
Modeling and Verification of sC++ Applications

Thierry CATI"EL 1

1 Computer Networking Laboratory, Swiss Federal Institute
CH- 1015 Lausanne, Switzerland

cattel@epfl.ch

Abstract - This paper presents a means to model and verify concurrent applications
written in sC++. sC++ is an extension of C++ that adds concurrency to the language
by unifying the object and task concepts into a single one, the active object. The
management o f active objects is the same as the management of usual C+ + passive
objects. The difference is that active objects have their own behaviour and that they may
either accept method calls or call other objects 'methods. They are also capable to await
simultaneously several non deterministic events including timers expiration. We show
how to systematically model sC++ programs into Promela, a formal language
supported by SPIN, a powerful and widely available model-checker. We present a
classical example o f a concurrent problem and give details about a tool that
automatically produces the model from a program, verifies it and allows its debugging.

1 Introduction
For representing concurrency in software engineering, all the existing analysis
methods, including the object oriented paradigm [2] use dataflow diagrams that model
data exchange between potentially autonomous items. Applications such as protocols,
process control systems, distributed applications, are concurrent by nature and are
better modelled and structured if they are modelled with explicit concurrency. The first
troubles appear at the implementation of such systems because the available
environments are seldom as clear, simple and powerful as the concepts used during
analysis. In other words, if concurrency is easily designed with the available analysis
tools, it is less easily implemented with the available programming support. This is
without mentioning the overhead due to some solutions, for example Unix processes.
Concurrent applications development is also more difficult to master and flaw detection
before real exploitation is highly desirable. This is usually achieved using formal
methods and abstracting the real system into a mathematical model which is submitted
to proofs or model-checking. The development process for modeling and verification
may proceed either in a bottom-up or a top-down fashion. In the bottom-up way, the
verification phase is done a posteriori. The system is already built and one extracts a
model that is submitted to verification[3][7]. If a bug is found, it needs to be fixed and
the implementation to be modified. In the top-down approach, the verification is done
a priori. The model is elaborated and verified before the implementation. This reduces
the impact of possible bugs in the development cycle. These two approaches may
combine with refinement techniques, but they usually rely on different formalism: one
for the model and one for the implementation, the gap between both being often large.
Between these two extremes, one can imagine having the same language for modeling
and implementation, the modeling language being strictly included into the
implementation language. This would simplify the developers work and require

233

reduced skills. This supposes that one either creates a special instance of the verification
tool for the language used or that bridges with existing tools are built, thus hiding the
modeling language. This is the approach that will be presented in this paper. We use
sC++, a minimal concurrent extension of C++ [14] as modeling and implementation
language, and SPIN as verification tool. We show how to systematically translate a
sC++ program into Promela (SPIN's language) and how to directly perform the
verification and debugging onto the initial sC++ program using an adapted version of
SPIN. We illustrate the approach with the readers and writers problem.

2 sC++

2.

3.
4.

5.
6.
7.
8.};

sC++ is an extension of C++ that provides the possibility to develop executable
concurrent programs and distributed applications. It is supported by a set of
development tools, including a compiler, which is an extension of gcc, code generators,
and debuggers. It also exists an implementation in sC++ of an Object Request Broker
that allows for developing distributed applications compliant with Corba [14].
Regarding the language itself, it is fairly simple for a programmer already knowing
C++, since it possesses only few extra keywords with special semantics, sC++ adds
concurrency to the language by unifying the object and task concepts into a single one,
the active object. Fig. 1 shows an example of active class declaration:
I. active class C{

private: void ml() {}
�9 C() {... }

public: C(){...}

-C()(...}
T1 rdvl(T2 t2, T3 &t3) {...}
void rdv2() {}

FIGURE 1. Active class declaration

The only syntactic differences with an usual C++ passive object are the extra keyword
active and the optional method prefixed with @.
The instances of an active class are active objects, whose public methods, when called
by other objects, have a special semantics. A call from an object to another active
object's method defines a synchronization and a possibly bidirectional data exchange
between both objects. It is a rendez-vous in the sense that the caller is blocked if the
callee is not ready to accept the call and the callee is blocked if it is ready to accept the
call but no call has been initiated. Besides, the rendez-vous is characterized by the
atomic execution of the method called, during which bidirectional data exchange may
occur thanks to the usual return value and parameters passed by value or reference.
If a method has no parameter and no code, it only has a synchronizing role. As a
consequence of atomicity, the synchronizing methods of an active object are always
executed in mutual exclusion. The private methods or the public ones called by the
object itself have exactly the same semantics as for passive objects.
The optional private method (called the body) prefixed with @ has the same name as
the class and cannot be called. It defines the behaviour of the active object and allows

234

an object to accept calls for its methods or to call other objects'methods. For instance
the body of Fig.2 contains an infinite loop during which the object successively accepts
calls for its methods rdvl, calls method m of object o and accepts calls for rdv2. Note
for instance that when the object tries to call object o's method m, it will block until the
rendez-vous is possible; notice also that possible calls from outside to rdvl and rdv2
will be differed until the body accepts them:
i. ~C(){ for(;;) { accept rdvl; o->m(); accept rdv2; } };

FIGURE 2. An active object's behaviour

Constructors are non-synchronizing public methods, executed before the body is
created, but destructors are considered as any other public synchronizing methods. In
particular destructors may be explicitly accepted by the object, which is useful for
controlling the object's death.
When no body is defined for an active object, an implicit one is defined that accepts
calls at any time for all its public methods including the destructor. In other words, an
active object without a body behaves as a Hoare monitor [11].
The management of active objects is the same as the management of usual C++ passive
objects. They may either be declared directly or through the use of pointers and the new
statement. They may be destructed explicitly with the delete statement or implicitly
when the block in which they are contained is exited (Fig.3). They naturally are ready
to die (they accept their destructor) if their body finishes.
2. { C cl; C* c2=mew C;

3. cl.rdv2 () ; c2->rdv2 () ;

4. delete c2; }/* cl is implicitly destructed */

FIGURE 3. A block with active objects creation and destruction

Here we need to say something about scheduling. Conceptually, scheduling should be
very unconstrained and be as if every active object had its own processor. The code of
the synchronizing method should be atomically executed only during a rendez-vous,
and the control given back to both the caller and the callee. Also, an active object should
be thought as running as soon as it is created. In the current mono-processor
implementation of the language, after a rendez-vous, the caller gets the processor and
only after synchronizations does the control change of active object. This means that an
object looping on some pure computations monopolizes the processor, but it is easy to
have instead a pre-emptive scheduling based on time sharing. In practice this has a
consequence for application startup. If one wants that the application objects begin to
execute only when they are all created, one needs either to add special synchronizations
for startup or manage that the main creates all the objects before attempting any possible
synchronization with some of them, otherwise the control could possibly be transferred
to the already created objects; this is done anyhow but only when the main finishes. One
also has to be careful of possible situations of deadlocks.

Objects may explicitly suspend their execution until a given date with the statement
waituntil. When the execution of an object reaches such a statement, its execution is
suspended at least until the date mentioned as parameter. The function now() provides
the current time (Fig.4).

235

i. const int DELAY=...;...;
2. waituntil (now() +DELAY) ;

FIGURE 4. Timeout statement

Active objects are also capable to await simultaneously several non deterministic events
including timer expirations. Instead of serializing the calls to its methods, as it appeared
on Fig.2, the active object can accept them nondeterministically and at the same time it
can attempt to call some other object or execute a timeout with the waituntil statement.
This is achieved thanks to the select statement (Fig.5).
i. select{ accept rdvl;...;

2. [I o->m() ;...;
3. I I accept rdv2;...;
4. I I waituntil (now() +DELAY) ; . . . ;

5. }

FIGURE 5. Simultaneous events awaiting

Conceptually, the occurrence order of the branches inside the select is not meaningful,
but in the current implementation, the f'trst enabled branch of the select is the one to be
executed. Once more, it is easy to change this and execute nondeterninistically a branch
among the enabled ones. Each branch of a select must begin with an event, namely a
synchronizing method call or acceptance or a waituntil statement. These events may be
conditioned by a boolean expression, called a guard, using the when statement as in the
following example (Fig.6):
i. select{ when(el) accept rdvl;...;
2. [[when(C2) o->m();...;
3.] I when(C3) waituntil(now()+DELAY) ;...;
4. }

FIGURE 6. Guarded ~nchro-lzations

Inheritance may be defined between active classes but we do not detail this point here,
see [14]. We conclude with a very simple but complete example that illustrates some
aspects of the language. It is a system of three processes accessing a critical section
protected by a two entries semaphore.
i. #include <scxx.h>

active class Semaphore{
int n;
@Semaphore () {

for(;;){ select{ when(n>0) accept P;

2
3
4
5
6
7

8
9
i0.
ii.
12.

13.

}
}

public :

14.};

II accept V;
}

Semaphore (int N) {n=N; }
void P() {n--;}
void V() {n++;}

236

15.active class User{
16. Semaphore *s;
17. int pid;
18. @User(){
19. public:
20. User(int
21.};
22.main(){

for(;;){s->P(); /* critical section */ s->V();

i,Semaphore *sem){pid=i;s=sem; }

))

23. Semaphore s(2);User ul(l,&s);User u2(2,&s);User u3(3,&s);}

FIGURE 7. Mutual exclusion with a semaphore in sC++

3 PromelaJSPIN

SPIN [12] is a powerful verification system that supports the design, verification and
debugging of asynchronous process systems. SPIN focuses on proving correctness of
process interactions that can be modelled in Promela, the language of SPIN, with
rendez-vous primitives, asynchronous message passing through buffered channels and
shared variables. Systems specification may be expressed thanks to boolean assertions
or linear temporal logic (LTL) formulae. The model-checker may address real-sized
problems of several millions states, thanks to several optimizations of depth-first
search; first, memory management techniques based on state compression and bit-state-
hashing, second, partial order reductions. When errors are found, traces are produced
that are used to guide a graphical debugger, quite useful to identify the flaws.
Fig.9 shows problem of Fig.7, modelled in Promela. Active objects are declared with
the proctype clause and may have parameters (Fig.9 lines 4,12). They are instantiated
with the run statement (line 17). We have modelled the synchronizing methods P and
V with synchronous channels (lines 1-2). For the moment forget that P is an array of
three channels. Since no data is exchanged during the synchronization, these channels
should convey no value, but one value at least is required, so we exchange a bit that
represent the synchronization event. The nondeterministic choice and the loop around
is done with the do :: od construct. Each branch corresponds to a select's branch of the
sC++ code, which is limited to the rendez-vous on P and V. The rendez-vous are atomic
(lines 5 and 8) and are composed of the related synchronisation (lines 6 and 9) and
method code execution (lines 7 and 10). By convention, we code a call by an emission
on the related channel and an acceptance by a reception. We now have to explain why
P is an array. In the sC++ program of Fig.7, the execution of method P of object
Semaphore is guarded by the condition (n>O). Unfortunately, there exists no dedicated
construct in Promela for modeling guards - even the atomic statement cannot solve the
problem without introducing extra deadlocks - but this can be done using a trick. The
boolean type and associated constants exist but as in C, they are related to the integer
type. In other words, true is 1, and false is 0.
i. chan R[3] = [0] of {...};
2. sender: R[condl] !msg;...
3. receiver: R[2-(cond2)]?msg;...

FIGURE 8. Guarded Rendez-vous

237

For modeling a guarded rendez-vous R (Fig.8), we declare two dummy channels R[O]
and R[2] that are used to deflect handshake attempts that should fail. The handshake
can only successfully complete on R[1] if both condl at the sender side and cond2 at
the receiver side hold.
On our example, only the reception, i.e. the accept in the sC++ program, is guarded
(Fig.9, line 6), the emission being guarded by true (line 13).
The global variable in CS (lines 3, 14) is used for the verification of the assertion
(line 14) that at most N (here 2) users may have the critical section at the same time, if
the semaphore was initialized with N.
1 chan P[3] = [0] of {bit};

2 chan V = [0] of {bit};

3 int in_CS=O;

4 proctype Semaphore(int n){

5 do :: atomic{

6 P[2- (n>O)] ?true;

7 n-- }

8 : : atomic{

9 V? true;

i0. n++}

Ii. od }

12.proctype User(int pid) {

13. do : : P[true] !true;

14. in_CS++; assert(in_CS <= 2); in_CS--;

15. V! true

16. od }
17.init{ run Semaphore(2); run User(l);run User(2);run User(3) }

FIGURE 9. Mutual exclusion with a semaphore in SPIN

4 M o d e l i n g o f s C + + A p p l i c a t i o n s

We now show how to model sC++ programs in Promela in a systematic way. Obviously
we cannot treat sC++ in its totality, this would suppose treating also all C++, which
would be very heavy and certainly lead to inefficient models thus making verification
of any kind impracticable because of state explosion. We are first interested in checking
somewhat abstract designs and thus we do not need all the power of C++. In particular
we only consider active classes. Passive classes, inheritance and generics are only
structuring facilities that are not essential for our purpose. We also only consider basic
types, such as integers and arrays but no structure, no type definition and no pointer,
excepts pointers of active objects that are necessary to pass references between active
objects for them to communicate. Some instructions are necessary (for, ij'), if they are
not (while, switch, goto) we drop them. We also forget compilation directives and
suppose that all the methods are defined inside the class. For similar reasons, we only
take into account the useful subset of Promela. Besides syntactic limitations evoked
above, we still restrict the scope of our translation to the salient points. In particular we
only consider direct object creation and thus forget the new and delete statements. We
consider only explicit bodies but implicit constructors and destructors for active classes.

238

For synchronizations, we only treat methods with no returned type and no reference
parameters. Nevertheless we'l l treat an explicit constructor with parameters, an implicit
body and a complete rendez-vous with bidirectional data exchange on an example.

We formalize the systematic modeling of the considered subset of sC++ in Promela,
following the usual practice of defining a denotational semantics[15]. This semantics is
defined thanks to a set of semantic functions from abstract syntactic constructions of the
source language sC++ to semantics values that are in fact abstract syntactic
constructions of the target language Promela. As parameter and result of the semantic
functions we also sometimes need particular structures, called environments, that
memorize the context of evaluation of a particular construction.

Fig. 10 shows the abstract syntactic domains of sC++ with abstract syntactic variables
in font c o u r i e r that are to be used below for the semantics definition. Fig. 11 shows
sC++ related production rules, with an usual BNF syntax. The keywords of the
language are in bold, ::= is the derivation symbol, I is the alternative, + and * when used
as exponents means one, resp. zero, or more repetitions, the square brackets indicate
optional constructions, the parenthesizes factorisation and e the empty string.

p e Program s x �9 Main s H �9 Branch s I �9 Identifier s
D �9 Declaration s K �9 Block s S �9 Synchro s N �9 Natural s
A ~ ActiveClass s B ~ Body s ~ ~ Expression s
M ~ Method s C �9 Command s T ~ Type s

FIGURE 10. sC++ abstract syntactic domains
�9 * . �9 .

Program s ::= Declarataon s AcUveClass s Main s
Declaration s ::= Type s [*]Identifiers[[Naturals]]

�9 �9 . * *

ActiveClass s ::= active class Identifier s {Declaranon s Method s Body s }
�9 . . g *

Method s ::= [Type s] [~] Identafier s ((Types Identafiers)) Blocks
Main s ::= [void] main() Blocks
Block s ::= {Declaratmn s Commands + }
Bodys ::= @ Identifiers 0 Blocks
Command s ::= Identifier s = Expression s I Identifiers++ I Identifiers-- I

if Expression s Commands + I if Expression s Commands + else Commands + I
for (Command s ; Expression s ; Command s) Block s I
return Expression s I assert Expression s I pr lnf f String s I
select{ Branchs + } I Synchro s

Branch s ::= [when(Expressions)] Synchro s Commands*
Synchro s ::= accept Identifier s I Identifier s -> Identifiers(Expression s) I

waituntil(Expression s)
Type s :: = int I void I Identifier s
Expression s ::= ...

FIGURE 11. sC++ abstract production rules

Programp Initp Typep Naturalp
Declarationp Blockp Expressionp Stringp
Proctypep Commandp Identifierp

FIGURE 12. Promela abstract syntactic domains

239

Programp ::= Typedef* Declarationp* Proctypep* Initp
Typedef ::= #define Identifierp Expressionp I typedef Identifierp {Declarationp +}
Declarationp ::= Typep Identifierp[[Naturalp]] [= Expressionp] I

chan Identifierp[[Naturalp.]] = [Naturalp] of {Typep + }
Proctypep ::= proctype Identlfierp ((Typep Identlfierp)) Blockp
Initp ::= inlt Blockp
Blockp ::= { Declarationp* Commandp + }
Commandp ::= Identifierp: Commandp I

Identifierp = Expressionp I Identifierp++ I Identifierp-- I
gotoldentifierp I if(::Commandp)+fi I do (::Commandp)+od I
Expressionp ! Expressionp + I Expressionp ? Identifierp + I
assert Expressionp I prinffStringp I skip I break I
atomic{ Commandp +} I run Expressionp(Expressionp*)

Typep :: = byte I i n t l bit I Identifierp
Expressionp ::= ...
FIGURE 13. Promela abstract production rules

The result of semantic functions are on the one hand values of Promela abstract
syntactic domains (Fig. 12-13) and values of semantic domains, called environments
(Fig.14) defined as abstract data types with the usual manipulations operations
(application, projections,...) that are not detailed here.
The environment is composed of four structures. Active, given a type name indicates if
it corresponds to an active class or not. Class, given an object identifier and the
identifier of the class in which the object is declared gives the object's class name.
Param gives for a given method of a given class, the list (possibly empty) of the
parameter identifiers and eventually, Code gives the executable code of such a method
(the instructions but not the possible declarations).

Environment = Active x Class x Params x Code
active, class, params, code: projections 0: application

Active = Type s ~Boolean
Class = Identifier s x Identifier s ~ Identifier s
Params = Identifier s x Identifier s ~ Identifiers*
Code = Identifier s x Identifier s ~ Commands*

FIGURE 14. Semantic domains

The semantic function model (Fig. 15) defines the modeling of a sC++ program into
Promela. It is defined thanks to auxiliary functions. The function build builds the
environment of a sC++ program. The function creat creates preliminary definitions for
objects; for passive objects it is their declaration, for active objects it is in particular the
structures used for synchronizations. The function trans is the core of the translation, it
does the actual creation of active objects and translate the instructions. The function
destr generates the instructions that calls the active object destruction, which is implicit
each time a block is finished for the active objects created directly (without new) in the
block. These functions have a sC++ program fragment as parameter and possibly the
program environment and the identifier of the class inside which the code is currently
analysed. We use the traditional special brackets II II in denotational definitions

240

(introduced by the special equal -) to separate the syntactic and the semantic worlds.

For instance, transllPllE, c =- ... represents trans(P,E,C) -= ...

m o d e l : Program s --,Programp
b u i l d : Program s ~Environment
c r e a t : Program s x Environment ~ Programp
t r a n s , d e s t r : Program s x Environment x Identifier s ~ Programp

FIGURE 15. Semantic functions

4.1 Semantics

For simplicity, we also consider that methods have different names in all the classes of
the program and that method parameters and local variables have different names inside
a given class. Also, local method parameters cannot be active objects. Our semantics is
easily extended to take into account these restrictions and some optimizations such as
rendez-vous with no data exchange, but this implies make the presentation heavier, in
particular by the introduction of extra structures. We also omit the definition of bu i ld
and the semantics of expressions or things that are rather <~stable~ under the translation.

Semantic equations
First a program is modelled in its environment. In order to have bounded dynamic
object creation to keep the space finite and tractable, for each class we will have a
maximum instance number. First are declared the possible global objects and the
structures necessary for the active classes. Then the active classes are translated. Finally
the main program is translated but preceded by the actual active object creations and
followed by their destruction in reverse order.

modell lPll =- transllPllE, prog where E=buildllpl l and buildllpll =- ...

transllD1...D d A1...A a XIIE, c _--
#derme NBMAXINST 8
creat l lDl ll E ... creatllDdll E c rea t l lA l ll E ... creatllAall E

t rans l lA l llE, C ... transllAallE, C
init{ int i

t rans l lDl llE, C ... transllDdllE, C
transllXllE, C

desttdlDdllE, C ... des t l lDl llE, C }

The object declaration is the usual one for passive objects and a reference (byte) for
active objects which is an index in a array of all the instances of the class. A pointer to
an object is exactly the same thing (we show here only array declarations, scalar
definitions are easily obtained removing the indices). The declaration for an active class
concern the channels, grouped in a t ypede f , used for implementing the possibly guarded
rendez-vous on synchronizing methods, including the destructor (dest) . We need two
channels (_c, _r) to implement a synchronizing method call which needs to be atomic.
I f the method has no parameter we need to exchange a minimal value, for instance t rue
of type bit. T h e class is represented by array of instances (inst) and an instance number
(ins tnb) which is to be incremented at each object creation.

crea t l lT I [N]II E -- ifactive(E)(T) byte I[N] else creatllTII E I[N]
c r e a t l l T * I [N]II E -- ifactive(E)(T) byte I else e r r o r

241

creat l lac t ive class I {D1...D d M1...M m B}II E =-
typedef I{ creatllMl [I E ... creatllMdll E

chan dest_c[3] = [0] of {bit}
chan dest_r = [0] of {bit} }

I I _ i n s t [N B M A X I N S T]
byte I ins tnb=0

creat l lvo id I (T 1 I1. . .T n In) Kll E -
chan I_c[3] = [0] o f {bit creatlITlll E .., creatl[TnllE}
chan I _ r = [0] of {bit}

The actual active object creation, given here only for arrays, consists in incrementing
the instance number of the class, store it in the instance reference array and finally run
the process that implements the class body (proc) with its instance reference as
parameter. Note that nothing needs to be done for pointers.

transilT I [N]IIE, C -=
i f -~ active(E)(T) e else

i--0
do :: (i<=N-1)

atomic{ class(E)(I ,C) [i]=class(E)(I,C) _ ins tnb
class(E)(I ,C) _ ins tnb++
run class(E)(I ,C) _proc(class(E)(I ,C) [i])}

i++
:: else break

od
transllT * I IN]lIE, C -- E

An active class is implemented as a Promela proc type . It corresponds to a collection of
instances that are distinguished owing to a byte parameter (this). T h e class variables are
declared and run (if active), declarations for each method are done (parameters and
local variables), finally the body of the active class is translated. The code of the class
is achieved with an acceptance of the class destructor, the execution of which ends the
class instance execution. This accep t statement will be executed if the object naturally
reaches its body end. The object can also explicitly accept its destruction, in which case
a jump will be done to an ultimate sk ip statement labelled with end.

t ransl lact ive class I {D1...D d M1...M m B}I[E, C -
p roc type I _ p r o e (b y t e this){

creatl lDl ll E ... creatllDdll E
trans[IDl llE, I ... transllDdl[E, I
transl[Ml llE, I ... translIMmllE, I
transllBllE, I
t rans l laccept - I liE, I

end_I: skip}
t rans l lvoid I(D1...Dn){Dn+I...D m C1...Cc}[[E, C -=

creatlIDl ll E ... creat[IDnl[E creatlIDn+ l [I n ... creaNDmll E

The translation of a body is its block 's which is the declaration of local variables, the
instructions translation and the possible destruction of active objects in reverse order of

242

the creation.The translation of the main is the translation of its block.
transll@ I 0 KIIE, C - transllKIIE, C
transll{D1...D d C1...Cc}IIE, C -=

creatllDl ll E ... creatllDdll E
transllDl llE, C ... transllDdllE, C
transllC l llE, r ... transllCcllE, C
destrllDdllE, C ... destdlDl llE, C

transllvoid main(){K}llE, C - transllKIIE, mm n

We now come to the instructions. The select statement naturally becomes the Promela
i f :: f t . The guarded synchronizations are the most interesting (other ones are obtained
setting the guard to true). By convention, the calls are implemented as an emission on
the first rendez-vous channel associated to the method (_c) and the acceptances are
receptions. For the guard translation, we use the trick mentioned above. The end of the
rendez-vous is implemented by a synchronisation on the second channel (_r). For the
acceptance, the method code is inserted between both rendez-vous. Note the usage of
the environment to retrieve an object 's class and a method's parameters and code. Note
also that an acceptance for the class destructor is closed by a jump to the end label.

transllseleet{B1...Bb}llE, C =_ i f :: transllBl llE, C ... :: transllBbllE, C fi
transllS C1...CclIE, C - transllSIIE, C transllClllE, C ... transllCcllE, C
transllwhen(E o) II->I2(EI...En)IIIE, c -

class(E)(I 1,C) _ ins t [I J . I 2_e[transllEoIIE,c]!true transllEl llE, c ... transllEnllE, c
class(E)(I1,C) _ ins t [I J . I z _ r ? t r u e

transllwhen(E) accept IIIE, c -=
C inst[this].I_e[2-transllEIIE,c]?true params(E)(I ,C)
transllcode(E)(I ,C) lIE, c
C_inst[this]. I _ r : t r u e

transllwhen(E) accept ~IIIE, c ---
C_inst[this].dest_e [2-transl lEI IE, c] ?true
transllcode(E)(~I,C) lIE, C
C_inst[this] .dest_r! t rue
goto end_C

A guarded timeout is translated as the guard itself. A waituntil without guard is just a
skip statement, since our models are only qualitative.

transllwhen(E1) waitunti l(E 2) IIE,c - transllElllE, c
transllwaituntil(E)llE, c - skip

Other instructions translate naturally. For instance if statements and loops. We also give
some optimizations for never ending loops with a select as outmost statement.

transllassert(E)llE, c -- assert(transllEllE,c)
translli fE C 1 else C211E, c --- i f : : transllEIIE, C transllClllE, c ::elsetransllC211E,Cfi
transllfor(C1;E;C 2)BllE, c -

transl lC l l lE, C
do :: transllEIIE, c transllBllE, c transllC211E, C :: else break od

transllfor(;;)sdeet{B1...Bb}llE,c -
do :: transllBl llE, C ... :: transllBbllE, c o d

243

Finally, destruction of active objects are the counterpart of their creation with rendez-
vous on the channels associated to the class destructor.

destrllT I [N]IIE, c --
i f - - , active(E)(T) e else

i=N-1
do :: (i>=0)

class(E)(I,C) jnst[I(i)] .dest_e[true]!true
class(E)(I,C) jnst[I(i)] .dest_r?true

:: rise break
od

destrllT *IIIE, C - e

We finish this section showing the modeling of a simple class with a constructor with
parameters, a method with bidirectional data exchange and an implicit body (Fig. 16).
i. active class C{

2. int n;

3. C(int N) {n=N; }

4. int M(int vl, int &v2){ v2=v2+n*vl; return vl; }

5.};
6. void main() {

7. int j ;

8. j=0;
9. C c(10) ;

i0. c.M(3,j) ;}

FIGURE 16. Constructor with parameters, complete RDV and implicit body

For the method M, notice that the initial value of the reference parameter is sent at the
begining of the call (Fig.17, lines 27 and 12) and received at its end (lines 28 and 14).
1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

#define NBMAXINST 3

byte c;

typedef C{ chan M_c[3] = [0]

chan M_r = [0]

chan dest_c[3] = [0] of

chan dest_r = [0] of

C C_inst[NBMAXINST]

byte C_instnb=0

proctype C_proc(byte this;int N){

byte n; int vl;int v2;

n=N;

do :: C_inst[this].M_c[2-(true)]?true,vl,v2;

v2=v2+n*vl;

C_inst[this].M_r!true,vl,v2;

:: C_inst[~this].dest_c[2-(true)]?true;

C_inst[this].dest_r!true;

goto end;

od;

end_C:skip}

of {bit,int,int}

of {bit,int,int}

{bit}

{bit}]

244

20

21

22

23

24

25

26

27

28

29

30

31

init{int i;

int M_ret;

int j;

atomic {
c = C_instnb;

C_instnb++ ;

run C_proc(c,10)};

j=0;
C_inst[c].M_c[true]!true,3,j;

C_inst[c].M_r?true,M_ret,j;

C_inst[c].dest_c[true]!true;

C_inst[c].dest_r?true;}

FIGURE17. Mode~ngin Prome~

4.2 The readers writers example

We now illustrate the application of our translation semantics on the classical mutual
exclusion example of the readers writers example. Readers and writers processes
attempt to access a critical resource with, for instance, the following rules. As many
readers may read the data at the same time, provided no writer is writing and only one
writer may access the data if no reader is reading. For the implementation of this
example, we declare three classes, SharedData, Reader and Writer, one instance for the
first class and two instances for each of the following grouped in an array. We also need
two counters nbwriters and nbreaders, for the readers and writers for verifying by
assertions, that the rules will hold.
i. int nbwriters;int nbreaders;

2. SharedData shData; Reader reader[2] ; Writer writer[2];

The class SharedData manages the critical resource thanks to four methods, two for
requesting the resource in read or write mode and two for releasing it (we only show
what is related to the reading, what is related to writing is similar).
3. active class SharedData {

int readersCounter; int writersCounter;
void BeginRead() { nbreaders++; }

void EndRead() { nbreaders--; } ...

@SharedData () {

readersCounter=0 ; writersCounter=0 ;

for(;;){

select(

}
}

});

4

5

6

7

8

9

i0.

ii.

12.

13.

14.

15.

16.

17.

18.

19.

accept EndRead; readersCounter--;

when(writersCounter==0)

accept BeginRead;readersCounter++;

when((readersCounter==0)&&

(writersCounter==0))

accept ~SharedData;

The Reader and Writer classes possess a reference on a SharedData object, initialized

245

35.
36.
37.

38.
39.
40.}

with ~ e me~od minit, andrequestthecfiticaldatathroughit, conformingto asimple
and natur~ protocol(we onlyshow ~e Readerclasscode).
20.active class Reader {
21. SharedData *sData;
22 void minit (SharedData *SD) { sData = SD; }
23 @Reader() {
24 accept minit;
25 for (;;) {
26 select{ sData->BeginRead();
27 assert(nbwriters==0);

28 sData->EndRead();
29 I] accept -Reader;
3O }
31 }
32 }
33 };

Finely ~ e m~n function initializes ~ e counters and ~ e active o~ects.
34.void main() {

int p;
nbwriters=0;nbreaders=0;

for (p=0; p<=l; p++){
reader[p]->minit(shData);writer[p]->minit(shData);

}

We give ~ e ~anslafion of some of ~ e interesting part of this program. First, ~ e
decimations of passive and active o~ec~:
i. #define NBMAXINST 3
2. int nbwriters;int nbreaders;
3. byte shData; byte reader[2];byte writer[2];

Then, the channels, instance re~rence array and counter ~ r class SharedDam:
4. typedef SharedData{ chan BeginRead_c[3] = [0] of {bit}
5. chan BeginRead_r = [0] of {bit}

6. chan EndRead_c[3] = [0] of {bit)
7. chan EndRead_r = [0] of {bit)

8

9. chan dest_c[3] = [0] of {bit}
i0. chan dest_r = [0] of {bit} }
ll.SharedData SharedData_inst[NBMAXINST]
12.byte SharedData_instnb=0

The decl~ationsare analogous ~rclass Reader(simil~forWH~,note dam passed
through me~od minit:
13.typedef Reader{ chan minit_c[3] = [0] of {bit,int}
14. chan minit_r = [0] of {bit}

15. chan dest_c[3] = [0] of {bit}
16. chan dest_r = [0] of {bit) }
17.Reader Reader_inst[NBMAXINST]

18.byte Reader_instnb=0

246

For ~ e process implementing SharedDam behaviour, we only show ~ e ~anslation of
acceptance of EndRead, a method wi~ some code and ~ e acceptance of ~ e destructor:
19.proctype SharedData__proc(byte this){

20 int readersCounter;int writersCounter;

21 readersCounter=0;writersCounter=0;

22 do :: SharedData_inst[this].EndRead_c[2-(true)]?true;

23 nbreaders--;

24 SharedData_inst[this].EndRead_r!true;

25 readersCounter--

26 ...

27 :: SharedData_inst[this].dest_c[2-((readersCounter==0)

28 &&(writersCounter==0))]?true;

29 SharedData_inst[this].dest_r!true;

30 goto end_SharedData;

31 od;

32.end_SharedData:skip}

We now show ~ e creation of readers, ~eir inid~izafion wi~ ~ e call to mmit me~od
and they destruction:
33.init{int i; ...

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

60

61

62

63

i=0;

do ::

od;
. . .

(i<=2-i);

atomic {

reader[i] = Reader_instnb;

Reader_instnb++ ;

run Reader_!oroc(reader[i])

i++

else;break

int p;

nbwriters=0;nbreaders=0;

p=0;

do ::

);

(p<=l);

Reader_inst[reader[p]].minit_c[true]!true,shData;

Reader_inst[reader[p]].minit_r?true;

Writer_inst[writer[p]].minit_c[true]!true,shData;

Writer_inst[writer[p]].minit_r?true;
p++

:: else;break

od;

i=2-I;

do :: (i>=0);

Reader_inst[reader[i]].dest_c[true]!true;

Reader_inst[reader[i]].dest_r?true;

i----

:: else;break

od;
. �9 ~

247

4.3 Implementation

The semantics presented above has been implemented in Prolog[1]. Apart from
translating some sC++ code into Promela, the translator generates a correspondence
table that is used for debugging. This table implements a function that relates the line
number of the produced code to the line number of the source code. This table is used
by a modified version of XSPIN[6] (the graphical interface of SPIN). This allows to do
simulations and debugging directly on the sC++ code. When loaded a sC++ program is
translated in two files. A first one contains the Promela code and this is the actual file
that is used to perform the simulation and verification. The second one contains the
table which is used each time a display operation is done in the simulator.

5 Conclusion

This paper presented the key points of the formalization of modeling sC++ programs
into Promela and illustrated it through a simple but complete example.
The approach this formalization supports has several advantages. The language itself is
to some extent more supple that other similar languages, for it unifies the task and object
concept and it possesses symetrical select statements (with acceptances and calls).
Beside using a single language for both implementation and verification, once it is clear
that one focuses on process interactions and works on some abstraction of the problem
under study, the full power of the language is not needed and thus the approach may be
fully automatized. We presented only part of the translation without optimizations, but
the tool could implement a more complete translations with lots of optimizations.
Nevertheless, the produced models are easily readable and tunable if necessary.

If we use the approach in a top-down way, from the beginning we build sC++ programs
that are verifiable and already executable. Of course these programs cannot contain all
the details, they are a kind of abstraction of the final system, otherwise their verification
leads to intractable state explosion. For getting a real system, we only need to add
details to it. Thus, the task of the developer is reduced. Obviously, at a given point the
program gets too complicated and cannot be verified any more with our method because
of state explosion. At this point we can use other tools[I3] developed around sC++ that
rely on random walk techniques[16].

If we use the approach in a bottom-up way, we always need to make an abstraction
effort, but this is partially done by simply deleting lines in the original code, all the
tedious work of representing synchronizations through channels and managing the
various variables is taken in charge by the tool. Also the intricate semantics of objects
death is done automatically, but could be present as an option if objects death is not the
key point of verification.

Naturally, for being really useful in practice on real applications, the tool should take
into account applications scattered in several files, and treat methods defined outside
their classes. This could be included in future extensions of the tool. However, taking
into account more sophisticated data types (usual passive C++ classes) and inheritance
is a bit in contradiction with the scope of this work, mostly focused on interactions
between processes.

248

This approach has been inspired of bottom-up[3] [5] [7]as well as top-down[4] [8] [9] [10]
experiences. It may easily be adapted for other input languages such as Ada, or Java.

6 References

1. N. Begat, R6alisation d'un interface entre sC++ et SPIN, IIE, Evry, France, engi
neer report, in french, 1996.

2. G. Booch, J. Rumbaugh, I. Jacobson The UML User Guide, Add. Wesley, 1998.
3. T. Cattel, Modeling and Verification of a Multiprocessor Realtime OS Kernel,

FORTE'94, Berne, 1994.
4. T. Cattel, Using Concurrency and Formal Methods for the Design of Safe Process

Control. PDSE/ICSE-18 Workshop, Berlin, March 1996
5. J. Daems, Aide h l'engagement de centrales d'alarmes, EPFL engineer report, in

french, 1995
6. G. Duval, R6alisation d'un debugger pour SPIN, report of Ma~trise d'informa-

tique, Universit6 de Besan~on, France, in french, 1994.
7. G. Duval, J. Julliand, Modeling and Verification of the RUBIS Micro-Kernel with

SPIN, Proc. First SPIN Workshop, INRS Quebec, Canada, Oct. 1995.
8. G. Duval, T. Cattel, Specifying and Verifying the Steam Boiler Controler with

SPIN. Springer-Verlag, LNCS vol. 1165, 1996.
9. G. Duval, T. Cattel, From Architecture down to Implementation of Safe Process

Control Applications. HICSS-30 Wailea, Maui, Hawaii, U.S.A. 1997.
10. G. Duval, Specification and Verification of an Object Request Broker, submitted

to ICSE, Kyoto, Japan, 1998.
11. C.A.R. Hoare, Monitors: An Operating System Structuring Concept, Communi-

cations of the ACM, 12(10), October 1974.
12. G.J. Holzmann, The Model Checker SPIN, IEEE Transactions on software engi-

neering, vol. 23, no.5, May 1997.
13. J. Madsen, Validation and Testing of sC++ applications, IEEE conference Engi-

neering of Computer Based Systems, Monterey, California, U.S.A. 1997.
14. C. Petitpierre, sC++, A Language Adapted to Interactive Applications, accepted

for IEEE Computer Journal, March 1998. http://diwww.epfl.ch/w31ti/
15. K. Slonneger, B.L. Kurtz, Formal Syntax and Semantics of Programming Lan-

guages, Addison-Wesley, 1995.
16. C. West, Protocol validation by random state exploration. PSTV, VI, 1987.

