent validation models will be built by making abstractions from the
initial model. Using the falsification approach, the initial literate model may
only contain annotations identifying the parts (i.e. abstractions) of the system
that are missing. During the validation trajectory, consecutive validation models

402

(Falsification approach)--
(Start with abstract model)
(Simulate and model check)
while not (errors found) and (resources available)
do

((Zoom in on certain aspects of the model)
or (Introduce errors into the environment))
(Simulate and model check)

od

F i g . 2. Pseudo-algorithm for the falsification approach.

will be constructed by adding details to the initial model. The annotations of
the initial model should guide the details to be added.

When errors are found in the model they should be corrected. The literate
document (together with dependency rules in a l~akef i le) will make sure that
all previous results will be re-validated. For the verification approach this means
that the initial model will be modified, whereas in the falsification approach it
does not necessarily mean that the initial abstract model needs to be corrected.
For example, an error may be detected in a particular refinement of the previous
validation model. Moreover, the purpose of applying the falsification approach is
to expose errors, not to come up with a correct model.

3 . 2 E x a m p l e - V a l i d a t i o n

To illustrate the process of literate validation, we continue our example and t ry
to find a solution which brings t he soldiers to the safe side within 60 minutes.
The validation of the "soldiers" problem uses the verification approach.

First, we assure ourselves that our original specification s o l d i e r s , p r does
not contain any errors. This means that we have to check for possible deadlocks
(i.e. invalid endstates) in our specification.

The validation results themselves are meaningless if we cannot reproduce
them. In the realm of Spin this means that we also have to record:

- the directives for the C compiler to build the pan analyser 4 ; and
- the run-time options for the pan analyser.

For the verification runs with Spin we use a data file (i.e. d i r e c t i v e s . d a t) ,
which contains for each Promela validation model these directives and options.
A simple script is used to translate this data file into a Make f i l e tha t drives
the complete validation process. For the Promela specification s o l d i e r s , p r the
directives and options are the following:

4 The pan analyser is the validation program which is generated by Spin [5]. It is the
program that performs the validation of a system.

403

19 (directives.dat 19)~ 24
s o l d i e r s
-D_PGSIX_SOURCE -DSAFETY -DNOFIIE -DMEMCNT=22
- e l - v l 5 -ml000 -n

For this paper, the meaning of the Spin directives is not important. In a validation
report, however, an explanation and reasoning behind these directives may be
needed. Running the pan analyser produces the following (stripped) output:

(Spin V e r s i o n 3 . 0 . 5 - - 5 November 1997) [run on 07-January-98 17:36:18]

S t a t e - v e c t o r 52 b y t e , depth reached 66, e r r o r s : 0
5072 states, stored
438 s t a t e s , matched

5510 t r a n s i t i o n s (= s tored+matched)
i atomic steps

hash c o n f l i c t s : 1432 (r e s o l v e d)
(max size 2"15 states)

S t a t s on memory usage (i n Megabytes) :
0 .304 e q u i v a l e n t memory usage f o r s t a t e s (s t o r s d e (S t a t e - v e c t o r + overhead))
0 .204 a c t u a l memory usage f o r s t a t e s (compress ion : 67.14~)

S t a t e - v e c t o r as s t o r e d = 32 byte + 8 by te overhead
0.131 memory used f o r h a s h - t a b l e (-v15)
0.024 memory used f o r DFS s t a c k (-ml000)
0.438 t o t a l a c t u a l memory usage

Command being timed: "./soldiers.pan -cl -e15 -mlO00 -n"
User time (seconds): 0.14
System time (seconds): O.OS

Within 60 minutes. Now we t ry to find the schedule that get all soldiers to the
safe side within 60 minutes. Our idea is to t ry to verify that "eventually, the
t ime will be be greater than 60". This property can easily be formulated as a
Linear Time Logic (LTL) formula: o(time > 60). The LTL property is violated
if all soldiers are at the safe side and the t ime elapsed is less then or equal to 60.
To let Spin find a counterexample which violates the property, the LTL property
is translated to a Promela never claim which is simply added to our original
Promela specification:

20 (soldiers-6Omin.pr 20)-----
(soldiers.Ire I)
(never 22)

We use Spin's -F option to translate the LTL property to a never claim. The
claim is the following:

21 (60rnin.claim 2 1) -
! C<> p)

where p is defined as follows:

22 (never 22)---- (20) 23 t>
#define p (time > 60)

404

With (60rain.claim) as input, "Spin -F" generates the following 'never claim':

23 (never 22)+-- (20) 422
never { I* ! (<> p) *I
a c c e p t _ i n i t :

TO_init: if
:: (! ((p))) -> go~o accept_St
fi;

a c e e p t _ S l :

TO_S1: s
:: (! ((p))) -> goto accept_S1
fi;

accept_all: skip
}

The verif ication of s o l d i e r s - 6 0 m i n . p r involves the fo l lowing directives and
options:

24 (directives. dat 19)+ = ~ 19
soldiers-6Omin
-D_POSIX_SOURCE -DNOFAIR -DMEMCIIT=22

-a -cl -wl5 -mlO00 -n

The pan analyser will try to prove that o(time > 60) holds for all possible execu-
tions of the model. Running the pan analyser on so ldiers-60min, pr produces
the following (stripped) output:

(Spin Vers ion 3 . 0 . 5 - - 5 November 1997) [run on 07-January-98 17:36:39]

S t a t e - v e c t o r 56 b y t e , depth roached 127, e r r o r s : l
291 s t a t e s , s t o r e d (522 v i s i t e d)
230 states, matched
752 t r a n s i t i o n s (ffi v i s i t ed+matched)

i a tomic s t eps
hash c o n f l i c t s : 79 (r e s o l v e d)
(max s i z e 2"15 s t a t e s)

0 .336 memory usage (l~y to)

Command be ing t imed: " . / s o l d i e r s - 6 O m i n . p a n - a -c1 -w15 -mlO00 -n"
User time (seconds): 0.04
System time (seconds) : 0.02

And we see that Spin has found an error in one of possible execut ions of the
model. We let Spin generate a simulation trace leading to this error.

Running "Spin -M - t " on s o l d i e r s - 6 0 m i n . p r results in the Message Se-
quence Chart (MSC) of Fig. 3. The MSC shows a possible schedule to get all
soldiers to the safe side within 60 minutes.

4 C o n c l u s i o n s

In this paper we have discussed our experience with the literate programming
tool noweb in validation projects. Using a simple model as a running example,

405

Spin Version 3.0.5 -- 5 November 1997 -- soldiers-6Omln.pr -- MSC -- 1

Fig. 3. Schedule to cross the bridge in 60 minutes.

we have introduced the use of literate techniques in the modelling and validation
of systems.

The use of literate programming tools in the modelling phase has proven
quite valuable. Especially the possibility to annotate the model has proven quite
helpful to make the models more accessible and readable for all parties that are
involved in the design of a system.

Literate techniques are also useful during the validation trajectory. All details
on validation runs can be nicely structured into a validation report. However,
essentially, the management of the validation trajectory is nothing more than
the management of different versions of the model together with the validation
results. For this class of management problems several so-called source-control
tools [1] are available. One may argue that the use of literate programming
techniques in the validation trajectory implements a source-control system by
hand. To a certain degree this is true. When using literate techniques, the val-
idation models are incrementally constructed, which could be automated using
source-control tools.

However, a literate style of validation has several advantages over source-
control tools alone:

406

- most source-control systems lack the possibility of annotating and describing
modelling and validation choices;

- the management of validation results is more problematic;

- a source-control system typically does not help in composing a validation
report.

On the other hand, using literate techniques during the complete validation
t ra jectory may become tedious and time-consuming. Furthermore, it is probably
not desirable (and helpful) that all validation results end up in a single document.
One may wish to prune the validation tree to only include those results and
models that are meaningful. Here, a source-control system could be helpful.

So far, validation activities in our group have been conducted by a single
person at a time. As soon as more than one person is working on the validation
of the same project, source-control systems are indispensable with respect to the
management of the validation process.

The bot tom line is that using literate programming techniques alone or using
source-control systems alone are both not ideal. A combination of a source-
control system and a literate programming tool probably works best to support
a structured validation methodology.

In our current approach, all details on validation results of Spin have to be
manually included into the literate specification. We are working on enhance-
ments to Spin and XSpin to have these results automatically generated and in-
cluded into a literate specification. Furthermore, we are trying to combine a
source-control system like RCS [20] or PRCS [14] with XSpin.

References

1. Don Bolinger and Tan Bronson. Applying RCS and SCCS. O'Reilly & Associates,
Inc., Sebastopol, 1995.

2. Pedro R. D'Argenio, Joost-Pieter Katoen, Theo C. Ruys, and G. Jan Tretmans.
The Bounded Retransmission Protocol must be on time! (Full Version). CTIT
Technical Report Series 97-03, Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands, 1997. Also available from URL:
ht tp : / / w w w t i o s . c s . u t w e n t e , n l / ' d a r g e n i o / b r p / .

3. Pedro R. D'Argenio, Joost-Pieter Katoen, Thec C. Ruys, and G. Jan Tretmans.
The Bounded Retransmission Protocol must be on time! In Ed Brinksma, editor,
Proceedings o/ the Third International Workshop on Tools and Algorithms/or the
Construction and Analysis o] Systems (TA CAS'97), number 1217 in Lecture Notes
in Computer Science (LNCS), pages 416-431, University of Twente, Euschede, The
Netherlands, April 1997. Springer Verlag, Berlin.

4. Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler: Design
and Implementation. Addison-Wesley, 1995.

5. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

407

6. Gerard J. Holzmann. The Theory and Practice of a Formal Method: NewCore. In
P~ceedings of the IFIP World Congress, Hamburg, Germany, August 1994. Also
available from URL:
http : / /cm. b e l l - l a b s , com/cm/cs/doc/94/ index, html.

7. Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-295, May 1997. See also URL:
h t t p : / / n e t l S b , b e l l - l a b s , com/net l ib / sp in /what i sp in , html.

8. Johan Jeuring and Erik Meijer, editors. Advanced Functional Programming - Tu-
torial Text o/ the First International Spring School on Advanced Functional Pro-
gramming Techniques, number 925 in Lecture Notes in Computer Science (LNCS),
B~stad, Sweden, May 1995. Springer Verlag, Berlin.

9. Andrew L. Johnson and Brad C. Johnson. Literate Programmiug using noweb.
Linux Journal, pages 64-69, October 1997.

10. Pim Kars. The Application of PROMELA and SPIN in the BOS Project. In
Jean-Charles Gr~goire, Gerard J. Holzmann, and Doron A. Peled, editors, Pro-
ceedings o/ SPINg6, the Second International Workshop on SPIN (published as
"The Spin Verification System), volume 32 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, Rutgers University, New Jersey, August
1996. American Mathematical Society. Also available from URL:
http : / / n e t l i b . b e l l - l a b s , com/net lSb/spSn/ws96/Ka, ps. Z.

11. Donald E. Knuth. Literate Programming. The Computer Journal, 27(2):97-111,
May 1984.

12. Donald E. Knuth. Literate Programming. Number 27 in CSLI Lecture Notes.
Center for the Study of Language and Information (CSLI), Stanford University,
California, 1992.

13. Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Springer
International Journal of Software Tools for Technology Transfer (STTT), 1(1/2),
October 1997.

14. Josh MacDonald. PRCS - Project Revision Control System. Available from URL:
ht tp: / /ww. , xcf . berkeley, edu/" jmacd/prcs, html.

15. Roger S. Pressman. Software Engineering - A Practioner's Approach. McGraw-
Hill, New York, third edition, 1992.

16. Norman Ramsey. noweb - homepage. Available from URL:
h t t p : / / , , , , es. v i rg in ia , edu/'m:/noweb/.

17. Norman Ramsey. Literate Programming Simplified. IEEE Software, 11(5):97-105,
September 1994.

18. Theo C. Ruys and Rom Langerak. Validation of Bosch' Mobile Communication-
Network Architecture with SPIN. In Proceedings of SPIN97, the Third Interna-
tional Workshop on SPIN, University of Twente, Enschede, The Netherlands, April
1997. Also available from URL:
http ://net lib. bell-labs, com/net lib/spin/ws97/ruys, ps. Z.

19. J.M. Spivey. The Z Notation - A Reference Manual. Prentice Hall, New York,
second edition, 1992.

20. Walter F. Tichy. RCS - A System for Version Control. Software, Practice gJ
Experience, 15(7):637-654, July 1985.

408

A p p e n d i x

The Sa fe process is defined as follows:

25 (proct~pe Safe 25)- (8)
proctype Safe()
{

b i t h e r e IN] ;
s o l d i e r s l , s2 ;
do
: : ~asafe_to_safe ? s l , s2 ;

here [s1] = 1 ;

here [s2] = 1 ;

t ~ e = t i m e + u ~ (v a l [s l] , v a l [s 2]) ;
IF a l l _ h e r e -> b r e a k FX ;

s e l e c t _ s o l d i e r (e l) ;
s a f e _ t o _ u n s a f e ! s l

od
}

where the macro max and a l l _ h e r e are defined as:

26 (macros 1 3) + - - (2) ~17
d e f i n e maxCx,y) ((x>y) -> x : y)
d e f i u e a l l _ h e r e (he re [O] && h e r e [l] ~k h e r e [2] l k h e r e [3])

The i n i t process init ializes the array v a l and s tar ts the processes Unsafe and Safe .

27 (in~t 2?)-- = (I)
i u i t {

(init val 7)
a tomic (run U a s ~ e O ; r u n S a f e () ; }

}

