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Abstract  - This paper presents a means to model and verify concurrent applications 
written in sC++. sC++ is an extension of  C++ that adds concurrency to the language 
by unifying the object and task concepts into a single one, the active object. The 
management o f  active objects is the same as the management of  usual C+ + passive 
objects. The difference is that active objects have their own behaviour and that they may 
either accept method calls or call other objects 'methods. They are also capable to await 
simultaneously several non deterministic events including timers expiration. We show 
how to systematically model sC++ programs into Promela, a formal language 
supported by SPIN, a powerful and widely available model-checker. We present a 
classical example o f  a concurrent problem and give details about a tool that 
automatically produces the model from a program, verifies it and allows its debugging. 

1 Introduction 
For representing concurrency in software engineering, all the existing analysis 
methods, including the object oriented paradigm [2] use dataflow diagrams that model 
data exchange between potentially autonomous items. Applications such as protocols, 
process control systems, distributed applications, are concurrent by nature and are 
better modelled and structured if they are modelled with explicit concurrency. The first 
troubles appear at the implementation of such systems because the available 
environments are seldom as clear, simple and powerful as the concepts used during 
analysis. In other words, if concurrency is easily designed with the available analysis 
tools, it is less easily implemented with the available programming support. This is 
without mentioning the overhead due to some solutions, for example Unix processes. 
Concurrent applications development is also more difficult to master and flaw detection 
before real exploitation is highly desirable. This is usually achieved using formal 
methods and abstracting the real system into a mathematical model which is submitted 
to proofs or model-checking. The development process for modeling and verification 
may proceed either in a bottom-up or a top-down fashion. In the bottom-up way, the 
verification phase is done a posteriori. The system is already built and one extracts a 
model that is submitted to verification[3][7]. If a bug is found, it needs to be fixed and 
the implementation to be modified. In the top-down approach, the verification is done 
a priori. The model is elaborated and verified before the implementation. This reduces 
the impact of possible bugs in the development cycle. These two approaches may 
combine with refinement techniques, but they usually rely on different formalism: one 
for the model and one for the implementation, the gap between both being often large. 
Between these two extremes, one can imagine having the same language for modeling 
and implementation, the modeling language being strictly included into the 
implementation language. This would simplify the developers work and require 
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reduced skills. This supposes that one either creates a special instance of the verification 
tool for the language used or that bridges with existing tools are built, thus hiding the 
modeling language. This is the approach that will be presented in this paper. We use 
sC++, a minimal concurrent extension of C++ [14] as modeling and implementation 
language, and SPIN as verification tool. We show how to systematically translate a 
sC++ program into Promela (SPIN's language) and how to directly perform the 
verification and debugging onto the initial sC++ program using an adapted version of 
SPIN. We illustrate the approach with the readers and writers problem. 

2 sC++ 

2. 

3. 
4. 

5. 
6. 
7. 
8.}; 

sC++ is an extension of C++ that provides the possibility to develop executable 
concurrent programs and distributed applications. It is supported by a set of 
development tools, including a compiler, which is an extension of gcc, code generators, 
and debuggers. It also exists an implementation in sC++ of an Object Request Broker 
that allows for developing distributed applications compliant with Corba [14]. 
Regarding the language itself, it is fairly simple for a programmer already knowing 
C++, since it possesses only few extra keywords with special semantics, sC++ adds 
concurrency to the language by unifying the object and task concepts into a single one, 
the active object. Fig. 1 shows an example of active class declaration: 
I. active class C{ 

private: void ml() {} 
�9 C() {... } 

public: C(){...} 

-C()(...} 
T1 rdvl(T2 t2, T3 &t3) {...} 
void rdv2() {} 

FIGURE 1. Active class declaration 

The only syntactic differences with an usual C++ passive object are the extra keyword 
active and the optional method prefixed with @. 
The instances of an active class are active objects, whose public methods, when called 
by other objects, have a special semantics. A call from an object to another active 
object's method defines a synchronization and a possibly bidirectional data exchange 
between both objects. It is a rendez-vous in the sense that the caller is blocked if the 
callee is not ready to accept the call and the callee is blocked if it is ready to accept the 
call but no call has been initiated. Besides, the rendez-vous is characterized by the 
atomic execution of the method called, during which bidirectional data exchange may 
occur thanks to the usual return value and parameters passed by value or reference. 
If a method has no parameter and no code, it only has a synchronizing role. As a 
consequence of atomicity, the synchronizing methods of an active object are always 
executed in mutual exclusion. The private methods or the public ones called by the 
object itself have exactly the same semantics as for passive objects. 
The optional private method (called the body) prefixed with @ has the same name as 
the class and cannot be called. It defines the behaviour of the active object and allows 
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an object to accept calls for its methods or to call other objects'methods. For instance 
the body of Fig.2 contains an infinite loop during which the object successively accepts 
calls for its methods rdvl, calls method m of object o and accepts calls for rdv2. Note 
for instance that when the object tries to call object o's method m, it will block until the 
rendez-vous is possible; notice also that possible calls from outside to rdvl and rdv2 
will be differed until the body accepts them: 
i. ~C(){ for(;;) { accept rdvl; o->m(); accept rdv2; } }; 

FIGURE 2. An active object's behaviour 

Constructors are non-synchronizing public methods, executed before the body is 
created, but destructors are considered as any other public synchronizing methods. In 
particular destructors may be explicitly accepted by the object, which is useful for 
controlling the object's death. 
When no body is defined for an active object, an implicit one is defined that accepts 
calls at any time for all its public methods including the destructor. In other words, an 
active object without a body behaves as a Hoare monitor [11]. 
The management of active objects is the same as the management of usual C++ passive 
objects. They may either be declared directly or through the use of pointers and the new 
statement. They may be destructed explicitly with the delete statement or implicitly 
when the block in which they are contained is exited (Fig.3). They naturally are ready 
to die (they accept their destructor) if their body finishes. 
2. { C cl; C* c2=mew C; 

3. cl.rdv2 () ; c2->rdv2 () ; 

4. delete c2; }/* cl is implicitly destructed */ 

FIGURE 3. A block with active objects creation and destruction 

Here we need to say something about scheduling. Conceptually, scheduling should be 
very unconstrained and be as if every active object had its own processor. The code of 
the synchronizing method should be atomically executed only during a rendez-vous, 
and the control given back to both the caller and the callee. Also, an active object should 
be thought as running as soon as it is created. In the current mono-processor 
implementation of the language, after a rendez-vous, the caller gets the processor and 
only after synchronizations does the control change of active object. This means that an 
object looping on some pure computations monopolizes the processor, but it is easy to 
have instead a pre-emptive scheduling based on time sharing. In practice this has a 
consequence for application startup. If one wants that the application objects begin to 
execute only when they are all created, one needs either to add special synchronizations 
for startup or manage that the main creates all the objects before attempting any possible 
synchronization with some of them, otherwise the control could possibly be transferred 
to the already created objects; this is done anyhow but only when the main finishes. One 
also has to be careful of possible situations of deadlocks. 

Objects may explicitly suspend their execution until a given date with the statement 
waituntil. When the execution of an object reaches such a statement, its execution is 
suspended at least until the date mentioned as parameter. The function now() provides 
the current time (Fig.4). 
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i. const int DELAY=...;...; 
2. waituntil (now() +DELAY) ; 

FIGURE 4. Timeout statement 

Active objects are also capable to await simultaneously several non deterministic events 
including timer expirations. Instead of  serializing the calls to its methods, as it appeared 
on Fig.2, the active object can accept them nondeterministically and at the same time it 
can attempt to call some other object or execute a timeout with the waituntil statement. 
This is achieved thanks to the select statement (Fig.5). 
i. select{ accept rdvl;...; 

2. [I o->m() ;...; 
3. I I accept rdv2;...; 
4. I I waituntil (now() +DELAY) ; . . . ; 

5. } 

FIGURE 5. Simultaneous events awaiting 

Conceptually, the occurrence order of the branches inside the select is not meaningful, 
but in the current implementation, the f'trst enabled branch of the select is the one to be 
executed. Once more, it is easy to change this and execute nondeterninistically a branch 
among the enabled ones. Each branch of a select must begin with an event, namely a 
synchronizing method call or acceptance or a waituntil statement. These events may be 
conditioned by a boolean expression, called a guard, using the when statement as in the 
following example (Fig.6): 
i. select{ when(el) accept rdvl;...; 
2. [[ when(C2) o->m();...; 
3. ] I when(C3) waituntil(now()+DELAY) ;...; 
4. } 

FIGURE 6. Guarded ~nchro-lzations 

Inheritance may be defined between active classes but we do not detail this point here, 
see [14]. We conclude with a very simple but complete example that illustrates some 
aspects of the language. It is a system of three processes accessing a critical section 
protected by a two entries semaphore. 
i. #include <scxx.h> 

active class Semaphore{ 
int n; 
@Semaphore ( ) { 

for(;;){ select{ when(n>0) accept P; 

2 
3 
4 
5 
6 
7 

8 
9 
i0. 
ii. 
12. 

13. 

} 
} 

public : 

14.}; 

II accept V; 
} 

Semaphore (int N) {n=N; } 
void P() {n--;} 
void V() {n++;} 
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15.active class User{ 
16. Semaphore *s; 
17. int pid; 
18. @User(){ 
19. public: 
20. User(int 
21.}; 
22.main(){ 

for(;;){s->P(); /* critical section */ s->V(); 

i,Semaphore *sem){pid=i;s=sem; } 

) ) 

23. Semaphore s(2);User ul(l,&s);User u2(2,&s);User u3(3,&s);} 

FIGURE 7. Mutual exclusion with a semaphore in sC++ 

3 PromelaJSPIN 

SPIN [12] is a powerful verification system that supports the design, verification and 
debugging of asynchronous process systems. SPIN focuses on proving correctness of 
process interactions that can be modelled in Promela, the language of SPIN, with 
rendez-vous primitives, asynchronous message passing through buffered channels and 
shared variables. Systems specification may be expressed thanks to boolean assertions 
or linear temporal logic (LTL) formulae. The model-checker may address real-sized 
problems of several millions states, thanks to several optimizations of depth-first 
search; first, memory management techniques based on state compression and bit-state- 
hashing, second, partial order reductions. When errors are found, traces are produced 
that are used to guide a graphical debugger, quite useful to identify the flaws. 
Fig.9 shows problem of Fig.7, modelled in Promela. Active objects are declared with 
the proctype clause and may have parameters (Fig.9 lines 4,12). They are instantiated 
with the run statement (line 17). We have modelled the synchronizing methods P and 
V with synchronous channels (lines 1-2). For the moment forget that P is an array of 
three channels. Since no data is exchanged during the synchronization, these channels 
should convey no value, but one value at least is required, so we exchange a bit that 
represent the synchronization event. The nondeterministic choice and the loop around 
is done with the do :: od construct. Each branch corresponds to a select's branch of the 
sC++ code, which is limited to the rendez-vous on P and V. The rendez-vous are atomic 
(lines 5 and 8) and are composed of the related synchronisation (lines 6 and 9) and 
method code execution (lines 7 and 10). By convention, we code a call by an emission 
on the related channel and an acceptance by a reception. We now have to explain why 
P is an array. In the sC++ program of Fig.7, the execution of method P of object 
Semaphore is guarded by the condition (n>O). Unfortunately, there exists no dedicated 
construct in Promela for modeling guards - even the atomic statement cannot solve the 
problem without introducing extra deadlocks - but this can be done using a trick. The 
boolean type and associated constants exist but as in C, they are related to the integer 
type. In other words, true is 1, and false is 0. 
i. chan R[3] = [0] of {...}; 
2. sender: R[condl] !msg;... 
3. receiver: R[2-(cond2) ]?msg;... 

FIGURE 8. Guarded Rendez-vous 
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For modeling a guarded rendez-vous R (Fig.8), we declare two dummy channels R[O] 
and R[2] that are used to deflect handshake attempts that should fail. The handshake 
can only successfully complete on R[1] if both condl at the sender side and cond2 at 
the receiver side hold. 
On our example, only the reception, i.e. the accept in the sC++ program, is guarded 
(Fig.9, line 6), the emission being guarded by true (line 13). 
The global variable in CS (lines 3, 14) is used for the verification of the assertion 
(line 14) that at most N (here 2) users may have the critical section at the same time, if 
the semaphore was initialized with N. 
1 chan P[3] = [0] of {bit}; 

2 chan V = [0] of {bit}; 

3 int in_CS=O; 

4 proctype Semaphore(int n){ 

5 do :: atomic{ 

6 P[2- (n>O) ] ?true; 

7 n-- } 

8 : : atomic{ 

9 V? true; 

i0. n++} 

Ii. od } 

12.proctype User(int pid) { 

13. do : : P[true] !true; 

14. in_CS++; assert(in_CS <= 2); in_CS--; 

15. V! true 

16. od } 
17.init{ run Semaphore(2); run User(l);run User(2);run User(3) } 

FIGURE 9. Mutual exclusion with a semaphore in SPIN 

4 M o d e l i n g  o f  s C + +  A p p l i c a t i o n s  

We now show how to model sC++ programs in Promela in a systematic way. Obviously 
we cannot treat sC++ in its totality, this would suppose treating also all C++, which 
would be very heavy and certainly lead to inefficient models thus making verification 
of any kind impracticable because of state explosion. We are first interested in checking 
somewhat abstract designs and thus we do not need all the power of C++. In particular 
we only consider active classes. Passive classes, inheritance and generics are only 
structuring facilities that are not essential for our purpose. We also only consider basic 
types, such as integers and arrays but no structure, no type definition and no pointer, 
excepts pointers of active objects that are necessary to pass references between active 
objects for them to communicate. Some instructions are necessary (for, ij'), if they are 
not (while, switch, goto) we drop them. We also forget compilation directives and 
suppose that all the methods are defined inside the class. For similar reasons, we only 
take into account the useful subset of Promela. Besides syntactic limitations evoked 
above, we still restrict the scope of our translation to the salient points. In particular we 
only consider direct object creation and thus forget the new and delete statements. We 
consider only explicit bodies but implicit constructors and destructors for active classes. 
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For synchronizations, we only treat methods with no returned type and no reference 
parameters. Nevertheless we'l l  treat an explicit constructor with parameters, an implicit 
body and a complete rendez-vous with bidirectional data exchange on an example. 

We formalize the systematic modeling of  the considered subset of  sC++ in Promela, 
following the usual practice of  defining a denotational semantics[ 15]. This semantics is 
defined thanks to a set of  semantic functions from abstract syntactic constructions of  the 
source language sC++ to semantics values that are in fact abstract syntactic 
constructions of  the target language Promela. As parameter and result of  the semantic 
functions we also sometimes need particular structures, called environments, that 
memorize the context of  evaluation of  a particular construction. 

Fig. 10 shows the abstract syntactic domains of  sC++ with abstract syntactic variables 
in font c o u r i e r  that are to be used below for the semantics definition. Fig. 11 shows 
sC++ related production rules, with an usual BNF syntax. The keywords of  the 
language are in bold, ::= is the derivation symbol, I is the alternative, + and * when used 
as exponents means one, resp. zero, or more repetitions, the square brackets indicate 
optional constructions, the parenthesizes factorisation and e the empty string. 

p e Program s x �9 Main s H �9 Branch s I �9 Identifier s 
D �9 Declaration s K �9 Block s S �9 Synchro s N �9 Natural s 
A ~ ActiveClass s B ~ Body s ~ ~ Expression s 
M ~ Method s C �9 Command s T ~ Type s 

FIGURE 10. sC++ abstract syntactic domains 
�9 * . �9 . 

Program s ::= Declarataon s AcUveClass s Main s 
Declaration s ::= Type s [*]Identifiers[[Naturals]] 

�9 �9 . * * 

ActiveClass s ::= active class Identifier s {Declaranon s Method s Body s } 
�9 . . g *  

Method s ::= [Type s] [~] Identafier s ( (Types Identafiers) ) Blocks 
Main s ::= [void] main() Blocks 
Block s ::= {Declaratmn s Commands + } 
Bodys ::= @ Identifiers 0 Blocks 
Command s ::= Identifier s = Expression s I Identifiers++ I Identifiers-- I 

if Expression s Commands + I if Expression s Commands + else Commands + I 
for (Command s ; Expression s ; Command s) Block s I 
return Expression s I assert  Expression s I pr lnf f  String s I 
select{ Branchs + } I Synchro s 

Branch s ::= [when(Expressions)] Synchro s Commands* 
Synchro s ::= accept  Identifier s I Identifier s -> Identifiers(Expression s ) I 

waituntil(Expression s) 
Type s :: = int I void I Identifier s 
Expression s ::= ... 

FIGURE 11. sC++ abstract production rules 

Programp Initp Typep Naturalp 
Declarationp Blockp Expressionp Stringp 
Proctypep Commandp Identifierp 

FIGURE 12. Promela abstract syntactic domains 
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Programp ::= Typedef* Declarationp* Proctypep* Initp 
Typedef ::= #define Identifierp Expressionp I typedef Identifierp {Declarationp +} 
Declarationp ::= Typep Identifierp[[Naturalp]] [= Expressionp] I 

chan Identifierp[[Naturalp.]] = [Naturalp] of  {Typep + } 
Proctypep ::= proctype Identlfierp ( (Typep Identlfierp) ) Blockp 
Initp ::= inlt Blockp 
Blockp ::= { Declarationp* Commandp + } 
Commandp ::= Identifierp: Commandp I 

Identifierp = Expressionp I Identifierp++ I Identifierp-- I 
gotoldentifierp I if(::Commandp)+fi I do (::Commandp)+od I 
Expressionp ! Expressionp + I Expressionp ? Identifierp + I 
assert Expressionp I prinffStringp I skip I break I 
atomic{ Commandp +} I run Expressionp(Expressionp*) 

Typep :: = byte I i n t l  bit I Identifierp 
Expressionp ::= ... 
FIGURE 13. Promela abstract production rules 

The result of semantic functions are on the one hand values of Promela abstract 
syntactic domains (Fig. 12-13) and values of semantic domains, called environments 
(Fig.14) defined as abstract data types with the usual manipulations operations 
(application, projections,...) that are not detailed here. 
The environment is composed of four structures. Active, given a type name indicates if 
it corresponds to an active class or not. Class, given an object identifier and the 
identifier of the class in which the object is declared gives the object's class name. 
Param gives for a given method of a given class, the list (possibly empty) of the 
parameter identifiers and eventually, Code gives the executable code of such a method 
(the instructions but not the possible declarations). 

Environment = Active x Class x Params x Code 
active, class, params, code: projections 0: application 

Active = Type s ~Boolean 
Class = Identifier s x Identifier s ~ Identifier s 
Params = Identifier s x Identifier s ~ Identifiers* 
Code = Identifier s x Identifier s ~ Commands* 

FIGURE 14. Semantic domains 

The semantic function model (Fig. 15) defines the modeling of a sC++ program into 
Promela. It is defined thanks to auxiliary functions. The function build builds the 
environment of a sC++ program. The function creat creates preliminary definitions for 
objects; for passive objects it is their declaration, for active objects it is in particular the 
structures used for synchronizations. The function trans is the core of the translation, it 
does the actual creation of active objects and translate the instructions. The function 
destr generates the instructions that calls the active object destruction, which is implicit 
each time a block is finished for the active objects created directly (without new) in the 
block. These functions have a sC++ program fragment as parameter and possibly the 
program environment and the identifier of the class inside which the code is currently 
analysed. We use the traditional special brackets II II in denotational definitions 
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(introduced by the special equal - ) to separate the syntactic and the semantic worlds. 

For instance, transllPllE, c =- ... represents trans(P,E,C) -= ... 

m o d e l  : Program s --,Programp 
b u i l d  : Program s ~Environment 
c r e a t  : Program s x Environment ~ Programp 
t r a n s , d e s t r  : Program s x Environment x Identifier s ~ Programp 

FIGURE 15. Semantic functions 

4.1 Semantics 

For simplicity, we also consider that methods have different names in all the classes of 
the program and that method parameters and local variables have different names inside 
a given class. Also, local method parameters cannot be active objects. Our semantics is 
easily extended to take into account these restrictions and some optimizations such as 
rendez-vous with no data exchange, but this implies make the presentation heavier, in 
particular by the introduction of extra structures. We also omit the definition of bu i ld  
and the semantics of expressions or things that are rather <~stable~ under the translation. 

Semantic equations 
First a program is modelled in its environment. In order to have bounded dynamic 
object creation to keep the space finite and tractable, for each class we will have a 
maximum instance number. First are declared the possible global objects and the 
structures necessary for the active classes. Then the active classes are translated. Finally 
the main program is translated but preceded by the actual active object creations and 
followed by their destruction in reverse order. 

modell lPll  =- transllPllE, prog where E=buildllpl l  and buildllpll =- ... 

transllD1...D d A1...A a XIIE, c _-- 
#derme NBMAXINST 8 
creat l lDl  ll E ... creatllDdll E c rea t l lA l  ll E ... creatllAall E 

t rans l lA l  llE, C ... transllAallE, C 
init{ int i 

t rans l lDl  llE, C ... transllDdllE, C 
transllXllE, C 

desttdlDdllE, C ... des t l lDl  llE, C } 

The object declaration is the usual one for passive objects and a reference (byte) for 
active objects which is an index in a array of all the instances of the class. A pointer to 
an object is exactly the same thing (we show here only array declarations, scalar 
definitions are easily obtained removing the indices). The declaration for an active class 
concern the channels, grouped in a t ypede f ,  used for implementing the possibly guarded 
rendez-vous on synchronizing methods, including the destructor (dest) .  We need two 
channels (_c, _r) to implement a synchronizing method call which needs to be atomic. 
I f  the method has no parameter we need to exchange a minimal value, for instance t rue  
of type bit.  T h e  class is represented by array of instances ( inst)  and an instance number 
( ins tnb)  which is to be incremented at each object creation. 

crea t l lT  I [N]II E -- ifactive(E)(T) byte I[N] else creatllTII E I[N] 
c r e a t l l T * I  [N]II E -- ifactive(E)(T) byte I else e r r o r  
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creat l lac t ive  class I {D1...D d M1...M m B}II E =- 
typedef  I{  creatllMl [I E ... creatllMdll E 

chan dest_c[3] = [0] of  {bit} 
chan dest_r  = [0] of  {bit} } 

I I _ i n s t [ N B M A X I N S T ]  
byte I ins tnb=0 

creat l lvo id  I (T 1 I1. . .T n In )  Kll E - 
chan  I_c[3]  = [0] o f  {bit creatlITlll E .., creatl[TnllE} 
chan I _ r  = [0] of  {bit} 

The actual active object creation, given here only for arrays, consists in incrementing 
the instance number of  the class, store it in the instance reference array and finally run 
the process that implements the class body (proc)  with its instance reference as 
parameter. Note that nothing needs to be done for pointers. 

transilT I [N]IIE, C -= 
i f -~ active(E)(T) e else 

i--0 
do :: (i<=N-1) 

atomic{ class(E)(I ,C ) [i]=class(E)(I,C ) _ ins tnb 
class(E)(I ,C ) _ ins tnb++ 
run class(E)(I ,C) _proc(class(E)(I ,C)  [i])} 

i++ 
:: else break 

od 
transllT * I  IN]lIE, C -- E 

An active class is implemented as a Promela proc type .  It corresponds to a collection of 
instances that are distinguished owing to a byte parameter (this). T h e  class variables are 
declared and run (if active), declarations for each method are done (parameters and 
local variables), finally the body of  the active class is translated. The code of the class 
is achieved with an acceptance of the class destructor, the execution of which ends the 
class instance execution. This accep t  statement will be executed if the object naturally 
reaches its body end. The object can also explicitly accept its destruction, in which case 
a jump will be done to an ultimate sk ip  statement labelled with end.  

t ransl lact ive  class I {D1...D d M1...M m B}I[E, C - 
p roc type  I _ p r o e ( b y t e  this){ 

creatl lDl ll E ... creatllDdll E 
trans[IDl llE, I ... transllDdl[E, I 
transl[Ml llE, I ... translIMmllE, I 
transllBllE, I 
t rans l laccept  - I liE, I 

end_I: skip} 
t rans l lvoid  I(D1...Dn){Dn+I...D m C1...Cc}[[E, C -= 

creatlIDl ll E ... creat[IDnl[ E creatlIDn+ l [I n ... creaNDmll E 

The translation of a body is its block 's  which is the declaration of local variables, the 
instructions translation and the possible destruction of active objects in reverse order of  
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the creation.The translation of  the main is the translation of its block. 
transll@ I 0  KIIE, C - transllKIIE, C 
transll{D1...D d C1...Cc}IIE, C -= 

creatllDl ll E ... creatllDdll E 
transllDl llE, C ... transllDdllE, C 
transllC l llE, r ... transllCcllE, C 
destrllDdllE, C ... destdlDl llE, C 

transllvoid main(){K}llE, C - transllKIIE, mm n 

We now come to the instructions. The select statement naturally becomes the Promela 
i f  :: f t .  The guarded synchronizations are the most interesting (other ones are obtained 
setting the guard to true). By convention, the calls are implemented as an emission on 
the first rendez-vous channel associated to the method (_c) and the acceptances are 
receptions. For the guard translation, we use the trick mentioned above. The end of  the 
rendez-vous is implemented by a synchronisation on the second channel (_r). For the 
acceptance, the method code is inserted between both rendez-vous. Note the usage of 
the environment to retrieve an object 's  class and a method's  parameters and code. Note 
also that an acceptance for the class destructor is closed by a jump to the end label. 

transllseleet{B1...Bb}llE, C =_ i f  :: transllBl llE, C ... :: transllBbllE, C fi 
transllS C1...CclIE, C - transllSIIE, C transllClllE, C ... transllCcllE, C 
transllwhen(E o) II->I2(EI...En)IIIE, c - 

class(E)(I  1,C) _ ins t [ I  J . I  2_e[ transllEoIIE,c]!true transllEl llE, c ... transllEnllE, c 
class(E)(I1,C) _ ins t [ I  J . I z _ r ? t r u e  

transllwhen(E) accept  IIIE, c -= 
C inst[this].I_e[2-transllEIIE,c]?true params(E)(I ,C)  
transllcode(E)(I ,C) lIE, c 
C_inst[this].  I _ r : t r u e  

transllwhen(E) accept  ~IIIE, c --- 
C_inst[ this  ].dest_e [ 2-transl lEI IE, c] ?true 
transllcode(E)(~I,C) lIE, C 
C_inst[ this] .dest_r! t rue 
goto end_C 

A guarded timeout is translated as the guard itself. A waituntil  without guard is just a 
skip statement, since our models are only qualitative. 

transllwhen(E1) waitunti l(E 2) IIE,c - transllElllE, c 
transllwaituntil(E)llE, c - skip 

Other instructions translate naturally. For instance if statements and loops. We also give 
some optimizations for never ending loops with a select as outmost statement. 

transllassert(E)llE, c -- assert(transllEllE,c) 
translli fE C 1 else C211E, c --- i f : :  transllEIIE, C transllClllE, c ::elsetransllC211E,Cfi 
transllfor(C1;E;C 2)BllE, c - 

transl lC l l lE, C 
do :: transllEIIE, c transllBllE, c transllC211E, C :: else break od 

transllfor(;;)sdeet{B1...Bb}llE,c - 
do :: transllBl llE, C ... :: transllBbllE, c o d  
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Finally, destruction of active objects are the counterpart of  their creation with rendez- 
vous on the channels associated to the class destructor. 

destrllT I [N]IIE, c -- 
i f - - ,  active(E)(T) e else 

i=N-1 
do :: (i>=0) 

class(E)(I,C) jnst[I( i ) ] .dest_e[true]!true 
class(E)(I,C) jnst[I( i ) ] .dest_r?true 

:: rise break 
od 

destrllT *IIIE, C - e 

We finish this section showing the modeling of  a simple class with a constructor with 
parameters, a method with bidirectional data exchange and an implicit body (Fig. 16). 
i. active class C{ 

2. int n; 

3. C(int N) {n=N; } 

4. int M(int vl, int &v2){ v2=v2+n*vl; return vl; } 

5.}; 
6. void main() { 

7. int j ; 

8. j=0; 
9. C c(10) ; 

i0. c.M(3,j) ;} 

FIGURE 16. Constructor with parameters, complete RDV and implicit body 

For the method M, notice that the initial value of the reference parameter is sent at the 
begining of the call (Fig.17, lines 27 and 12) and received at its end (lines 28 and 14). 
1 

2 

3 

4 

5 

6 

7 

8 

9 

i0 

ii 

12 

13 

14 

15 

16 

17 

18 

19 

#define NBMAXINST 3 

byte c; 

typedef C{ chan M_c[3] = [0] 

chan M_r = [0] 

chan dest_c[3] = [0] of 

chan dest_r = [0] of 

C C_inst[NBMAXINST] 

byte C_instnb=0 

proctype C_proc(byte this;int N){ 

byte n; int vl;int v2; 

n=N; 

do :: C_inst[this].M_c[2-(true)]?true,vl,v2; 

v2=v2+n*vl; 

C_inst[this].M_r!true,vl,v2; 

:: C_inst[~this].dest_c[2-(true)]?true; 

C_inst[this].dest_r!true; 

goto end; 

od; 

end_C:skip} 

of {bit,int,int} 

of {bit,int,int} 

{bit} 

{bit} ] 
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20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

init{int i; 

int M_ret; 

int j; 

atomic { 
c = C_instnb; 

C_instnb++ ; 

run C_proc(c,10)}; 

j=0; 
C_inst[c].M_c[true]!true,3,j; 

C_inst[c].M_r?true,M_ret,j; 

C_inst[c].dest_c[true]!true; 

C_inst[c].dest_r?true;} 

FIGURE17. Mode~ngin Prome~ 

4.2 The readers writers example 

We now illustrate the application of our translation semantics on the classical mutual 
exclusion example of the readers writers example. Readers and writers processes 
attempt to access a critical resource with, for instance, the following rules. As many 
readers may read the data at the same time, provided no writer is writing and only one 
writer may access the data if no reader is reading. For the implementation of this 
example, we declare three classes, SharedData, Reader and Writer, one instance for the 
first class and two instances for each of the following grouped in an array. We also need 
two counters nbwriters and nbreaders, for the readers and writers for verifying by 
assertions, that the rules will hold. 
i. int nbwriters;int nbreaders; 

2. SharedData shData; Reader reader[2] ; Writer writer[2]; 

The class SharedData manages the critical resource thanks to four methods, two for 
requesting the resource in read or write mode and two for releasing it (we only show 
what is related to the reading, what is related to writing is similar). 
3. active class SharedData { 

int readersCounter; int writersCounter; 
void BeginRead() { nbreaders++; } 

void EndRead() { nbreaders--; } ... 

@SharedData () { 

readersCounter=0 ; writersCounter=0 ; 

for(;;){ 

select( 

} 
} 

}); 

4 

5 

6 

7 

8 

9 

i0. 

ii. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

accept EndRead; readersCounter--; 

when(writersCounter==0) 

accept BeginRead;readersCounter++; 

when((readersCounter==0)&& 

(writersCounter==0)) 

accept ~SharedData; 

The Reader and Writer classes possess a reference on a SharedData object, initialized 
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35. 
36. 
37. 

38. 
39. 
40.} 

with ~ e  me~od minit, andrequestthecfiticaldatathroughit, conformingto asimple 
and natur~ protocol(we onlyshow ~e  Readerclasscode). 
20.active class Reader { 
21. SharedData *sData; 
22 void minit (SharedData *SD) { sData = SD; } 
23 @Reader() { 
24 accept minit; 
25 for (;;) { 
26 select{ sData->BeginRead(); 
27 assert(nbwriters==0); 

28 sData->EndRead(); 
29 I] accept -Reader; 
3O } 
31 } 
32 } 
33 }; 

Finely ~ e  m~n function initializes ~ e  counters and ~ e  active o~ects. 
34.void main() { 

int p; 
nbwriters=0;nbreaders=0; 

for (p=0; p<=l; p++){ 
reader[p]->minit(shData);writer[p]->minit(shData); 

} 

We give ~ e  ~anslafion of some of ~ e  interesting part of this program. First, ~ e  
decimations of passive and active o~ec~:  
i. #define NBMAXINST 3 
2. int nbwriters;int nbreaders; 
3. byte shData; byte reader[2];byte writer[2]; 

Then, the channels, instance re~rence array and counter ~ r  class SharedDam: 
4. typedef SharedData{ chan BeginRead_c[3] = [0] of {bit} 
5. chan BeginRead_r = [0] of {bit} 

6. chan EndRead_c[3] = [0] of {bit) 
7. chan EndRead_r = [0] of {bit) 

8 . . . .  

9. chan dest_c[3] = [0] of {bit} 
i0. chan dest_r = [0] of {bit} } 
ll.SharedData SharedData_inst[NBMAXINST] 
12.byte SharedData_instnb=0 

The decl~ationsare analogous ~rclass Reader(simil~forWH~,note dam passed 
through me~od minit: 
13.typedef Reader{ chan minit_c[3] = [0] of {bit,int} 
14. chan minit_r = [0] of {bit} 

15. chan dest_c[3] = [0] of {bit} 
16. chan dest_r = [0] of {bit) } 
17.Reader Reader_inst[NBMAXINST] 

18.byte Reader_instnb=0 
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For ~ e  process implementing SharedDam behaviour, we only show ~ e  ~anslation of 
acceptance of EndRead, a method wi~  some code and ~ e  acceptance of ~ e  destructor: 
19.proctype SharedData__proc(byte this){ 

20 int readersCounter;int writersCounter; 

21 readersCounter=0;writersCounter=0; 

22 do :: SharedData_inst[this].EndRead_c[2-(true)]?true; 

23 nbreaders--; 

24 SharedData_inst[this].EndRead_r!true; 

25 readersCounter-- 

26 ... 

27 :: SharedData_inst[this].dest_c[2-((readersCounter==0) 

28 &&(writersCounter==0))]?true; 

29 SharedData_inst[this].dest_r!true; 

30 goto end_SharedData; 

31 od; 

32.end_SharedData:skip} 

We now show ~ e  creation of readers, ~eir  inid~izafion wi~  ~ e  call to mmit me~od  
and they destruction: 
33.init{int i; ... 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

5O 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

i=0; 

do :: 

od; 
. . . 

(i<=2-i); 

atomic { 

reader[i] = Reader_instnb; 

Reader_instnb++ ; 

run Reader_!oroc(reader[i]) 

i++ 

else;break 

int p; 

nbwriters=0;nbreaders=0; 

p=0; 

do :: 

); 

(p<=l); 

Reader_inst[reader[p]].minit_c[true]!true,shData; 

Reader_inst[reader[p]].minit_r?true; 

Writer_inst[writer[p]].minit_c[true]!true,shData; 

Writer_inst[writer[p]].minit_r?true; 
p++ 

:: else;break 

od; 

i=2-I; 

do :: (i>=0); 

Reader_inst[reader[i]].dest_c[true]!true; 

Reader_inst[reader[i]].dest_r?true; 

i---- 

:: else;break 

od; 
. �9 ~ 
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4.3 Implementation 

The semantics presented above has been implemented in Prolog[1]. Apart from 
translating some sC++ code into Promela, the translator generates a correspondence 
table that is used for debugging. This table implements a function that relates the line 
number of the produced code to the line number of the source code. This table is used 
by a modified version of XSPIN[6] (the graphical interface of SPIN). This allows to do 
simulations and debugging directly on the sC++ code. When loaded a sC++ program is 
translated in two files. A first one contains the Promela code and this is the actual file 
that is used to perform the simulation and verification. The second one contains the 
table which is used each time a display operation is done in the simulator. 

5 Conclusion 

This paper presented the key points of the formalization of modeling sC++ programs 
into Promela and illustrated it through a simple but complete example. 
The approach this formalization supports has several advantages. The language itself is 
to some extent more supple that other similar languages, for it unifies the task and object 
concept and it possesses symetrical select statements (with acceptances and calls). 
Beside using a single language for both implementation and verification, once it is clear 
that one focuses on process interactions and works on some abstraction of the problem 
under study, the full power of the language is not needed and thus the approach may be 
fully automatized. We presented only part of the translation without optimizations, but 
the tool could implement a more complete translations with lots of optimizations. 
Nevertheless, the produced models are easily readable and tunable if necessary. 

If we use the approach in a top-down way, from the beginning we build sC++ programs 
that are verifiable and already executable. Of course these programs cannot contain all 
the details, they are a kind of abstraction of the final system, otherwise their verification 
leads to intractable state explosion. For getting a real system, we only need to add 
details to it. Thus, the task of the developer is reduced. Obviously, at a given point the 
program gets too complicated and cannot be verified any more with our method because 
of state explosion. At this point we can use other tools[I3] developed around sC++ that 
rely on random walk techniques[16]. 

If we use the approach in a bottom-up way, we always need to make an abstraction 
effort, but this is partially done by simply deleting lines in the original code, all the 
tedious work of representing synchronizations through channels and managing the 
various variables is taken in charge by the tool. Also the intricate semantics of objects 
death is done automatically, but could be present as an option if objects death is not the 
key point of verification. 

Naturally, for being really useful in practice on real applications, the tool should take 
into account applications scattered in several files, and treat methods defined outside 
their classes. This could be included in future extensions of the tool. However, taking 
into account more sophisticated data types (usual passive C++ classes) and inheritance 
is a bit in contradiction with the scope of this work, mostly focused on interactions 
between processes. 
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This approach has been inspired of bottom-up[3] [5] [7]as well as top-down[4] [8] [9] [ 10] 
experiences. It may easily be adapted for other input languages such as Ada, or Java. 
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