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A b s t r a c t .  Practical real-time model checking suffers from the state- 
explosion problem: the size of the state space grows exponentially with 
many system parameters: number of clocks, size of constants, number 
of system components. To cope with state explosion, we propose to use 
abstractions reducing the state-space while preserving teachability prop- 
erties. Four exact, plus one safe abstractions are defined. In the main 
abstraction (simulation) a concrete state is mapped to a symbolic ab- 
stract state (a set of concrete states). The other four abstractions are 
defined on top of the simulation one. They can be computed on-the-fly 
in a completely orthogonal manner and thus can be combined to yield 
better reductions. A prototype implementation in the tool KRONOS has 
permitted to verify two benchmark examples with a significant scale-up 
in size. 

1 Introduction 

Model checking is an approach commonly used for the automatic verification 
of teachability properties. Given a system and a property p, reachability model 
checking is based on an exhaustive exploration of the reachable state space of the 
system, testing whether there exists a state where p holds. The main obstacle 
to this approach is the so-called state-explosion problem reflecting the fact that  
the system's state space is often prohibitively large to be entirely explored. 

Abstractions [6, 19] have been proven a useful tool in coping with state explo- 
sion. Model checking using abstractions consists in exploring a (hopefully much 
smaller) abstract state space rather than the concrete one. Since the abstract 
space contains less information than the concrete, a crucial question is which 
properties are preserved by the abstraction. Exact abstractions imply no infor- 
mation loss: the abstract system satisfies a property iff the concrete one does. 
Safe abstractions ensure only one direction, that  is, if a property holds on the 
concrete system, then it holds also on the abstract one, otherwise no definite 
conclusion can be made. 

In the context of real-time systems modeled as timed automata, the state 
space is infinite, due to continuous variables called clocks, used to measure time. 
An abstraction is provided in [2] which is exact with respect to all properties 
that can be expressed in the real-time logic TCTL and which also induces a finite 
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abstract state space called a region graph. Unfortunately, the size of the latter 
is exponential on the number of clocks and on the size of the constants against 
which the clocks are compared to, in the automaton in question. Therefore, the 
applicability of region-graph-based approaches remains very limited in practice. 

In this paper, we propose five coarser abstractions in order to cope with state- 
explosion. Four of these are exact with respect to reachability, while the fifth one 
is safe. The main abstraction is defined on the infinite concrete state space, and 
is based on the concept of simulation space, where abstract states are symbolic, 
that  is, predicates characterizing sets of concrete states. The simulation space is 
obtained as the fix-point of a successor (or post-condition) operator on symbolic 
states. The remaining four abstractions are defined on the simulation space, that  
is, both concrete and abstract states are symbolic. The extrapolation abstraction 
is needed to ensure that  the simulation space is finite. The inclusion abstraction 
reduces the number of symbolic states by mapping subsets of concrete states to 
the same abstract state. The activity abstraction reduces the number of clocks 
by eliminating those which are not active at some point during the exploration. 
Finally, the convex-hull abstraction collapses symbolic states which are associ- 
ated with the same control location to a single abstract state, the clock part  of 
which is the convex hull of the clock parts of the concrete states. All abstractions 
are exact, except for the convex-hull one, which is safe. 

An important  feature of these four abstractions is that  they are completely 
orthogonal to each other, that  is, they can be composed to yield abstractions 
which are more powerful in terms of state-space reduction. This results in no 
loss of information, since the composition of exact abstractions is also exact, 
while the composition of exact and safe abstractions is safe. Section 3 contains 
the definitions of the abstractions, as well as some examples. 

Section 4 presents our model-checking approach, which consists in generating 
and exploring on-the-fly an abstract state space 1. This is done using a depth-first 
or breadth-first search in which the successor operator and storage procedures 
are parameterized by the abstraction(s) applied. 

A prototype implementation of these features has been done on top of the 
real-time-verification tool KRONOS. Experimental results obtained on two bench- 
mark examples are presented in section 5. Using abstractions, we have been able 
to verify these examples for a much larger number of components, with respect 
to previous at tempts  using explorative-model-checking tools like KRONOS, UP- 
PAAL, HYTECH or RTSPIN. Section 5.2 also compares the results to explorative 
techniques based on binary decision diagrams (BDDs). Conclusions are presented 
in section 6. 

1 The term on-the-fly is taken to mean two things in this paper: (a) the abstract state 
space is built dynamically, without having to a-priori generate the simulation space; 
and (b) The system to be verified is decomposed in a network of timed automata 
which communicate by synchronizing their actions. The global state space is gener- 
ated directly from these automata, without having to a-priori compute the product 
automaton. 
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2 P r e l i m i n a r i e s  

2.1 P r o p e r t y - p r e s e r v i n g  a b s t r a c t i o n s  

Abstractions. Let S be a set of  states, and P be a set of  properties. An inter- 
pretation function 17 : P ~ 2 s associates with each proper ty  r a set of  s tates  
sat isfying r Now, consider two sets of  s tates S and S ' ,  referred to  as the con- 
crete and abstract state  spaces, respectively. An  abstraction f rom S to  S '  is a 
relat ion a C S • S ~. Let / /  : P ~ 2 s a n d / / '  : P ~ 2 s '  be concrete and ab- 
s t ract  in terpreta t ion functions,  respectively. We say tha t  c~ is safe for P ,  with 
respect t o / 7 , / - / ' ,  iff for each proper ty  r over P ,  for any concrete s tate  s E S 
such tha t  s E / / ( r  there exists an abstract  state s '  E S '  such tha t  s '  E / / ' ( r  
and (s, s') E ~, tha t  is, s '  is related to s by a.  c~ is exact iff a and a - 1  (the 
inverse relation) are safe. 

Composition of abstractions. Given an abst ract ion a l  f rom S to S '  and an 
abs t rac t ion a2 f rom S '  to  S" ,  a l  o a2 is an abstract ion f rom S to S " ,  where o 
denotes  the composi t ion  of  relations. The  following facts can be derived directly 
f rom the definitions: (1) if bo th  ax and or2 are exact, then so is a~ o a2; (2) if 
one of  a l ,  a2 is safe while the other  one is either exact or safe, then ax o a~. is 
safe. 

2 .2  T i m e d  a u t o m a t a  

Clocks, bounds and zones. Let X = {xl ,  ..., xn} be a set of  variables called clocks, 
ranging over the positive reals/R_.0. A clock valuation is a funct ion v : X ~+ g/>0, 
assigning to each clock x a non-negat ive real value v(x).  For X C_ X,  v [X :=  0] 
is the valuat ion v ' ,  such tha t  Vx E X. v ' (x)  = 0 and Vz ~ X. t , ' (z)  = v(z) .  For 
every t E R_.0, v + t is the valuat ion t,' such tha t  Vx E X.  v ' ( z )  = t,(z) + t. A 
bound [11] over X is a constraint  of  the form of the form x i # c  or xi - x j # c ,  
where 1 < i # j < n, # E { < , < , > , > }  and c E ~ U {co}. If  we int roduce a 
" d u m m y "  clock variable zo, taken to represent 0, then bounds  can be uniformly 
wri t ten as xi - xj  -< d, where 0 < i # j < n, -~E { < , < }  and d E 2~ U {co}. 
(For example,  Xl > 3 can be wri t ten as x0 - xl  < - 3 . )  A bound  xi - z j  -< d 
is stricter than  xi - xj -~' d' iff either d < d'  or d = d' and ~ = < ,  - ~ ' = < .  (We 
assume tha t  w < co, for any real number  w.) For instance, zi - z j  < 3 is stricter 
than  xi - z j  < 3, which is stricter than  zi - xj  < 4, and so on. For two bounds  
b and b', rain(b, b') (rasp. raax(b, b')) is b (resp. b') if b is stricter than  b', b' (resp. 
b) otherwise. A valuat ion v satisfies a bound  zi - z j  -< d iff v(xi)  - t,(xj) -~ d, 
where, by convention,  v(x0) = 0. 

A zone over 2" is a conjunct ior i 'o f  bounds,  Ao<iej<,~xi - x j  -~ij dij, for 
-~ijE {< ,  <} and dij E N .  We denote by Zij the~boh~xd zi - xj  -~ij dij. A 
valuat ion t, satisfies a zone Z iff tp satisfies Zij, for all 0 < i # j < n. We 
often view a zone as the set of  valuations satisfying it. Thus,  we write v E Z, 
to  mean  tha t  v satisfies Z, and Z = (~, to mean  tha t  no valuat ion satisfies Z. 
We also write Z n Z '  to  denote the zone Z "  corresponding to the intersection 
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of Z and Z ' ,  tha t  is, such that  Z~'~ = min(Zij, Z~j), for all 0 < i • j _< n. 
Finally, we write Z = Z '  iff Z and Z '  represent the same sets of valuations. 
Notice tha t  Z = Z '  does not necessarily imply that  Z and Z '  are identical. 
For example,  let Z = 2 < xl < 3 A 3  < x2 < 4 A 0  < x 2 - x l  < 3 and 
Z '  = 2  < xl  < 3 A 3 <  x2 < 4 A 0  < x 2 - x l  < 2. Although the two zones are 
not syntactically identical, they are semantically equal (i.e., Z -- Z ' ) ,  since the 
bound x2 - xl < 3 can be strengthened to the (stricter) bound x2 - xl < 2. We 
say that  a zone is in canonical form iff all its bounds are as strict as possible, tha t  
is, none can be strengthened to yield a semantically equal zone. In the sequel we 
assume tha t  all zones considered are in canonical form. Let Zx  denote the set 
of zones over X. 

Timed automata. A timed automaton (TA) [2, 14] is a tuple A = (X, Q, E,  q0, I) ,  
where: X is a finite set of clocks; Q is a finite set of control locations; E is a 
finite set of edges of the form e = (q, Z, X, q'), where q, q' E Q are the source and 
target  locations, Z E Z x  is an enabling guard, and X C A~ is a set of clocks to 
be reset; q0 is the initial control location; I : Q ~ Zx  is a function associating 
with each control location q a time-progress condition I(q) (we also write Iq). 
Figure l(a)  shows an example of a TA, with two clocks z and y, a single location 
with t ime progress condition true (i.e., x > 0 A y _> 0), and two edges a and b. 

A state of a TA is a pair (q, v), where q E Q is a location, and v E Iq is a 
valuation satisfying the time-progress condition of q. The semantics of A is the 
smallest set of such states, SA, such that:  

1. so = (q0, 0) E 3A, 0 being the valuation assigning zero to all clocks; 

2. if (q, v) E 3A and there exists e = (q, Ze, Xe, q') E E such that  v E Ze, then 
(q',v[Xe := 0]) E SA; 

3. if (q, ~) E 8A and there exists t E/R>0 such that  v + t E Iq, then (q, ~, + t) E 

$A. 

Due to the third rule above, SA has generally a non-countable number  of states. 

3 A b s t r a c t i o n s  for TA 

3.1 S i m u l a t i o n  

This abstract ion consists in mapping sets of concrete states to abstract  (sym- 
bolic) states. It  is based on the concept of simulation graph, a reachability graph 
used in KRONOS for checking safety properties [7] or, more recently, also liveness 
properties [4]. 

Consider a TA A = (X, Q, E,  q0, I) ,  where X - {xi, ..., x ,} .  Given a zone 
Z E Z x ,  a set of clocks X _C X, and an edge e = (q,Z~,Xe,q I) E E,  we define 
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the zone operators ~Z, Z[X := 0] and e-succe(Z), such that: 

t z  = ( A z,~) ^ ( A =, - =o < oo) 
ie[O,n],j E[1,n] iE[1,n] 

z [ x : = o ] - - (  A z,~) ^ ( A =,-=~ <~) ^ ( A  
~,,~jC.X (x, EXvag~EX)^i,j#O ~.,EX 

�9 -s.cco(z) = ( z  n zo)[x~ := 01 

0 _< z i  - z o  < O) 

Notice that  all operators above yield zones. Intuitively, t Z __D Z is the zone 
obtained from Z by eliminating all upper bounds of clocks (all bounds Zi0 are 
replaced by the trivial bound c~), and represents the elapse of time. Z[X := 0] is 
obtained after resetting all clocks in X to zero. Finally, e-succe(Z) corresponds 
to taking the part of Z satisfying the guard of e, then resetting some clocks as 
specified by e. Figure 2 shows examples of the application of the intersection, 
time-elapse, and reset operators. 

A symbolic state S is a pair (q, Z), where q E Q is a location and Z E Z x  
is a zone. We write (q', t') e (q, Z) iff q' = q and t" E Z. We write (q, Z) = 0 iff 
Z = 0. Let e = (q, Z~, X~, q~) be an edge. We define the post-condition operator 
post as follows: 

poste((q , Z) ) = (q', lq, N ~e-succe(Z)) (1) 

That  is, post~(S) contains all states that  can be reached from some state in S 
by, first taking a discrete transition by e, then letting some time pass in the new 
control location, while continuously satisfying its time-progress condition. 

The simulation space of A is defined to be the smallest set of symbolic states 
Ss4 irn such that: 

1. s~ ~ = (q0, • t{0}) e s 2 ~ ;  
2. for any $1 E S~t im and any e e E, if $2 = post~ ($1) r 0 then $2 e S~t ira. 

In other words, S~4 i'~ is the set of all states obtained from S$ im by applying the 
post operator. S~ i'~ can be infinite, as in the example of figure 1, where S~4 im 
is displayed as a graph, the nodes of which are symbolic states, while the edges 
show the effect of applying post. 

The simulation abstraction is defined to be the relation asim = {(s,S) E 
s a  •  ~ I s ~ s } .  

Regarding the set of properties with respect to which reachability is defined, 
we consider the set P = Q • Z x ,  that is, the set of all possible symbolic states. 
The interpretation f u n c t i o n / / : P  ~ 2 s is defined as: II(q, Z) = {(q, t') It, E Z}. 
Similarly, H sire : P ~ 2 s 2 "  is defined as: Hsim(q, Z) = {(q, Z') I Z' f3 Z ~ 0}. 

P r o p o s i t i o n  31 The simulation abstraction ~,im is exact. 
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----2 y : = O  
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(a) a 
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F i g .  1. A t imed  a u t o m a t o n  (a), and  its (infinite) s imulat ion space (b). 

F i g .  2. Zone operat ions.  
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3 . 2  E x t r a p o l a t i o n  

The  purpose of this abstraction is to ensure a finite number of symbolic states, 
since, as we have seen, the simulation space can be infinite. Extrapolation has 
been already used in KRONOS, as well as RTSPIN, where it is called maximiza- 
tion [20]. We explain informally the main idea, which is based on the (finite) 
region graph [2]. For any TA A, there is a maximal constant k E AN" appearing in 
the zones of A (guards or time-progress conditions). In the example of figure 1, 
k equals 2. Now, consider a valuation v and a clock x such that  v(x) > k. It is 
easy to see that  for any zone Z of A, the exact value of ~(x) is insignificant to 
whether g belongs to Z or not, that  is, for any other ~' which coincides with 

to all clocks but x, such that  ~'(x) > k, it holds v E Z iff v' E Z. Conse- 
quently, once v(x) > k, v(x) can be replaced by a "greater than k" value. We 
now formalize these notions. 

Let Z = A0<i#j<n xi - x j  -4ij dij be a zone over X = {xl, ..., x ,} .  For each 

k E ~W, the extrapolation function ~k : Z x  ~+ Z x  is defined as follows (skip on 
first reading): 

= A x , -  x, < oo ^ A x , - x ,  < - k  ^ A x , -  
d,j>k -d,j>k Id,jl<k (2) 

Figure 2(d) presents three examples of extrapolation, for k = 2, X = {x, y}. 
(The white region is the zone before extrapolation. The filled region is the part  
added after extrapolation. Notice that  the two rightmost extrapolated zones are 
unbounded.) 

Intuitively, ~k(Z) yields a zone Z l D Z, where: 

- upper bounds greater than k are eliminated (first conjunct of equation 2); 
- lower bounds greater than k are replaced by k (second conjunct of equa- 

tion 2); 
- all other bounds are preserved (third conjunct of equation 2). 

Now, consider a TA A and let k E AN" be a constant greater than or equal 
to the largest constant appearing in a zone of A. We write ~k(q,Z) instead 
of (q,~k(Z)). The extrapolation space of A with respect to k, denoted .r is ~ A , k  ' 

obtained by applying ~ to all states of the simulation space. Formally: 

SA ~ = { r  I S e S~ ~ } ,k 

P r o p o s i t i o n  32 For any TA A and any k e BV, S~t,~ is finite. 

Figure 3(a) shows the effect of applying the extrapolation abstraction for k = 2 
to the example of figure 1. Notice that the part  that  changes is the infinite 
rightmost chain y > x + 3, y > x + 4, ..., which is replaced by a single symbolic 
state y > x + 2. 

The extrapolation abstraction parameterized by k, is the relation k Ol x t  r 

{ ( s , s ' )  c a ; ,  • a l t "  I s ' = 
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b b 
(a) (b) 

Fig. 3. Applying extrapolation (a) and (optimal) inclusion (b) to the example of fig- 
ure 1. 

The interpretation function H ~tr is defined to be the same as H sire. Then, 
it is easy to prove that  axt r~  is exact for any property r such that  the maximal 
constant appearing in r is less than or equal to k. However, this is not generally 
true for properties involving constants greater than k, since it might be that  
such a property is reachable in the abstract space, while it is not in the concrete 

k is safe for any property. We now formally present these one. In any case, axt r 
results. 

For k E ~W, we define Z~ to be the set of all zones Z involving constants less 
than or equal to k. Let Pk be the set of properties Q x Z k.  

P r o p o s i t i o n  33 Let A be a TA and k E ~V be a constant greater than or equal 
to the largest constant appearing in a zone of A.  Then, c~t r is exact with respect 
to Pk. Moreover, for  all m E ~W, a~:trm is safe with respect to P.  

Remark 1. For the sake of simplicity, we have defined the extrapolation function 
with respect to a single constant k. In fact, it is straightforward to adapt the 
definitions for a set of constants clj, 0 < i # j < n, one for each clock difference 
zi  - z j .  This permits to "optimize" the reduction, since a coarser abstraction is 
obtained. Preservation results are not affected. 

3.3 I n c l u s i o n  

Although finite, the number of states induced by extrapolation can still be large. 
This number can be reduced by using the inclusion abstraction, the main idea 
of which is the following. Consider two states $1 and $2 in the simulation space, 
such that  $1 is a subset of $2. Then, for reachability properties, it is not necessary 
to examine neither $1 (since any state belonging to $1 belongs also to S~), nor 
the successors of $1, since each of them is a subset of the corresponding successor 
of $2. Thus, states like S1 can be eliminated. We formalize this in what follows. 

Given a TA A, we say that  a total function ainc : S~ im ~-+ S~ i'~ is an inclusion 
abstraction iff, for any S E S si'n, c~i,c(S) 2 S, where (q, Z) C_ (q', Z') iff q = q' 
and Z C Z ~. (We regard, again, zones as sets of valuations, so that  zone inclusion 
means set inclusion. Z C Z ~ can be implemented by testing that  each bound of 
Z is stricter than or equal to the corresponding bound of Z~.) 
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We define the inclusion space of A with respect to ainc as the set of states 
inc = a" rssiml where a[.] is the image of the relation c~. S ~ , ~ , n e  s n e t  A J) 

The above definitions allow for many possible inclusion abstractions. One in- 
clusion abstraction for the simulation space of figure 1 (b) is shown in figure 4(a), 
where the ainr mapping is depicted by dashed arrowed lines. The corresponding 
inclusion space is shown in figure 4(b). 

..o 

4 N ~ .  / ( ' 3  

(~) (b) 

Fig. 4. Inclusion abstraction (a) and corresponding inclusion space (b). 

! An inclusion abstraction ain e*  is said to be optimal iff for any other ainc, 
. s i r n  p s i r n  * t ain,[S ] C_ ainc[S ] (that is, aln c induces a smaller state space than ain,) .  

In the case that  the simulation space is finite, an optimal inclusion abstraction 
always exists. (In fact, there may be more than one optimal abstractions, but 
all of them induce the same inclusion space.) In the case that  the simulation 
space is infinite, an optimal abstraction might still exist, as is the case for the 
TA of figure 1. The inclusion space induced by this optimal abstraction is shown 
in figure 3(b). On the other hand, consider a TA similar to the one of figure 1, 
where the guard x _> 1 is replaced by z = 1. In this case, the simulation space 
as well as any inclusion space are infinite. 

The interpretation function II inc is defined to be the same as II "i'~. 

P r o p o s i t i o n  34 Any inclusion abstraction is exact. 

3.4 Activity 

This abstraction permits to eliminate redundant clocks from a system. It has 
been introduced in [10] for the case of a single TA and is here generalized to a 
network of automata.  The idea is that  a clock should be considered active only 
when it usefully counts time, that  is, from a point where the clock is reset, up 
to a point where the clock is tested. In any other case, the clock is inactive and 
can be ignored. We now formalize these notions. 

Consider a TA A = (X, Q, E,  q0, I),  where X = {Xl ,  . . . ,  Xn}. Given a control 
location q E Q, clk(q) C_ X is defined as the set of clocks x, such that  either 
x appears in the time-progress condition Iq of q, or there exists an edge e = 
(q, Z, X, q~) in E,  such that  x appears in the guard Z of e. 
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Then, the function act : Q ~-~ 2 x ,  associating with each location q the set 
of active clocks in q, is defined as the least fix-point of the following system of 
equations (one equation for each location q): 

act(q) = clk(q) U U act(q') \ X (3) 
(q,Z,X,q')EE 

That  is, x is active in q iff either x is in elk(q), or x is active in a location q' 
which can be reached from q by a sequence of edges, so that  x is never reset 
along the sequence. 

An algorithm to compute act is given in [10]. This algorithm works on the 
syntactic structure of the automaton,  that  is, its locations and edges, thus, it is 
extremely efficient. 

Given a symbolic state S = (q, Z), the projection of S to active clocks, 
denoted S/act ,  is a symbolic state (q, Z') ,  where Z'  is the projection of Z to the 
set of active clocks of q. Formally: 

(q' Z) /ac t  = (q' A Zij) (4) 
~,,x~eact(q)U{zo} 

The activity space S~ c` of a TA A is the set S~ c` = {S/act  I S e $~i,n}. In other 
words, 8~ c* is of variable dimension: for each (q, Z) E 8 ac*, Z is a zone over 
act(q) (if act(q) is empty, the symbolic state reduces to just the control location 
q). 

The activity abstraction is defined to be the relation aac, = {(S, S ~) E 8~ im x 

s c' l S ' = s / a c t } .  
The interpretation function//=~t is defined to be the same as ]7 ' i 'L  

Proposition 35 The activity abstraction aact is exact for any property r = 
(q, Z),  such that the set of clocks appearing in Z is a subset of act(q). 

Remark 2. The above proposition claims that a~ct is exact for r if the latter 
refers to clocks which are active in q. In fact, it is easy to extend the above defi- 
nitions so that  the activity abstraction is exact for any property (q, Z). Indeed, 
it suffices to add all clocks appearing in Z in the set of clocks initially active in 
q, elk(q), and compute the fix-point equations defined in 3 accordingly. 

3.5 C o n v e x  hu l l  

This abstraction provides a considerable reduction of the state space, permitting 
to keep a single zone Z with each control location q of the system. In general, 
there will be many zones Z1, ..., Zn associated with a location q, in any of the 
abstract spaces defined previously. However, (q, Ui=l ..... n z / )  is not a symbolic 
state, since the union of two zones is generally a non-convex set, that  is, cannot 
be represented as a conjunction of constraints (i.e., a zone). The convex hull 
of two zones is by definition convex, therefore, one can abstract [.Ji=l ..... n z i  by 
Ui=l,...,n z / ,  where IA denotes the convex hull. On the other hand, convex hulls 
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are generally supersets of unions, meaning that  states which are not reachable in 
the concrete space might be so in the abstract one. This is why this abstraction 
is not exact, although it is safe. Convex hull abstractions have been used also 
by [12, 21,3]. The definitions are given in what follows. 

Given two zones Z and Z',  the convex hull of Z and Z',  denoted Z U Z' ,  is 
defined as the smallest (with respect to set inclusion) zone Z"  such that  Z C Z"  
and Z'  C_ Z".  (Z U Z'  can be obtained operationally as follows: (Z U Z')i j  = 
max(Zij, Z'j).) Two examples are shown in figure 2(e). 

The convex-hull space o f a T A A i s t h e  set S]  h = {(q,Z) Z = U{Z'  ] 
(q, Z') E S~tim}}- 2 

The convex-hull abstraction is defined to be the relation: 
ach = {((q, Z), (q, Z')) E ,S~ im • ,~h I Z C Z ' ) .  

The interpretation funct ion/ /ca  is defined to be the same a s / / , , m .  

P r o p o s i t i o n  36 The convex-hull abstraction ach is safe. 

4 M o d e l  c h e c k i n g  u s i n g  a b s t r a c t i o n s  

The reachability analysis is implemented in KRONOS as a breadth-first (BFS) or 
depth-first (DFS) generation of the abstract state space, starting from an initial 
state, and checking whether a final state (@, Z) is reachable from an initial state 
(q0, Z0). 3 

Figure 5 shows the DFS procedure. 3 a is the set of visited (abstract) states, 
initialized to {(q0, Z0)}. For each newly-generated state (q,Z), it is checked 
whether the latter satisfies the property (@, Z), and, if so, a sample trail is 
returned as output (in this case, by simply running through the DFS stack). 
Otherwise, (q, Z) is stored to the set of visited states S ~, and the search goes 
on to explore all successor states which have not been visited yet. 

The search is parameterized by an abstraction c~, which is either asim, or 
c~,im o c~', a '  being itself a composition of some of the other four abstractions, 
o~:t,., o~inc, ~act, o~ch. The correctness of the method comes from propositions 31, 
33, 34, 35, 36, and the fact that  composition of abstractions respects property 
preservation (see section 2.1). Depending on a, the functions poste, store and 
visited are modified appropriately, to implement the chosen abstractions. We 
explain this in what follows. 

Extrapolation and Activity. These abstractions are implemented by modifying 
the successor function post~. When none of these abstractions is used, then 

2 We should note that, in this definition, U{Z' I (q, Z') E S~/'n} is actually the smallest 
upper bound of the set {Z' I (q, Z') E S~'m}, in the lattice of zones with respect to 
set inclusion. This is because the set {Z' I (q, Z') E S~ 'm} may be infinite. 

3 Many interesting properties can be formulated in this way. In particular, this is true 
for invariants, informally stated as "in all reachable states p holds", and real-time 
bounded-response properties informally stated as "p will hold in at most t units of 
time". We refer the reader to [7] for more details. 
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ReachDFS a ((q, Z), (c~, 2 ) ) :  
i f  (q=OandZN2ys then 

return.  (0, 2)  is reachable) ; 
output(DFS stack) ; 

e l se  
store(~((q, Z), S a) ; 
for-each (e E E) d..oo 

(q', Z'):---- post~(q, Z) ; 
i..f_f (Z' :/: @ and not visiteda(q ', Z')) 

ReachDFS = ((q', Z'), (~, 2)) ; 
then 

Fig. 5. Depth-first reachability using abstractions. 

post~ is simply poste, defined in equation 1. When extrapolation is used, then 
post~(q, Z) is ~k(poste(q, Z)), where k is found as explained in section 3.2. When 
activity is used, then post~(q, Z) is (poste(q, Z)) /act .  When both abstractions 
are used, both operators are applied (the order does not matter).  

Inclusion. This abstraction is implemented by modifying the test v is i ted  ~ (q~, Zr). 
When inclusion is not used, this test is (q~, Z ~) E S a. Otherwise, the test becomes 
3(q', z") e s z '  c_ z". 

Convex hull. This abstraction is implemented by, first, changing v is i ted  as in the 
case of inclusion, and second, modifying also the storing procedure as follows. 
When convex hull is used, storea((q, Z), S ~) has the following effect: either there 
is already a state (q, Z") in S '~, in which case it is replaced by (q, Z" U Z); or 
there is no such state, thus, (q, Z) is added to S ~. When convex hull is not used, 
(q, Z) is simply added to S a. 

A final comment needs to be made on the incompleteness of the convex-hull 
abstraction: if a state is reachable in the abstract graph then no conclusion can 
be made about  the concrete graph. A (partial) solution to this is to try to fol- 
low the diagnostic trail given by the DFS (i.e., the sequence of transitions fired) 
using the exact successor function post. This means generating the concrete 
counterpart of the abstract trail. If the entire transition sequence can be gener- 
ated then the reachability property indeed holds, otherwise the approximation 
is too coarse. Notice that this method cannot be generalized, for instance, by 
simply testing all counter-example trails found in the abstract graph, since their 
concrete counterparts constitute only a part of the set of trails in the concrete 
graph. 

5 E x a m p l e s  

5.1 T h e  F D D I  c o m m u n i c a t i o n  p r o t o c o l  

FDDI (Fiber Distributed Data Interface) [15] is a high-performance fiber-optic 
token-ring LAN (local-area network). An FDDI network is composed by N idea- 
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tical stations and a ring, where the stations can communicate by synchronous 
messages with high priority or asynchronous messages with low priority. 

We are interested here in the verification of one aspect of the temporal  mech- 
anism of the protocol, namely, the bounded time for accessing the ring (BTAR) 
property, stated as: "the time elapsed between two consecutive receptions of the 
token by a given station is bounded by CN". (CN is a constant depending on the 
number of stations N). 

The system has already been specified and verified with KRONOS, in [8], 
using a backward fix-point computation, and in [7], using a forward reachability 
analysis (i.e., exploring the simulation space). In the first case, 8 stations has 
been the maximum the tool could handle, while in the second, the limit has been 
12 stations. 

Here we show how enhancing the teachability analysis with abstractions leads 
to a more efficient verification of this system, both in t ime and space, thus 
permitt ing to verify the property on a system of up to 50 stations. 

Specification. The system for N stations is modeled as a TA F D D I N  which is 
obtained as the parallel product of the model of the ring for N stations R i n g  N, 
and the model of each station, S ta t ion i ,  i = 1, ..., N. It is worth noting that  
the size of F D D I N  (in locations, transitions and clocks) is linear on the num- 
ber of stations N. Since the computation of the model of the global system 
is not costly, on-the-fly verification is not needed in this case. Instead, we ap- 
ply the teachability analysis to the global model, using the breadth-first-search 
technique. 

Results. Figure 6 shows, in logarithmic scale, the performance results 4. We 
can conclude from figure 6(a) that  exact abstractions generate an exponential 
number of symbolic states 5, while their combination with the convex hull ab- 
straction reduces the cost from exponential to polynomial on the number of 
stations. However, it is important  to notice that  activity reduces the number of 
symbolic states generated by half when the convex hull abstraction is not used. 

From figure 6(b), we can make the same conclusions about the complexity 
on the number of stations as those for the size of the state-space generated. 
However, it turns out that  the benefits from the activity abstraction are much 
more important  in terms of time reduction than in terms of state-space size 
reduction, even when combined with the convex-hull abstraction. The reason for 
this is that  reducing by activity the number of clocks of the system, leads to a 
more compact representation of zones (i.e. a gain in memory),  and to a more 
efficient computation of the operations on zones. In this case, activity reduces the 
number of clocks from 2N + 1, for the original model (2 clocks for each station, 

4 The model was verified using the simulation abstraction (denoted "sim" in the figure) 
alone, or combined with the convex-hull ("c_h') or the activity ("act") abstractions. 
Extrapolation and inclusion have no effect in this ease because of the structure of 
the model. 

5 In this example, the exponential complexity is induced by the temporal aspect of 
the system, since the size of its control is linear. 
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Fig.  6. Results of verification of FDDI protocol using abstractions: state-space size (a) 
and time (b). 

plus a clock for the ring), to  N + 1, because the clock of  the ring and one of  
the clocks of  each s ta t ion are never active simultaneously.  Hence the impor t an t  
gain, bo th  in m e m o r y  and time, even if the number  of  symbolic  states computed  
is nearly the same. 

5 .2  F i s c h e r ' s  m u t u a l - e x c l u s i o n  p r o t o c o l  

This  is a real-t ime mutuM-exclusion protocol  which has become a benchmark  
example,  thus we o m m i t  its description here (see [9] for more  details). 

Results. Diagrams (a) and (b) in figure 7 display the results of  using abstract ions,  
in linear and logar i thmic scale, respectively. 6 Some conclusions coming f rom 
these results are the following. 

6 "x" stands for extrapolation, "inc" for inclusion. "~ct" for activity, and "ch" for 
convex hull. The "+" symbol stands for combination of abstractions. Not all combi- 
nations are shown: first, the simulation graph is infinite; second, by definition, convex 
hull is more general than inclusion; "x+inc+act" turns out to yield exactly the same 
results as "x+act ' ;  finally, "x+ch" yields almost the same results as "ac t+ch ' .  Con- 
cerning time and memory costs, the largest case treated (9 processes, about 600,000 
symbolic states generated) has consumed 2 hours of CPU time and 180 megabytes, 
on a Sparc-station 20 with 224 megabytes of memory. We should mention that com- 
puting the abstractions does not result in a significant time consumption, that is, 
the overhead is a matter of seconds. 
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1. Combination of abstractions is definitely useful in absolute terms, e.g., com- 
pare the performances of ainc and a~tr o ainc for 5 processes, or a~tr and 
Olxt r 0 ~ i n e  00~ac  t for 6 processes. 

2. The convex-hull abstraction radically reduces the state space, permitt ing to 
handle up to 9 processes. 

3. The complexity of the problem remains exponential, even with the use of 
convex hull. 

Comparison. Fischer's protocol has been previously treated by KRONOS using 
just  extrapolation, and without on-the-fly generation of the state space (i.e., the 
syntactic product of the TA had to be constructed a priori). This approach was 
able to handle up to 5 processes, consuming about  140 seconds of CPU time. The 
limit reported in [17] using the tool UPPAAL has also been 5 processes, which 
consumed 600 seconds of CPU time. 7 Similar results have been reported in [18] 
for the tool HYTECH [13]. 

In [3, 5], BDDs (binary decision diagrams) have been used to verify the pro- 
tocol for up to 10 and 14 processes, respectively. [3] uses a safe abstraction that  
corresponds to the convex hull, while [5] uses an exact discretization of the state 
space. The main drawback of these BDD-based methods is that  they are quite 
sensitive to the size of constants: in both case studies above, the values of 5, A 
were assumed to be 1 and 2, respectively. Also, in case the property fails to hold, 
the BDD encoding the set of reachable states does not contain enough informa- 
tion in order to provide a counter-example, so that  some kind of enumerative 
exploration needs to be also available. (In [5], counter-examples are generated 
by re-starting the exploration using a BFS, once the BDD is found to intersect 
the property in question). 

Finally, the protocol has been also treated in [18], for up to 7 processes, using 
a formula-quot ient ing construction, which is not an explorative model-checking 
approach, thus, cannot be directly compared to ours. s 

6 Conclusions and perspectives 

We proposed abstractions as an efficient way to perform verification of reacha- 
bility properties. In summary, the simulation abstraction is the formalization of 
the coarse reachable state space upon which the algorithm is based; extrapola- 
tion is in some cases inevitable so that  the algorithm terminates; the inclusion, 
convex-hull and activity abstractions are equally important  in practice, since 

7 This was on a different machine than ours, and possibly with different constants 
~, A. We have tried UPPAAL version 2.02, March'97, (command v e r i f y t a  -S, which 
enables all state-space reductions) on our machine, for 5 and 7 processes, using 
the same constants. UPPAAL consumed 485 seconds of CPU time for 5 processes, 
and hadn't finished for 7 processes after more than 14 hours of CPU time, having 
consumed 70MB of memory. 

s In [16], the same approach has been used to verify an acyclic version of the protocol 
for up to 50 processes. 
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Fig. 7. Results of verification of Fischer's protocol using abstractions. 
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they reduce the size of the state space: inclusion and convex-hull reduce the 
number  of symbolic states generated, whereas as activity also reduces the size 
needed to store each symbolic state. 

Apar t  from convex hull, all other abstractions are exact. The former is still 
useful, however: If  a state is not reachable in the abstract  space, it is certainly 
not reachable in the concrete space either. If  a state is reachable in the abstract  
space, one can always examine the path  leading to this state, by re-executing the 
transitions without applying the abstraction. If  the state is indeed reachable then 
a diagnostic trail is found. Otherwise, the search can continue in the same man-  
ner, providing some confidence in the system verified, without, however being 
definitely conclusive. 

Experimental  results allow us to infer tha t  our abstractions deal quite well 
with two factors of exponential growth of the state space, namely, the number  of 
clocks, and the size of constants used in the model. Regarding the third factor of 
exponential  growth, that  is, the number  of components constituting the system, 
although these abstractions provide an improvement  of performance in absolute 
terms, they cannot avoid the exponential complexity in general. Notice, however, 
tha t  this is achieved in the FDDI  example, with the help of the convex-hull 
abstraction. 

Regarding perspectives, in the short term, we plan to complete the proto- 
type implementat ion,  namely, by programming variable-dimension structures, 
and opt imal  storage techniques. In the long term, compositional methods like 
the ones in [1, 18], need to be studied more thoroughly. 
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