
Model Checking of Real-Time Reachability Properties
Using Abstractions*

Conrado Daws and Stavros Tripakis

A b s t r a c t . Practical real-time model checking suffers from the state-
explosion problem: the size of the state space grows exponentially with
many system parameters: number of clocks, size of constants, number
of system components. To cope with state explosion, we propose to use
abstractions reducing the state-space while preserving teachability prop-
erties. Four exact, plus one safe abstractions are defined. In the main
abstraction (simulation) a concrete state is mapped to a symbolic ab-
stract state (a set of concrete states). The other four abstractions are
defined on top of the simulation one. They can be computed on-the-fly
in a completely orthogonal manner and thus can be combined to yield
better reductions. A prototype implementation in the tool KRONOS has
permitted to verify two benchmark examples with a significant scale-up
in size.

1 Introduction

Model checking is an approach commonly used for the automatic verification
of teachability properties. Given a system and a property p, reachability model
checking is based on an exhaustive exploration of the reachable state space of the
system, testing whether there exists a state where p holds. The main obstacle
to this approach is the so-called state-explosion problem reflecting the fact that
the system's state space is often prohibitively large to be entirely explored.

Abstractions [6, 19] have been proven a useful tool in coping with state explo-
sion. Model checking using abstractions consists in exploring a (hopefully much
smaller) abstract state space rather than the concrete one. Since the abstract
space contains less information than the concrete, a crucial question is which
properties are preserved by the abstraction. Exact abstractions imply no infor-
mation loss: the abstract system satisfies a property iff the concrete one does.
Safe abstractions ensure only one direction, that is, if a property holds on the
concrete system, then it holds also on the abstract one, otherwise no definite
conclusion can be made.

In the context of real-time systems modeled as timed automata, the state
space is infinite, due to continuous variables called clocks, used to measure time.
An abstraction is provided in [2] which is exact with respect to all properties
that can be expressed in the real-time logic TCTL and which also induces a finite

* VERIMAG, Centre l~.quation, 2 avenue de Vignate, 38610 Gi~res, France. Fax. +33
4 76 63 48 50, e-maih {Conrado.Da, s, Stavros.Tripakis}@imag.fr, internet:
http://www, imag. fr/VERIMAG/PEOPLE/Conrado. Daws.

314

abstract state space called a region graph. Unfortunately, the size of the latter
is exponential on the number of clocks and on the size of the constants against
which the clocks are compared to, in the automaton in question. Therefore, the
applicability of region-graph-based approaches remains very limited in practice.

In this paper, we propose five coarser abstractions in order to cope with state-
explosion. Four of these are exact with respect to reachability, while the fifth one
is safe. The main abstraction is defined on the infinite concrete state space, and
is based on the concept of simulation space, where abstract states are symbolic,
that is, predicates characterizing sets of concrete states. The simulation space is
obtained as the fix-point of a successor (or post-condition) operator on symbolic
states. The remaining four abstractions are defined on the simulation space, that
is, both concrete and abstract states are symbolic. The extrapolation abstraction
is needed to ensure that the simulation space is finite. The inclusion abstraction
reduces the number of symbolic states by mapping subsets of concrete states to
the same abstract state. The activity abstraction reduces the number of clocks
by eliminating those which are not active at some point during the exploration.
Finally, the convex-hull abstraction collapses symbolic states which are associ-
ated with the same control location to a single abstract state, the clock part of
which is the convex hull of the clock parts of the concrete states. All abstractions
are exact, except for the convex-hull one, which is safe.

An important feature of these four abstractions is that they are completely
orthogonal to each other, that is, they can be composed to yield abstractions
which are more powerful in terms of state-space reduction. This results in no
loss of information, since the composition of exact abstractions is also exact,
while the composition of exact and safe abstractions is safe. Section 3 contains
the definitions of the abstractions, as well as some examples.

Section 4 presents our model-checking approach, which consists in generating
and exploring on-the-fly an abstract state space 1. This is done using a depth-first
or breadth-first search in which the successor operator and storage procedures
are parameterized by the abstraction(s) applied.

A prototype implementation of these features has been done on top of the
real-time-verification tool KRONOS. Experimental results obtained on two bench-
mark examples are presented in section 5. Using abstractions, we have been able
to verify these examples for a much larger number of components, with respect
to previous at tempts using explorative-model-checking tools like KRONOS, UP-
PAAL, HYTECH or RTSPIN. Section 5.2 also compares the results to explorative
techniques based on binary decision diagrams (BDDs). Conclusions are presented
in section 6.

1 The term on-the-fly is taken to mean two things in this paper: (a) the abstract state
space is built dynamically, without having to a-priori generate the simulation space;
and (b) The system to be verified is decomposed in a network of timed automata
which communicate by synchronizing their actions. The global state space is gener-
ated directly from these automata, without having to a-priori compute the product
automaton.

315

2 P r e l i m i n a r i e s

2.1 P r o p e r t y - p r e s e r v i n g a b s t r a c t i o n s

Abstractions. Let S be a set of states, and P be a set of properties. An inter-
pretation function 17 : P ~ 2 s associates with each proper ty r a set of s tates
sat isfying r Now, consider two sets of s tates S and S ' , referred to as the con-
crete and abstract state spaces, respectively. An abstraction f rom S to S ' is a
relat ion a C S • S ~. Let / / : P ~ 2 s a n d / / ' : P ~ 2 s ' be concrete and ab-
s t ract in terpreta t ion functions, respectively. We say tha t c~ is safe for P , with
respect t o / 7 , / - / ' , iff for each proper ty r over P , for any concrete s tate s E S
such tha t s E / / (r there exists an abstract state s ' E S ' such tha t s ' E / / ' (r
and (s, s') E ~, tha t is, s ' is related to s by a. c~ is exact iff a and a - 1 (the
inverse relation) are safe.

Composition of abstractions. Given an abst ract ion a l f rom S to S ' and an
abs t rac t ion a2 f rom S ' to S" , a l o a2 is an abstract ion f rom S to S " , where o
denotes the composi t ion of relations. The following facts can be derived directly
f rom the definitions: (1) if bo th ax and or2 are exact, then so is a~ o a2; (2) if
one of a l , a2 is safe while the other one is either exact or safe, then ax o a~. is
safe.

2 .2 T i m e d a u t o m a t a

Clocks, bounds and zones. Let X = {xl , ..., xn} be a set of variables called clocks,
ranging over the positive reals/R_.0. A clock valuation is a funct ion v : X ~+ g/>0,
assigning to each clock x a non-negat ive real value v(x). For X C_ X, v [X := 0]
is the valuat ion v ' , such tha t Vx E X. v ' (x) = 0 and Vz ~ X. t , ' (z) = v(z) . For
every t E R_.0, v + t is the valuat ion t,' such tha t Vx E X. v ' (z) = t,(z) + t. A
bound [11] over X is a constraint of the form of the form x i # c or xi - x j # c ,
where 1 < i # j < n, # E { < , < , > , > } and c E ~ U {co}. If we int roduce a
" d u m m y " clock variable zo, taken to represent 0, then bounds can be uniformly
wri t ten as xi - xj -< d, where 0 < i # j < n, -~E { < , < } and d E 2~ U {co}.
(For example, Xl > 3 can be wri t ten as x0 - xl < - 3 .) A bound xi - z j -< d
is stricter than xi - xj -~' d' iff either d < d' or d = d' and ~ = < , - ~ ' = < . (We
assume tha t w < co, for any real number w.) For instance, zi - z j < 3 is stricter
than xi - z j < 3, which is stricter than zi - xj < 4, and so on. For two bounds
b and b', rain(b, b') (rasp. raax(b, b')) is b (resp. b') if b is stricter than b', b' (resp.
b) otherwise. A valuat ion v satisfies a bound zi - z j -< d iff v(xi) - t,(xj) -~ d,
where, by convention, v(x0) = 0.

A zone over 2" is a conjunct ior i 'o f bounds, Ao<iej<,~xi - x j -~ij dij, for
-~ijE {< , <} and dij E N . We denote by Zij the~boh~xd zi - xj -~ij dij. A
valuat ion t, satisfies a zone Z iff tp satisfies Zij, for all 0 < i # j < n. We
often view a zone as the set of valuations satisfying it. Thus, we write v E Z,
to mean tha t v satisfies Z, and Z = (~, to mean tha t no valuat ion satisfies Z.
We also write Z n Z ' to denote the zone Z " corresponding to the intersection

316

of Z and Z ' , tha t is, such that Z~'~ = min(Zij, Z~j), for all 0 < i • j _< n.
Finally, we write Z = Z ' iff Z and Z ' represent the same sets of valuations.
Notice tha t Z = Z ' does not necessarily imply that Z and Z ' are identical.
For example, let Z = 2 < xl < 3 A 3 < x2 < 4 A 0 < x 2 - x l < 3 and
Z ' = 2 < xl < 3 A 3 < x2 < 4 A 0 < x 2 - x l < 2. Although the two zones are
not syntactically identical, they are semantically equal (i.e., Z -- Z ') , since the
bound x2 - xl < 3 can be strengthened to the (stricter) bound x2 - xl < 2. We
say that a zone is in canonical form iff all its bounds are as strict as possible, tha t
is, none can be strengthened to yield a semantically equal zone. In the sequel we
assume tha t all zones considered are in canonical form. Let Zx denote the set
of zones over X.

Timed automata. A timed automaton (TA) [2, 14] is a tuple A = (X, Q, E, q0, I) ,
where: X is a finite set of clocks; Q is a finite set of control locations; E is a
finite set of edges of the form e = (q, Z, X, q'), where q, q' E Q are the source and
target locations, Z E Z x is an enabling guard, and X C A~ is a set of clocks to
be reset; q0 is the initial control location; I : Q ~ Zx is a function associating
with each control location q a time-progress condition I(q) (we also write Iq).
Figure l(a) shows an example of a TA, with two clocks z and y, a single location
with t ime progress condition true (i.e., x > 0 A y _> 0), and two edges a and b.

A state of a TA is a pair (q, v), where q E Q is a location, and v E Iq is a
valuation satisfying the time-progress condition of q. The semantics of A is the
smallest set of such states, SA, such that:

1. so = (q0, 0) E 3A, 0 being the valuation assigning zero to all clocks;

2. if (q, v) E 3A and there exists e = (q, Ze, Xe, q') E E such that v E Ze, then
(q',v[Xe := 0]) E SA;

3. if (q, ~) E 8A and there exists t E/R>0 such that v + t E Iq, then (q, ~, + t) E

$A.

Due to the third rule above, SA has generally a non-countable number of states.

3 A b s t r a c t i o n s for TA

3.1 S i m u l a t i o n

This abstract ion consists in mapping sets of concrete states to abstract (sym-
bolic) states. It is based on the concept of simulation graph, a reachability graph
used in KRONOS for checking safety properties [7] or, more recently, also liveness
properties [4].

Consider a TA A = (X, Q, E, q0, I) , where X - {xi, ..., x ,} . Given a zone
Z E Z x , a set of clocks X _C X, and an edge e = (q,Z~,Xe,q I) E E, we define

317

the zone operators ~Z, Z[X := 0] and e-succe(Z), such that:

t z = (A z,~) ^ (A =, - =o < oo)
ie[O,n],j E[1,n] iE[1,n]

z [x : = o] - - (A z,~) ^ (A =,-=~ <~) ^ (A
~,,~jC.X (x, EXvag~EX)^i,j#O ~.,EX

�9 -s.cco(z) = (z n zo)[x~ := 01

0 _< z i - z o < O)

Notice that all operators above yield zones. Intuitively, t Z __D Z is the zone
obtained from Z by eliminating all upper bounds of clocks (all bounds Zi0 are
replaced by the trivial bound c~), and represents the elapse of time. Z[X := 0] is
obtained after resetting all clocks in X to zero. Finally, e-succe(Z) corresponds
to taking the part of Z satisfying the guard of e, then resetting some clocks as
specified by e. Figure 2 shows examples of the application of the intersection,
time-elapse, and reset operators.

A symbolic state S is a pair (q, Z), where q E Q is a location and Z E Z x
is a zone. We write (q', t') e (q, Z) iff q' = q and t" E Z. We write (q, Z) = 0 iff
Z = 0. Let e = (q, Z~, X~, q~) be an edge. We define the post-condition operator
post as follows:

poste((q , Z)) = (q', lq, N ~e-succe(Z)) (1)

That is, post~(S) contains all states that can be reached from some state in S
by, first taking a discrete transition by e, then letting some time pass in the new
control location, while continuously satisfying its time-progress condition.

The simulation space of A is defined to be the smallest set of symbolic states
Ss4 irn such that:

1. s~ ~ = (q0, • t{0}) e s 2 ~ ;
2. for any $1 E S~t im and any e e E, if $2 = post~ ($1) r 0 then $2 e S~t ira.

In other words, S~4 i'~ is the set of all states obtained from S$ im by applying the
post operator. S~ i'~ can be infinite, as in the example of figure 1, where S~4 im
is displayed as a graph, the nodes of which are symbolic states, while the edges
show the effect of applying post.

The simulation abstraction is defined to be the relation asim = {(s,S) E
s a • ~ I s ~ s } .

Regarding the set of properties with respect to which reachability is defined,
we consider the set P = Q • Z x , that is, the set of all possible symbolic states.
The interpretation f u n c t i o n / / : P ~ 2 s is defined as: II(q, Z) = {(q, t') It, E Z}.
Similarly, H sire : P ~ 2 s 2 " is defined as: Hsim(q, Z) = {(q, Z') I Z' f3 Z ~ 0}.

P r o p o s i t i o n 31 The simulation abstraction ~,im is exact.

318

.1: :~ 0
----2 y : = O

b a
(a) a

(b)

F i g . 1. A t imed a u t o m a t o n (a), and its (infinite) s imulat ion space (b).

F i g . 2. Zone operat ions.

319

3 . 2 E x t r a p o l a t i o n

The purpose of this abstraction is to ensure a finite number of symbolic states,
since, as we have seen, the simulation space can be infinite. Extrapolation has
been already used in KRONOS, as well as RTSPIN, where it is called maximiza-
tion [20]. We explain informally the main idea, which is based on the (finite)
region graph [2]. For any TA A, there is a maximal constant k E AN" appearing in
the zones of A (guards or time-progress conditions). In the example of figure 1,
k equals 2. Now, consider a valuation v and a clock x such that v(x) > k. It is
easy to see that for any zone Z of A, the exact value of ~(x) is insignificant to
whether g belongs to Z or not, that is, for any other ~' which coincides with

to all clocks but x, such that ~'(x) > k, it holds v E Z iff v' E Z. Conse-
quently, once v(x) > k, v(x) can be replaced by a "greater than k" value. We
now formalize these notions.

Let Z = A0<i#j<n xi - x j -4ij dij be a zone over X = {xl, ..., x ,} . For each

k E ~W, the extrapolation function ~k : Z x ~+ Z x is defined as follows (skip on
first reading):

= A x , - x, < oo ^ A x , - x , < - k ^ A x , -
d,j>k -d,j>k Id,jl<k (2)

Figure 2(d) presents three examples of extrapolation, for k = 2, X = {x, y}.
(The white region is the zone before extrapolation. The filled region is the part
added after extrapolation. Notice that the two rightmost extrapolated zones are
unbounded.)

Intuitively, ~k(Z) yields a zone Z l D Z, where:

- upper bounds greater than k are eliminated (first conjunct of equation 2);
- lower bounds greater than k are replaced by k (second conjunct of equa-

tion 2);
- all other bounds are preserved (third conjunct of equation 2).

Now, consider a TA A and let k E AN" be a constant greater than or equal
to the largest constant appearing in a zone of A. We write ~k(q,Z) instead
of (q,~k(Z)). The extrapolation space of A with respect to k, denoted .r is ~ A , k '

obtained by applying ~ to all states of the simulation space. Formally:

SA ~ = { r I S e S~ ~ } ,k

P r o p o s i t i o n 32 For any TA A and any k e BV, S~t,~ is finite.

Figure 3(a) shows the effect of applying the extrapolation abstraction for k = 2
to the example of figure 1. Notice that the part that changes is the infinite
rightmost chain y > x + 3, y > x + 4, ..., which is replaced by a single symbolic
state y > x + 2.

The extrapolation abstraction parameterized by k, is the relation k Ol x t r

{ (s , s ') c a ; , • a l t " I s ' =

320

b b
(a) (b)

Fig. 3. Applying extrapolation (a) and (optimal) inclusion (b) to the example of fig-
ure 1.

The interpretation function H ~tr is defined to be the same as H sire. Then,
it is easy to prove that axt r~ is exact for any property r such that the maximal
constant appearing in r is less than or equal to k. However, this is not generally
true for properties involving constants greater than k, since it might be that
such a property is reachable in the abstract space, while it is not in the concrete

k is safe for any property. We now formally present these one. In any case, axt r
results.

For k E ~W, we define Z~ to be the set of all zones Z involving constants less
than or equal to k. Let Pk be the set of properties Q x Z k.

P r o p o s i t i o n 33 Let A be a TA and k E ~V be a constant greater than or equal
to the largest constant appearing in a zone of A. Then, c~t r is exact with respect
to Pk. Moreover, for all m E ~W, a~:trm is safe with respect to P.

Remark 1. For the sake of simplicity, we have defined the extrapolation function
with respect to a single constant k. In fact, it is straightforward to adapt the
definitions for a set of constants clj, 0 < i # j < n, one for each clock difference
zi - z j . This permits to "optimize" the reduction, since a coarser abstraction is
obtained. Preservation results are not affected.

3.3 I n c l u s i o n

Although finite, the number of states induced by extrapolation can still be large.
This number can be reduced by using the inclusion abstraction, the main idea
of which is the following. Consider two states $1 and $2 in the simulation space,
such that $1 is a subset of $2. Then, for reachability properties, it is not necessary
to examine neither $1 (since any state belonging to $1 belongs also to S~), nor
the successors of $1, since each of them is a subset of the corresponding successor
of $2. Thus, states like S1 can be eliminated. We formalize this in what follows.

Given a TA A, we say that a total function ainc : S~ im ~-+ S~ i'~ is an inclusion
abstraction iff, for any S E S si'n, c~i,c(S) 2 S, where (q, Z) C_ (q', Z') iff q = q'
and Z C Z ~. (We regard, again, zones as sets of valuations, so that zone inclusion
means set inclusion. Z C Z ~ can be implemented by testing that each bound of
Z is stricter than or equal to the corresponding bound of Z~.)

321

We define the inclusion space of A with respect to ainc as the set of states
inc = a" rssiml where a[.] is the image of the relation c~. S ~ , ~ , n e s n e t A J)

The above definitions allow for many possible inclusion abstractions. One in-
clusion abstraction for the simulation space of figure 1 (b) is shown in figure 4(a),
where the ainr mapping is depicted by dashed arrowed lines. The corresponding
inclusion space is shown in figure 4(b).

..o

4 N ~ . / (' 3

(~) (b)

Fig. 4. Inclusion abstraction (a) and corresponding inclusion space (b).

! An inclusion abstraction ain e* is said to be optimal iff for any other ainc,
. s i r n p s i r n * t ain,[S] C_ ainc[S] (that is, aln c induces a smaller state space than ain,) .

In the case that the simulation space is finite, an optimal inclusion abstraction
always exists. (In fact, there may be more than one optimal abstractions, but
all of them induce the same inclusion space.) In the case that the simulation
space is infinite, an optimal abstraction might still exist, as is the case for the
TA of figure 1. The inclusion space induced by this optimal abstraction is shown
in figure 3(b). On the other hand, consider a TA similar to the one of figure 1,
where the guard x _> 1 is replaced by z = 1. In this case, the simulation space
as well as any inclusion space are infinite.

The interpretation function II inc is defined to be the same as II "i'~.

P r o p o s i t i o n 34 Any inclusion abstraction is exact.

3.4 Activity

This abstraction permits to eliminate redundant clocks from a system. It has
been introduced in [10] for the case of a single TA and is here generalized to a
network of automata. The idea is that a clock should be considered active only
when it usefully counts time, that is, from a point where the clock is reset, up
to a point where the clock is tested. In any other case, the clock is inactive and
can be ignored. We now formalize these notions.

Consider a TA A = (X, Q, E, q0, I), where X = {Xl , . . . , Xn}. Given a control
location q E Q, clk(q) C_ X is defined as the set of clocks x, such that either
x appears in the time-progress condition Iq of q, or there exists an edge e =
(q, Z, X, q~) in E, such that x appears in the guard Z of e.

322

Then, the function act : Q ~-~ 2 x , associating with each location q the set
of active clocks in q, is defined as the least fix-point of the following system of
equations (one equation for each location q):

act(q) = clk(q) U U act(q') \ X (3)
(q,Z,X,q')EE

That is, x is active in q iff either x is in elk(q), or x is active in a location q'
which can be reached from q by a sequence of edges, so that x is never reset
along the sequence.

An algorithm to compute act is given in [10]. This algorithm works on the
syntactic structure of the automaton, that is, its locations and edges, thus, it is
extremely efficient.

Given a symbolic state S = (q, Z), the projection of S to active clocks,
denoted S/act , is a symbolic state (q, Z') , where Z' is the projection of Z to the
set of active clocks of q. Formally:

(q' Z) /ac t = (q' A Zij) (4)
~,,x~eact(q)U{zo}

The activity space S~ c` of a TA A is the set S~ c` = {S/act I S e $~i,n}. In other
words, 8~ c* is of variable dimension: for each (q, Z) E 8 ac*, Z is a zone over
act(q) (if act(q) is empty, the symbolic state reduces to just the control location
q).

The activity abstraction is defined to be the relation aac, = {(S, S ~) E 8~ im x

s c' l S ' = s / a c t } .
The interpretation function//=~t is defined to be the same as]7 ' i 'L

Proposition 35 The activity abstraction aact is exact for any property r =
(q, Z), such that the set of clocks appearing in Z is a subset of act(q).

Remark 2. The above proposition claims that a~ct is exact for r if the latter
refers to clocks which are active in q. In fact, it is easy to extend the above defi-
nitions so that the activity abstraction is exact for any property (q, Z). Indeed,
it suffices to add all clocks appearing in Z in the set of clocks initially active in
q, elk(q), and compute the fix-point equations defined in 3 accordingly.

3.5 C o n v e x hu l l

This abstraction provides a considerable reduction of the state space, permitting
to keep a single zone Z with each control location q of the system. In general,
there will be many zones Z1, ..., Zn associated with a location q, in any of the
abstract spaces defined previously. However, (q, Ui=l n z /) is not a symbolic
state, since the union of two zones is generally a non-convex set, that is, cannot
be represented as a conjunction of constraints (i.e., a zone). The convex hull
of two zones is by definition convex, therefore, one can abstract [.Ji=l n z i by
Ui=l,...,n z / , where IA denotes the convex hull. On the other hand, convex hulls

323

are generally supersets of unions, meaning that states which are not reachable in
the concrete space might be so in the abstract one. This is why this abstraction
is not exact, although it is safe. Convex hull abstractions have been used also
by [12, 21,3]. The definitions are given in what follows.

Given two zones Z and Z', the convex hull of Z and Z', denoted Z U Z' , is
defined as the smallest (with respect to set inclusion) zone Z" such that Z C Z"
and Z' C_ Z". (Z U Z' can be obtained operationally as follows: (Z U Z')i j =
max(Zij, Z'j).) Two examples are shown in figure 2(e).

The convex-hull space o f a T A A i s t h e set S] h = {(q,Z) Z = U{Z']
(q, Z') E S~tim}}- 2

The convex-hull abstraction is defined to be the relation:
ach = {((q, Z), (q, Z')) E ,S~ im • ,~h I Z C Z ') .

The interpretation funct ion/ /ca is defined to be the same a s / / , , m .

P r o p o s i t i o n 36 The convex-hull abstraction ach is safe.

4 M o d e l c h e c k i n g u s i n g a b s t r a c t i o n s

The reachability analysis is implemented in KRONOS as a breadth-first (BFS) or
depth-first (DFS) generation of the abstract state space, starting from an initial
state, and checking whether a final state (@, Z) is reachable from an initial state
(q0, Z0). 3

Figure 5 shows the DFS procedure. 3 a is the set of visited (abstract) states,
initialized to {(q0, Z0)}. For each newly-generated state (q,Z), it is checked
whether the latter satisfies the property (@, Z), and, if so, a sample trail is
returned as output (in this case, by simply running through the DFS stack).
Otherwise, (q, Z) is stored to the set of visited states S ~, and the search goes
on to explore all successor states which have not been visited yet.

The search is parameterized by an abstraction c~, which is either asim, or
c~,im o c~', a ' being itself a composition of some of the other four abstractions,
o~:t,., o~inc, ~act, o~ch. The correctness of the method comes from propositions 31,
33, 34, 35, 36, and the fact that composition of abstractions respects property
preservation (see section 2.1). Depending on a, the functions poste, store and
visited are modified appropriately, to implement the chosen abstractions. We
explain this in what follows.

Extrapolation and Activity. These abstractions are implemented by modifying
the successor function post~. When none of these abstractions is used, then

2 We should note that, in this definition, U{Z' I (q, Z') E S~/'n} is actually the smallest
upper bound of the set {Z' I (q, Z') E S~'m}, in the lattice of zones with respect to
set inclusion. This is because the set {Z' I (q, Z') E S~ 'm} may be infinite.

3 Many interesting properties can be formulated in this way. In particular, this is true
for invariants, informally stated as "in all reachable states p holds", and real-time
bounded-response properties informally stated as "p will hold in at most t units of
time". We refer the reader to [7] for more details.

324

ReachDFS a ((q, Z), (c~, 2)) :
i f (q=OandZN2ys then

return. (0, 2) is reachable) ;
output(DFS stack) ;

e l se
store(~((q, Z), S a) ;
for-each (e E E) d..oo

(q', Z'):---- post~(q, Z) ;
i..f_f (Z' :/: @ and not visiteda(q ', Z'))

ReachDFS = ((q', Z'), (~, 2)) ;
then

Fig. 5. Depth-first reachability using abstractions.

post~ is simply poste, defined in equation 1. When extrapolation is used, then
post~(q, Z) is ~k(poste(q, Z)), where k is found as explained in section 3.2. When
activity is used, then post~(q, Z) is (poste(q, Z)) /act . When both abstractions
are used, both operators are applied (the order does not matter).

Inclusion. This abstraction is implemented by modifying the test v is i ted ~ (q~, Zr).
When inclusion is not used, this test is (q~, Z ~) E S a. Otherwise, the test becomes
3(q', z") e s z ' c_ z".

Convex hull. This abstraction is implemented by, first, changing v is i ted as in the
case of inclusion, and second, modifying also the storing procedure as follows.
When convex hull is used, storea((q, Z), S ~) has the following effect: either there
is already a state (q, Z") in S '~, in which case it is replaced by (q, Z" U Z); or
there is no such state, thus, (q, Z) is added to S ~. When convex hull is not used,
(q, Z) is simply added to S a.

A final comment needs to be made on the incompleteness of the convex-hull
abstraction: if a state is reachable in the abstract graph then no conclusion can
be made about the concrete graph. A (partial) solution to this is to try to fol-
low the diagnostic trail given by the DFS (i.e., the sequence of transitions fired)
using the exact successor function post. This means generating the concrete
counterpart of the abstract trail. If the entire transition sequence can be gener-
ated then the reachability property indeed holds, otherwise the approximation
is too coarse. Notice that this method cannot be generalized, for instance, by
simply testing all counter-example trails found in the abstract graph, since their
concrete counterparts constitute only a part of the set of trails in the concrete
graph.

5 E x a m p l e s

5.1 T h e F D D I c o m m u n i c a t i o n p r o t o c o l

FDDI (Fiber Distributed Data Interface) [15] is a high-performance fiber-optic
token-ring LAN (local-area network). An FDDI network is composed by N idea-

325

tical stations and a ring, where the stations can communicate by synchronous
messages with high priority or asynchronous messages with low priority.

We are interested here in the verification of one aspect of the temporal mech-
anism of the protocol, namely, the bounded time for accessing the ring (BTAR)
property, stated as: "the time elapsed between two consecutive receptions of the
token by a given station is bounded by CN". (CN is a constant depending on the
number of stations N).

The system has already been specified and verified with KRONOS, in [8],
using a backward fix-point computation, and in [7], using a forward reachability
analysis (i.e., exploring the simulation space). In the first case, 8 stations has
been the maximum the tool could handle, while in the second, the limit has been
12 stations.

Here we show how enhancing the teachability analysis with abstractions leads
to a more efficient verification of this system, both in t ime and space, thus
permitt ing to verify the property on a system of up to 50 stations.

Specification. The system for N stations is modeled as a TA F D D I N which is
obtained as the parallel product of the model of the ring for N stations R i n g N,
and the model of each station, S ta t ion i , i = 1, ..., N. It is worth noting that
the size of F D D I N (in locations, transitions and clocks) is linear on the num-
ber of stations N. Since the computation of the model of the global system
is not costly, on-the-fly verification is not needed in this case. Instead, we ap-
ply the teachability analysis to the global model, using the breadth-first-search
technique.

Results. Figure 6 shows, in logarithmic scale, the performance results 4. We
can conclude from figure 6(a) that exact abstractions generate an exponential
number of symbolic states 5, while their combination with the convex hull ab-
straction reduces the cost from exponential to polynomial on the number of
stations. However, it is important to notice that activity reduces the number of
symbolic states generated by half when the convex hull abstraction is not used.

From figure 6(b), we can make the same conclusions about the complexity
on the number of stations as those for the size of the state-space generated.
However, it turns out that the benefits from the activity abstraction are much
more important in terms of time reduction than in terms of state-space size
reduction, even when combined with the convex-hull abstraction. The reason for
this is that reducing by activity the number of clocks of the system, leads to a
more compact representation of zones (i.e. a gain in memory), and to a more
efficient computation of the operations on zones. In this case, activity reduces the
number of clocks from 2N + 1, for the original model (2 clocks for each station,

4 The model was verified using the simulation abstraction (denoted "sim" in the figure)
alone, or combined with the convex-hull ("c_h') or the activity ("act") abstractions.
Extrapolation and inclusion have no effect in this ease because of the structure of
the model.

5 In this example, the exponential complexity is induced by the temporal aspect of
the system, since the size of its control is linear.

326

lO0000 -.

10000-=

o

E lOOO-

rJl

- - - sim

sim + act

. . . . sim + ch

- - sim + act + ch

/ i .

. v . j,......a*. ~ ' ,~
i

leo- i .t!il,..,
. . . . i / T " T " ' I ' " ' I " ' T " T " T ' " I ' " ' |

0 5 10 15 20 25 30 35 40 45 50 55

N u m b e r of stations

10000.

lO00-

1GO.

10"

1

~176 , I

i / .." , "

if#, ," ,,i

o~ ,e ~, o. ii
I ,, /

i ," I , " /

/ / /

, ~ /

! l.- ; - . -s ire
I [' 1 ' I .

ch I F / s l m +

! $, / - - sam + act
[

I:[1~' - - sim + act + ch

0 5 10 15 20 25 30 35 40 45 50 55

Nu mb er of stations

(a) (b)

Fig. 6. Results of verification of FDDI protocol using abstractions: state-space size (a)
and time (b).

plus a clock for the ring), to N + 1, because the clock of the ring and one of
the clocks of each s ta t ion are never active simultaneously. Hence the impor t an t
gain, bo th in m e m o r y and time, even if the number of symbolic states computed
is nearly the same.

5 .2 F i s c h e r ' s m u t u a l - e x c l u s i o n p r o t o c o l

This is a real-t ime mutuM-exclusion protocol which has become a benchmark
example, thus we o m m i t its description here (see [9] for more details).

Results. Diagrams (a) and (b) in figure 7 display the results of using abstract ions,
in linear and logar i thmic scale, respectively. 6 Some conclusions coming f rom
these results are the following.

6 "x" stands for extrapolation, "inc" for inclusion. "~ct" for activity, and "ch" for
convex hull. The "+" symbol stands for combination of abstractions. Not all combi-
nations are shown: first, the simulation graph is infinite; second, by definition, convex
hull is more general than inclusion; "x+inc+act" turns out to yield exactly the same
results as "x+act ' ; finally, "x+ch" yields almost the same results as "ac t+ch ' . Con-
cerning time and memory costs, the largest case treated (9 processes, about 600,000
symbolic states generated) has consumed 2 hours of CPU time and 180 megabytes,
on a Sparc-station 20 with 224 megabytes of memory. We should mention that com-
puting the abstractions does not result in a significant time consumption, that is,
the overhead is a matter of seconds.

327

1. Combination of abstractions is definitely useful in absolute terms, e.g., com-
pare the performances of ainc and a~tr o ainc for 5 processes, or a~tr and
Olxt r 0 ~ i n e 00~ac t for 6 processes.

2. The convex-hull abstraction radically reduces the state space, permitt ing to
handle up to 9 processes.

3. The complexity of the problem remains exponential, even with the use of
convex hull.

Comparison. Fischer's protocol has been previously treated by KRONOS using
just extrapolation, and without on-the-fly generation of the state space (i.e., the
syntactic product of the TA had to be constructed a priori). This approach was
able to handle up to 5 processes, consuming about 140 seconds of CPU time. The
limit reported in [17] using the tool UPPAAL has also been 5 processes, which
consumed 600 seconds of CPU time. 7 Similar results have been reported in [18]
for the tool HYTECH [13].

In [3, 5], BDDs (binary decision diagrams) have been used to verify the pro-
tocol for up to 10 and 14 processes, respectively. [3] uses a safe abstraction that
corresponds to the convex hull, while [5] uses an exact discretization of the state
space. The main drawback of these BDD-based methods is that they are quite
sensitive to the size of constants: in both case studies above, the values of 5, A
were assumed to be 1 and 2, respectively. Also, in case the property fails to hold,
the BDD encoding the set of reachable states does not contain enough informa-
tion in order to provide a counter-example, so that some kind of enumerative
exploration needs to be also available. (In [5], counter-examples are generated
by re-starting the exploration using a BFS, once the BDD is found to intersect
the property in question).

Finally, the protocol has been also treated in [18], for up to 7 processes, using
a formula-quot ient ing construction, which is not an explorative model-checking
approach, thus, cannot be directly compared to ours. s

6 Conclusions and perspectives

We proposed abstractions as an efficient way to perform verification of reacha-
bility properties. In summary, the simulation abstraction is the formalization of
the coarse reachable state space upon which the algorithm is based; extrapola-
tion is in some cases inevitable so that the algorithm terminates; the inclusion,
convex-hull and activity abstractions are equally important in practice, since

7 This was on a different machine than ours, and possibly with different constants
~, A. We have tried UPPAAL version 2.02, March'97, (command v e r i f y t a -S, which
enables all state-space reductions) on our machine, for 5 and 7 processes, using
the same constants. UPPAAL consumed 485 seconds of CPU time for 5 processes,
and hadn't finished for 7 processes after more than 14 hours of CPU time, having
consumed 70MB of memory.

s In [16], the same approach has been used to verify an acyclic version of the protocol
for up to 50 processes.

328

1050000 -
1000000-
950000 -
900000-
850000 -
800000-
750000 -
700000 -

r/l
550000 -

~ 500000-

r~ 350000 -

2OOOOO "l
15oooo--j

4

!
i

i,

i:t �9 inc
, :1 X X l : l

[:t �9 inc+act
[~ + x+inc

x+inc+act ,,

~* - - - ch
/

- - - x+act+ch

I I I I I I I
5 6 7 8 9 10 I1 12

N u m b e r o f p r o c e s s e s

(a)

1000000:

~ 10ooo0

~

~ 10000

/ , r
] ; ' /

o,O/
4./ /;,t

/ 3 '

/ , 7
/ t ' / �9

o,~
/,'1 X

�9 o ~ �9
/ , ' / +

/;'/
/: '/

/

1000 I I I I I
4 5 6 7 8 9

N u m b e r o f p r o c e s s e s

(b)

Fig. 7. Results of verification of Fischer's protocol using abstractions.

inc

x

inc+aet
x+inc
x+inc+act
ch
x+eh
x+act+ch

I
10

they reduce the size of the state space: inclusion and convex-hull reduce the
number of symbolic states generated, whereas as activity also reduces the size
needed to store each symbolic state.

Apar t from convex hull, all other abstractions are exact. The former is still
useful, however: If a state is not reachable in the abstract space, it is certainly
not reachable in the concrete space either. If a state is reachable in the abstract
space, one can always examine the path leading to this state, by re-executing the
transitions without applying the abstraction. If the state is indeed reachable then
a diagnostic trail is found. Otherwise, the search can continue in the same man-
ner, providing some confidence in the system verified, without, however being
definitely conclusive.

Experimental results allow us to infer tha t our abstractions deal quite well
with two factors of exponential growth of the state space, namely, the number of
clocks, and the size of constants used in the model. Regarding the third factor of
exponential growth, that is, the number of components constituting the system,
although these abstractions provide an improvement of performance in absolute
terms, they cannot avoid the exponential complexity in general. Notice, however,
tha t this is achieved in the FDDI example, with the help of the convex-hull
abstraction.

Regarding perspectives, in the short term, we plan to complete the proto-
type implementat ion, namely, by programming variable-dimension structures,
and opt imal storage techniques. In the long term, compositional methods like
the ones in [1, 18], need to be studied more thoroughly.

329

References

1. P. Abdulla and B. Jonsson. Verifying networks of timed processes. 1997. To
appear.

2. R. Alur. Techniques for automatic verification of real-time systems. PhD thesis,
Stanford University, 1991.

3. F. Balarin. Approximate reachability analysis of timed automata. In Proc. 17th
IEEE Real-Time Systems Symposium, 1996.

4. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for
real-time systems. In Proc. of the 18th IEEE Real-Time Systems Symposium, 1997.

5. M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic
verification of timed automata. In Proc. of the 8th Conference on Computer-Aided
Verification, 1997.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In ~th ACM
Symposium on Principles of Programming Languages, 1977.

7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid
Systems III. LNCS 1066, 1996.

8. C. Daws, A. Olivero, and S. Yovine. Verificaci6n autom~itica de sistemas temporiza-
dos utilizando KRONOS. In Proc. Jornadas de Informdtica y Telecomunicaciones
de la IEEE (secci6n Uruguay), 1996.

9. C. Daws and S. Tripakis. Model checking of real-time reachability properties us-
ing abstractions (full version). Technical Report 97-08, Verimag, october 1997.
http: / /www.imag.fr / VERIMA G / P EO P LE / Conrado.Daws.

10. C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.
In Proc. 17th IEEE Real-Time Systems Symposium, RTSS'96, 1996.

11. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Proc. 1st Intl. Workshop on Computer-Aided Verification, 1989.

12. N. Halbwachs. Delay analysis in synchronous programs. In 5th Conference on
Computer-Aided Verification. LNCS 697, 1993.

13. T. Henzinger, P. Ho, and H. Wong-Toi. Hytech: The next generation. In Proc.
16th IEEE Real-time Systems Symposium, 1995.

14. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 1994.

15. R. Jain. FDDI handbook: high-speed networking using fiber and other media.
Addison-Wesley, 1994.

16. Kristoffersen, F. Laroussinie, K. Larsen, P. Petterson, and W. Yi. A compositional
proof of a real time mutual exclusion protocol. In Prec. of the 7th Intl. Conf. on
the Theory and Practice of Software Development, 1997.

17. K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time
systems: Compact data structures and state-space reduction. In Proc. of the 18th
IEEE Real-Time Systems Symposium, 1997.

18. K. Larsen, P. Petterson, and W. Yi. Compositional and symbolic model-checking
of real-time systems. In Proc. 16th IEEE Real-Time Systems Symposium, 1995.

19. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 1995.

20. S. Tripakis and C. Courcoubetis. Extending promela and spin for real time. In
TACAS'96. LNCS 1055, 1996.

21. H. Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems. PhD
thesis, Stanford University, 1995.

