
Exploiting Symmetry in Linear Time Temporal Logic
Model Checking: One Step Beyond

K. Ajami* S. Haddad** J-M. Ilir*

* LIP6 - CNRS ERS 587
Univ. Pierre & Made Curie,

Tour 65-66, Bureau 204,
4, place Jussieu,

75252 Paris Cedex 05

** LAMSADE - CNRS URA 825
Univ. Pads Dauphine

P1. du Marrchal De Lattre de Tassigny,
75775 Paris

e.mail: Khalil.Aj ami @ lip6.fr,
Jean-Michel.Ilie @lip6.fr

e.mail: haddad @ lamsade.dauphine.fr

Abstract. Model checking is a useful technique to verify properties of dynamic
systems but it has to cope with the state explosion problem. By simultaneous ex-
ploitation of symmetries of both the system and the property, the model checking
can be performed on a reduced quotient structure [2,6,7]. In these techniques a
property is specified within a temporal logic formula (CTL*) and the symmetries
of the formula are obtained by a syntactical checking. We show here that these
approaches fail to capture symmetries in the LTL path subformulas. Thus we pro-
pose a more accurate method based on local symmetries of the associated Biichi
automaton. We define an appropriate quotient structure for the synchronized
product of the Biichi automaton and the global state transition graph. We prove
that model checking can be performed over this quotient structure leading to ef-
ficient algorithms.

Topic: Formal Methods.
Keywords: Temporal Logic, LTL, Symmetries, Btichi automata, Model Check-
ing, Verification.

1. Introduction
Checking system correctness can be performed by the specification and the verification
of temporal logic formulas over a state transition graph which models the system be-
havior. The well-known combinatorial explosion problem in space and time requires
the development of efficient techniques in order to reduce the size of the graph to be
built, with respect to some desired properties.
One of the most promising technique has been initiated by Emerson & al [6,7]. It ex-
ploits the symmetries of both the system and formula. Such a technique builds a quo-
tient graph in which each node represents an equivalent class of states. The relation is
induced by a subgroup of permutations preserving the state graph and the formula. In
practice, the permutations act on a set of system processes with identical behavior. Pre-
vious works have been already developed focusing on the safeness properties
[1,14,17,19]. Other developments include model checking algorithms [2,13], model
checking under fairness constraints [8] and application to system bisimulation [16].
Looking carefully at the technique described in [6,7], it appears that currently, the

53

CTL* model checking can make profit from the symmetries but in a restrictive way.
Roughly speaking, two kinds of symmetries are detected: propositional symmetries
(e.g. contain subformulas like f= Vie ! fi where f / i s a propositional formula involving
the process i) and global symmetries with respect to a group of symmetries acting on
the structure representing the formula (Biichi automata for linear temporal formulas like

f= VielFfi) .
The aim of this paper is to generalize the previous methods showing how local symme-
tries can be exploited inside path subformulas of a CTL* formula. In this work, we limit
the presentation to the case of LTL formulas. The general framework for branching time
model checking can be developed using the iterated method of [10]. Unlike the ap-
proach presented in [6,7], the considered Biichi automaton is not necessarily globally
symmetric with respect to a predefined symmetry group. The starting point of our meth-
od is the analysis of any B~ichi automaton associated with a LTL formula to be verified
(see for instance [11]). Then we relate two states of the Biichi automaton if they repre-
sent the same current and future behavior up to a permutation of processes. Given a per-
mutation, this state relation can be computed in polynomial time. Similarly, in the
system model, two states are related by a permutation with respect to their current value
of the system variables. By applying these relations on the synchronized product of the
Biichi automaton and the global state transition graph, we define an appropriate quo-
tient structure. Then we prove that model checking over this quotient is equivalent to
model checking over the synchronized product. However, the general computation of
permutations wipes out the benefit of having a quotient structure (exponential complex-
ity of computation). Therefore, we propose an alternative approach which computes, in
polynomial time, an intermediate size structure. Such a structure has the same equiva-
lence property as the quotient one and leads, in practical cases, to significant savings of
space (even exponential).
The next sections are organized as follows: part 2 presents the model of computation
and briefly recalls the temporal logic used to specify properties, it also presents the rep-
resentation of a linear temporal logic formula by means of a Btichi automaton; part 3
presents the definition of system symmetries while part 4 presents the symmetries re-
flected in a temporal logic formula; part 5 is the analysis of the model checking using
symmetries and the proof of its validity; part 6 contains the operational model checking
approach using symmetries; part 7 contains our conclusion and perspectives.

2. M o d e l o f C o m p u t a t i o n a n d T e m p o r a l L o g i c

We can apply our work on any system where symmetries are defined within a group of
permutations. So, let us consider a simple model of system.

2.1. The Model

We deal with finite state concurrent systems composed of many processes. Processes
are identified by indices. They may share global variables but differ from local ones.
The structure of such a system is defined as follows:

Defini t ion 2.1.1: Finite State Concurrent System
We present a finite state system using the temporal structure M=(S, A, I, V, D, L,
So) where:

- S is the finite set of the states; Soc_S is the set of initial states;

54

- A c _ S x S is the possible changes between states;
- I is the set of process indices;
- Vis the set of system variables; it is composed of two distinct subsets, V G, the set
of global variables and V L the set of local variables.
- D is the definition domain of variables.
- L is the state labeling function, L: S x (VGUVLXl) ---~D such that:

(i) L(S, Vg) is the value of variable vg of V G in state s;
(ii) L(s, v l, i) is the value of variable v I of V L of process i in state s.

Atomic propositions are built from the association of a value to a variable.

R e m a r k :

The structure o f a system depends only on the value o f the variables i.e. two different
states must have at least one variable with different values.

Definition 2.1.2: Global and Local Atomic propositions
A global atomic proposition, is a pair (Vg, d) e VG• whereas a local atomic prop-

osition is a triplet (vl, i ,d) ~ V L X l X D that depends on a process i.

We define AP= {p] p e V G x D u VL X I x D} the set of atomic propositions built on the
global and local variables.

We define prop: S ~ 2 AP such that prop(s) is the set of propositions associated with s.

Definition 2.1.3: Atomic propositions holding in a state
Global (respectively local) atomic propositions hold at state s of S (noted x) as fol-
lows: s ~ (v g, d) r L (S, V g) = d ; (respectively s ~ (v l, i, d) r L (S, V l, i) = d).

In the following we recall some notions of temporal logic used to specify system prop-
erties.The translation of linear temporal formulas to Btichi automata is also presented.

2.2. Temporal Logic

In a propositional Temporal Logic, the non temporal portion of the logic is proposition-
al logic. Thus formulas are built up from atomic propositions, which intuitively express,
atomic facts about the underlying state of the concurrent system, truth-functional con-
nectives and the temporal operators. Furthermore, when defining a system of temporal
logic, two possible views of the system, can be considered, regarding the nature of time.
One is that the course of time is linear: at each moment there is only one possible future
moment. The other is that time has a branching tree-like nature: at each moment, time
may split into alternate courses representing different possible futures. In linear time,
one reasons about sets of infinite sequences, while in branching time, one reasons about
the possible futures of the current state leading to branching tree like structure.
In our work we are mainly interested by the linear time temporal logic formulas. How-
ever, the notion of branching time temporal remains the general framework in which
our model checking can be extended. We use here two kinds of operators, temporal op-
erators presented later and path quantifiers using the two symbols, A, E, to indicate re-
spectively all or some paths.

55

2.2.1. Linear Temporal Logic (LTL)

A well-formed linear-time temporal logic, dealing with our system, is constructed from
the set of atomic propositions AP, the standard boolean operators V (Or), --1 (Not), and
the temporal operators X (neXttime) and U (strong Until). Precisely, formulas are de-
fined inductively as follows: (1) Every member of A P is a formula; (2) if (p and ~ are
formulas then so are ~(p, (p v ~, X(p, (p U ~I/.
An interpretation for a linear-time temporal logic formula is an infinite word {=xoxl...

over an alphabet 2 AP. For more precision, the elements of 2 AP are interpreted as assign-
ing truth values to the elements of AP: elements in the set are assigned true, elements
not in the set are assigned false. We note ~i the suffix of { starting at x i. The semantics
of LTL is defined in the following:

- ~ ~ tx i f f tXe Xo , for ct~ A P .

- ~ ~ ~q~ iff ~ (~ ~ q~).
- ~ = t p v ~ i f f (~ tpor~ ~ V) .
- ~ ~ X q ~ i f f ~ l ~tp.

- ~ ~ q) U ~ iff 3i>0 such that ~i ~ ~/and ~j ~ qo O<Vj<i .
As some abbreviations, one can introduce additional linear operators: the eventuality
operator F where F(p= true U (p, the always operator G where G(p=~F~tp.

2.2.2. From LTL to Biichi automata

A Biichi automaton is a finite automaton which accepts infinite sequences. A sequence
is accepted if, and only if, it is recognized by the automaton and meets infinitely often
one of the accepting states (called also designated states).
It has been shown that any LTL formula can be translated to a Biichi automaton in order
to perform efficient model checking. Indeed, Biichi automata are strictly more expres-
sive than LTL formulas and equivalent to linear-time Mu-calculus [5,18,21].

Defini t ion 2.2.3: Bi iehi automata
A Btichi automaton [6] is a tuple A=(AP, B, p, B o, E, F) where:

- B is a set of states. Each state b of B is defined by the set Atom(b) c_AP.

- p: B--->2 B is a nondetermistic transition function.
- Boc_B is a set of starting states.

- E: B ~ 2 AP .

- Fc_B is a set of accepting states.

3. Symmetries on Models

Given a permutation n: I-->I on the set of process indices, we want to determine wheth-
er two states of the state transition graph are symmetric up to this permutation. Effec-
tively, a permutation is said to be a symmetry if and only if it preserves the possible
changes between states. We define the symmetries on the model represented by the
structure M=(S, A, I, V, D, L, So).

Definit ion 3.1: S y m m e t r y on a State Transi t ion Graph
A permutation ~ on I, is a symmetry iff:

56

(1) For each state s~ S, there is a unique state s" denoted n(s) which satisfies:
(i) VVg ~ VG, L(~(s),V g) = L(S, Vg);

(ii) Vi ~ L Vv t ~ V L, L (~ (s), v t, i) = L (s, v t, ~ (i)).
(2) Permutation n satisfies the following condition:

(Vs~ S), (Vs2~ S), ((s l ~ s2) ~ A r (~ (s l) ~ rc(s2)) ~ a).

The group of symmetries defined on M is called the automorphisms group of M and de-
noted Aut(M).

4. Symmetries on Formulas

In [7], the symmetries of a temporal logic formula to be verified are obtained by a syn-
tactical checking while in [6], they result from the analysis of the corresponding Bfichi
automaton. By looking carefully at this method, it appears that symmetries of a CTL*
formula are obtained in a restrictive way. Roughly speaking, many techniques are pro-
posed based on the detection of a group of symmetries:
(1) State symmetries obtained from (sub)formulas like Vi~ lfi where3~ is proposition-

al involving process i. Effectively, the symmetries resulting from formulas like

f = EF(Vi~ I f /) , f= EF(Aie If/) constitute the group Sym(I), the group of all the

permutations between the elements of L Those computed for formula like f= EFf/
constitute the group Stab(i) (the group of all the permutation between the elements
of I \ {i}).

(2) The former approach fails to capture Path symmetries in LTL subformulas like
f= Vi~ lFf/, f= Ai~ iFfi . Thus, the method of [6] introduces a complementary
framework by detecting a group of symmetries acting on the states of Biichi au-
tomaton.

All these approaches are inefficient for formulas like [= AI,~ "J. l(f/Ufj) because the

group of symmetries is reduced to the identity. However, the former formula contains
local symmetries that can be reflected in some states of its biJchi automaton.
In this section, we propose a more accurate method based on the exploitation of local
symmetries computed for some states of the automaton. Hence, we show that the exist-
ence of a group is not required to exploit symmetries.

We compute, the symmetries on a Biichi automaton, A=(AP, B, P, Bo E, F). The states
equivalence can be detected using the relation defined as follows:

Definition 4.1: Permutation on a set of atomic propositions
Let ~ be a permutation on I. Let AP 1 be a set of atomic propositions, there is a set
AP 2 denoted n(AP1) which satisfies:
rc(APl) =AP2= { (v g, d')Iv (v g, d) ~ A tom(b), 3 (v g, d') ~ Atom (b') where (d" = cO}u

{(vt,J,d')[Vi~ /, V(V/, i,d) ~ Atom(b), qj~ 1,3(vl,J,d") ~ Atom(b')where(d'= d)}

Def'mition 4.2: Equivalence of two states of a Biichi automaton
A relation ~ is the coarsest relation that defines the equivalence of two states of a

Biichi automaton�9 It fulfills the following two requirements: Vb, b'~ V, b~e~b" iff:

57

(1) There is a permutation g that satisfies the two conditions:

(i) b E 5rr b" ~ 5r; (ii) Atom(b")=re(Atom(b)).

(2) Vb~ [b--> b~], 3b'~ [b' ~ b'~][(b~ ~b'~).

Generally, ~ is not an equivalence relation. It can be computed in a polynomial time
using a fixed-point computation starting with condition (1) and by applying (2).

Example 1: Let us consider the following Biichi automaton representing the formula
f = [(pi UP3) v (P2 UP3)] ̂ (P! UP2) for a system of three processes P1, P2, P3, where

Pl, P2, P3 are three atomic propositions.

b2~Pl 33 bl

b5

~) Entry State
O Final State

Figure 1: Bfichi automaton of the formulaf

In this automaton, the only global symmetry group acting on the states is the identity.
However, one can observe that states b 7 and blo are symmetrical with respect to defi-
nition 4.1 (permutation ~ such that rc(1)= l, rc(2)= 3, ~(3)= 2 is used). Similarly, other
symmetries can be detected between b 3 and b 4, b 5 and blo, b 1 and b 9 etc. Conversely,
b 7 and b 6 are identically labelled but not symmetrical.

In the next section, we show how to perform an efficient model checking using the
Biichi automaton representation and the proposed symmetries.

5. Analysis of Model Checking using symmetries

Classically, model checking is realized by (1) considering the Btichi automaton, A f of

the negation of formulafto be verified; (2) building the synchronized product of this
automaton and the one which models the behavior of the system; (3) searching in the
synchronized product a sequence which has an accepting state repeated infinitely often
in order to prove that the negation of the formula holds. The meaning of such algorithm
is that one must verify that any behavior of the system validates the formula. This algo-
rithm can work in an "on-the-fly" fashion [11] so as to avoid the construction of the
whole graph of the strongly connected components.

58

5.1. Synchronized Product

The synchronized product of M and A_~f is noted MxA_~f and is defined as follows:

Definition 5.1.1: Synchronized Product
The synchronized product of M=(S, A, I, V, D, L, So) and A_~f=(AP, B, p, B o, E, F)

is the automaton MxA_,f=(AP, O, F, O 0, ~) defined below:

- O= { (s, b) l s ~ S A b ~ B A (E(b) c_prop (s)) } ;
- O0= { (s, b) ~ Ols ~ S O A b ~ B o];
- ((si, bi) ---> (sj, bj)) E I ~ iff (si---->sj) E A A (bi-->bj) E p.
- dp= {(s ,b)~ O[s~ SAb~ F}.

By means of such a product, a formulafholds through M, if and only if there is no path,
in MxA_~f, in which an accepting state is repeated infinitely often. Classically, the sat-

isfaction of a formula is expressed as follows:

M~--afr 3p= (s O, bo)... (Sl, bl)... (Sm, bm)... (Sn, bn) in MxA_,f where l< rn < n

such that: (1) bm ~ F; (2) (Vi,j~ l,i~j, ((si, bi) = (sj, bj) r { i,j} = {l,n}))

5.2. Quotient Structure

In order to reduce the size of the synchronized product structure, we only consider ca-
nonical representatives of the symmetrical states instead of all the states.
Consequently, we build a graph of representatives with respect to a symmetry relation,

defined on MxA_~f as follows:

Definition 5.2.1: Symmetry Relation, ~, Defined on M•

Vs, s' ~ S, Vb, b" ~ V such that s~Atom(b) and s' ~Atom(b'),

(s,b)R(s',b') iff 3xE Aut(M) such that bg~b" and r~(s) = s'.

Observe that Ris an equivalence relation since it is defined on the group Aut(M). There-
fore, we can define the quotient structure of the synchronized product MxA_~f denoted

MxA_~f= (MxA_,f)/9(as follows:

Def'lnltion 5.2.2: The Quotient Structure M •

The quotient structure MxA_~f is defined by means of the representatives of the

state orbits of MxA_,f. The orbit of (s, b) ~ O is defined by the set:

O(s,b) = { (s',b')] 3 ~ Aut(M), (re(s) = s') A (b~b')where, s' ~Atom(b') }.
From each orbit O(s,b), we pick an arbitrary representative denoted (s, b).

The representative can be efficiently implemented by defining a canonical representa-
tion based on a lexicographical order [1].

5 9

5.3. Model Checking Correctness

In this section we validate our approach by showing that the model checking based on
the proposed quotient synchronized product is equivalent to the one performed by
means of the ordinary structure. Intuitively, we prove that the existence of an accepting
state repeated infinitely often in the quotient structure is equivalent to the existence of
an accepting state repeated infinitely often in the ordinary synchronized product.
Hence, we can prove the satisfaction of temporal logic formulas by using our approach
of symmetry.
We start our proof by the correspondence between both the quotient and the ordinary
structures of the synchronized product.
Let MxA_.,f represents the structure resulting from the synchronized product of the

state transition graph and the automaton and let MxA_~y= (MxA_~f) /R be its quotient

structure with respect to the relation Rintroduced in definition 5.2.1. For each symbolic
path in the quotient structure there is an ordinary path in the synchronized product such
that the corresponding states of the two paths are symmetrical with respect to R

Lemma: Correspondence Lemma

3 (So, bo) (Sn, bn) ~ MxA..,fr (S'o, b'o) (S'n, b'n) ~ MxA_~f such that

0 < •i < n, (s" i, b'i) R(s i, bi)
Proof:
the ~ direction is immediate from the definition of quotient structure.

For the ~ direction, we proceed by induction on, n, the length of the path:
(i) n=O, This case is very simple since for any (S'o,b'o) such that

(S'o, b'o) R(s O, b o), the lemma is proved.

(ii) We assume that the lemma is proved for a given length equal to n and we verify

that it is proved for a length equal to n+l. Let us consider (so, bo) (sn, bn) in

M x A f , and let us recall that by assumption, we have (s" o, b'o) (S'n, b'n) in
< " < , , MxA_~f such that O _ V t _ n , (s i , b i)~(si , bi). Let us consider an edge

" " r s " b " (sn, bn)-->(Sn+i,bn+l)ofMxA_~f , thus, q(s mb n)-->~ n+l' n+l) i nMxA-~ f
i i I i � 9 1 4 9 i i

such that (s n,b n)tl~(Sn'bn) and (s n+l,b n+ 1) R(Sn+l,bn+l)" We have already

�9 " s b S o ' s ' b ' ' ~ " " (S n'b n)R(n" n)" '(n' n) K t s n '~ n)and f lomthede f in i t i ono f there la t ion
--I �9 ~ z S t � 9 , . �9 �9149 t � 9 1 4 9 ~. "m,s n = t n) and b n ~ b n" Hence, there is a state s n+l = r~(s n+l) and an

I �9 t r I � 9 1 4 9

automaton state b n + 1 such that b n + 1 ~ b n + 1 where s n + 1 = n(s n + 1) ~

" -A m ' ' ' n(Atom(b n+I)) - to (b n+l)" Therefore, (s n+i,b n+I) is a state of MxA_~f
r t tp

and since, there is an arc (s n, b n) '') (S"n + I' b"n + l) ' the arc
t (S'n, btn) ---) (s n+l,bn+l) is an arc of the same structure also.

From this lemma, we now prove the equivalence of the existence of paths verifying the
formula, in both the quotient and the ordinary synchronized product:

60

T h e o r e m : T h e t w o f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t :

(i) There is a path (so, bo) . . . (Sl, bl) . . . (sm, bm). . . (sn, b n) in M • f where l<_m<n

such that: (1) brae F ; (2) V i ~ j , ((si, bi) = (sj, bj)) r ({ i , j} = {/,n}).

(ii) There is a path (s" o, b 'o) . . . (s' l, b ' l) . . . (s m' b m) " " (s n' b n) in MxA_~f where

l < m < n such that: (1) bm~ F ; (2) V i i i , ((s ' i ,b ' i) = (s~,b~)) r ({i,j} = {l,n}).

P r o o f :

(!) (i) ~ (ii): Letusconsider (so, bo) . . . (st, b�9 (Sm, bm). . . (sn, bn) theshortestpath

that verifies (il) in M x A _ , f . From the correspondence lemma there is a corre-

sponding path (s" o, b'o) (s" l, b'l) (s" m, b'm) (S'n, b'n) in M x A f . We

prove that it verifies the following two statements:
(ii 1) b m ~ F , effectively, symmetries built on the automaton preserve accepting states;

(ii2) Two directions have to be proved. The ~ direction is straightforward since
St �9 ~ (s'i ,b'i) = (j, b j) ((si, bi) = (sj, bj)) , consequently we deduce from 02 that

{i,j}={l,n}. For the~di rec t ion , we have {i,j}={l,n}, so from (i2),

(si, bi) = (sj, bj). By assumption, {i,j}={l,n}, so, (sl, bl) = (Sn, bn) from 02). The

�9 ' ' b ' . proof is now made by contradiction assuming that (s l,b l) ~ (s m, m) In this

case, (s' l, b'l) •(s" m, b'm) since their representatives are equals. Consequently,

from the correspondence lemma, we have an infinite path in which there is an in-
finite number of subpaths of the form

s" b' ~ ' b' n+k(n-l) ' n+k(n-l)J " ' ' (s n+(k+l)(n- l) ' n+(k+l)(n- l)) where k=O,1 and

" " b" " - ' s ' f o r l < V i < n , ts i+~(n-t), i+k(n_l)jZt~[i,b'i). Because we deal with finite state

transition graph, this infinite path must contain a circuit. Let us consider
(S'o,b'o) (sx , b'x) (S'y, b'y) the shortest path that meets twice the same

state where: (S'x,b" x) = (s'y,b'y) and x > l , y > n . To simplify the proof we consid-

er x<y and we denote f(x)=x-k(n-l), f(y)=y-k(n-l) such that f (x) , f (y) ~ [l,n].

Since ((s" x, b'x) = (S'y, by)) ~ ((s x, bx) = (Sy, by)) ~ (Sf(x), by(x)) = (Sf(y), by(y))
we have two cases. In the first one:f lx) , f (y) are from [l,m[or]m,n]. By considering

(S'o,b'o) (S'l,b'l) (s'f(x),b'fcx)), (S/(y) +l,b f(y) +I) (s m,b m), (S n,b n)
�9 " .., " " " b" s" " ' " " " b ' " (s o, b o)," (S l, b l) (s in ' m) ' (f (x) 'b f (x)) ' (S f (y)+l ,b f (y)+l) (S n' n)

with respect to the position off lx) , f ly) in the domain, we have a shortest path than
�9 ' (s m'b m)' (s n'b n) that verifies the two conditions (s" o,b'o) (s l, b l) ' ' ' '

(iil) and (ii2) which is opposite to the initial assumption. In the second case: f ix)
is from [l,m[and f l y) from [re, n]. By considering the following path that verify

�9 ' ' ' : s ' b ' ~ ' ' (ill) and (ii2), (s o,b o) (S f (x) 'b f(x)) ~ m' m (S f (y) ,b f(y)), w e

have a shortest path than (s' o, b'o) (s l, b 1) (s m' b m)' (S'n' b'n) which is

contradictory with the initial assumption. Consequently (S'l,b'l) = (s m,b m) "

61

(ii) ~ (i): Let us consider the set of paths:

l-l={(so, bo)...(Sl, bl)...(sm, bm)...(sn, bn) such that (Sl, bl) R (snvb m) and bm ~ El.

1-I~O from the assumption (il). Let us consider rc=(so, bo)...(sn, bn) one of the

shortest path of H. From the correspondence lemma, q~ = (s o , ~) . . . (s n,-V'n~) a

representative path where (si, bi)R(s'i,b'i). Consequently, ~ verifies (il)

(s / , ~) = (~) and (i2) b'me F. We have to prove that,

V{i , j} ~ {l,n} ~ (~) ~ (~) . We suppose that

q{i,j} ~ {l,n}, (~) = (~) , hence, either, (s'i,b'i) = (s~,bj) which is im-

possible from (ii2), or, (s' i, b'i)R(s'j, b'j). Hence, three cases can appear, in the

first one we have (i<j<l) v (l<i<j<m) v (m<i<j<n): by considering the path
(so, bo)...(si, bi)(Sj+l,bj+l)...(sn, bn) we have a shortest path than rc belonging to H
which is opposite to the initial assumption. In the second case we have
i<l<j<m<n: by considering (sobo)...(si, bi)(Sj+l,bj+l)...(sn, bn)(Sl+l, bl+l)...(sj, bj)
we have a shortest path than g belonging to l-I which is opposite to the initial as-
sumption. In the last case we have l<j<m<j<n: by considering
(sobo)...(si, bi)...(sm, bm)...(sj, bj)...(sn, bn) we have also a shortest path than ~ be-
longing to l-I which is contradictory for the initial assumption. Consequently,

V{i , j} ~ {l,n} ~ (s i~,~) ~ (s j~,~).

5.4. Consistent Graph

The quotient structure is the smallest structure that can be built to perform model check-
ing using symmetries. In the worst case, { ~ } ~ requires an exponential time construc-
tion therefore, we propose a new approach based on the construction of an intermediate
structure, called consistent graph which does not require the computation of all the re-
lations induced by the symmetries.
In such a graph, (1) reachability is preserved with respect to the ordinary synchronized
product; (2) the transition relation of the ordinary synchronized product is preserved ac-
cordingly to the symmetry relation Rin the consistent graph; (3) the transition relation
of the consistent graph product is preserved accordingly to the symmetry relation Rin
the ordinary synchronized. Hence, All paths are preserved with respect to R
Such a consistent graph will be used in section to propose an efficient model checking
in polynomial time.

Definition 5.4.1: Consistent Graph
Let G=MxA_~f=(AP, O, x, O 0, ~) and let G" = (AP',@','c',O'o,~') we call G'

consistent with G iff:
(1) V(s,b)~ O such that (s,b) is reachable from (So, bo)~ 6) o, 3(s' ,b')~ 0"
reachable from (S'o,b'o) ~ 0 ' 0 such that (s',b') R(s,b).
(2) V(s,b)~ 19 such that (s,b) is reachable from (so, bo)E @ O, V(s ' ,b ')~ 0"
reachable from (S'o,b'o)~ 0" 0 such that (s',b')R(s,b):

62

if (s ,b)-->(Sl ,bl)ex then 3 (S ' l , b ' l) r where (s'l,b'1)~l~(Sl,bl)

such that (s', b') ~ (s" 1, b'l) ~ x'.
(3) V (s,b) ~ O such that (s,b) is reachable from (so, bo) ~ O o , V (s',b') ~ O"
reachable from (s" o, b'o) e O" 0 such that (s', b') ~ s , b):

if (s',b') ---> (S'l,b'l) ~ "c" then 3(sl,b1) ~ O where (Sl,bl)R(S'l ,b'l)
such that (s,b) ~ (Sl,bl) ~ x.

The following lemma highlights the correspondence between the quotient structure

MxA__,f and the graph consistent with MxA.~f.

Lemma: Consistent Graph Correspondence

3(so, b O) (sn, b n) ~ MxA__,fc:~3(S'o,b'o) (S'n,b'n) ~ G" consistent with

G= M x A f such that O<'Vi < n, (s'i, b'i) R(si, bi).
Proof: It is similar to the one used for the correspondence lemma (section 5.3).

Hence, we can prove the model checking equivalence between the quotient structure
and the graph consistent with the ordinary structure using correspondence lemma of the
consistent graph.

Theorem: The two following statements are equivalent:

(i) There is a path (so, bo)...(si, bt)...(sm, bm)...(sn, bn) in G = M x A f where
l<m<n such that:

(1) bmE F; (2) Vi i i , ((si, bi) = (sj, bj)) r ({i,j} = {/ ,n}) .

(ii) There is a path (s" O, b'o)... (s" l,b'l)... (S'm, b'm)... (S'n, b n) in G" consistent with

G= MxA_.,f where l<m<n such that:

; V (1) brn~F (2) t~ j , ((s i , b i) = (s j , bj))c:~({i , j} = {/,n}).

Proof: This proof is similar to the one presented in the theorem of model checking
equivalence (section 5.3) using the consistent graph correspondence lemma.

6. Operational Approach
The construction of a quotient structure is performed by checking, for each node built
during the synchronized product, whether it is symmetrical with an already computed
one. For this, an equivalence test has to be performed in an exponential time O(n. t) (in
the worst case), where n is the number of processes. Clearly, this would damage the
benefit to have a condensed structure.
The following section introduces an operational approach in order to reduce the com-
plexity of the construction algorithms. Nevertheless, the resulting state transition graph
may have a larger size than the quotient structure because we compute only a reduced
subset of symmetries. However, it is a consistent structure with both the ordinary and
the former quotient structure, thus the model checking can be performed equivalently.
This section aims at presenting efficient algorithms to compute symmetries and to con-
struct the consistent graph.

63

6.1. ij-Symmetry on B(ichi automata

We now define a set of symmetries called the ij-symmetries in such a way that it repre-
sents a subset of R

6.1.1. ij-Symmetry Definition

Let A=(AP, B, p, Bt~ E, F). A relation ~,j is a coarse relation that defines the equiva-
lence of two states of a Biichi automaton with respect to two given processes. It fulfills
the following definition:

Vb, b ' �9 B, bg~;jb' iff the following two conditions hold:

(1) Vb, b ' �9 B, they satisfy an ij-permutation, hi, j, such that:

- b � 9 Fc=~b'�9 F
-Atom(b ') = A tomOq,j(b)) =

{ (vg, d')I~'(vg, d) �9 Atom(b),3(vg, d') �9 Atom(b')where (d'=d)}u

{ (vl,j, d')IV(Vl, i, d) �9 Atom (b), 3 (vl,j, d') ~ Atom (b') where (d' = d) }u
{ (vl,j,d')lV(Vl,j,d) �9 Atom(b),3(v l, i,d') �9 Atom(b')where(d' = d)}u
{ (Vl, k,d')lV(Vl, k,d) ~ Atom(b),kr k, d') ~ Atom(b') where(d' = d) }

(2) gb 1 [b--~b11,3b" I [b'-+b" l] I(bl~p'x).
From this definition we define an inner symmetry, ~ with respect to I as follows:

Vi , j �9 I, (b, i)~n(b ,J)r where ~/n= (i,j P~/,j) . Hence, the inner symmetries

presented by the relation ~ constitutes a subset of the set of symmetries presented by

Rsuch that: b~(inb'~bRb' . Based on ~ the next section proposes an efficient algo-
rithm for the determination of the symmetries which are reflected in a Biichi automaton.

6.1.2. ij-Symmetry Computation Algorithms

The computation of the inner symmetry starts from the computation of the ij-symmetry
presented in the definition 6.1.2.
L e t f b e a temporal specification formula and let A_~f be the representation of its nega-

tion in terms of BiJchi automaton.
Firstly, we calculate, for a pair (i,j) of process indices, an initial partition of the
states of A_~f using the definition 6.1.2 of ij-permutation. This results in a set of

state pairs that ~,erify the ij-permutation.
Secondly, we restrain the computed ij-permutations to ~ j symmetry by checking
the preservation of the transition relation (using the definition 6.1.2). For each
state, we save the set of ~ j symmetries.
This algorithm is repeated for each pair i,j of process indices.

Let B={b I ... bin} be the states of A_~f where IBl=m is the number of states. Let I be the

set of process indices such that III =n. We construct a set of boolean matrices that rep-
resent the symmetry relation between the states of B. We note Matij the matrix repre-
senting the symmetry ~,j where Matij[b d, b k] is true if b d, b k are symmetric. We note
Mat the set of all the matrices Matij.

64

In the following, we present the function R/j which compute the ij-symmetry in the au-
tomaton. This function calls two functions: the first one ij-permut(bl,b2) which checks
the (]-permutation for two given states b I and b 2. The second one Riy~bl, b2) which
checks if the two states, b 1, b 2, are ij-symmetric. Note that The function Succ(b) com-
putes all the successors of a given state b,

It must be noted that the complexity of the following algorithm is O(m 5) for a given i,j.

Hence, The determination of all the ij-symmetry have a complexity of O(n 2 x m 5) which

means a polynomial complexity. Furthermore, the computation of ~ n = (iu.i~i,j]* can

be restricted to have, also, a polynomial complexity.

Algorithm 1". R ~.,~)
Output : A boolean value indicates i f the two states are ij -symmetric.
BEGIN

FOR each bdfrom V DO
FOR each bkfrom V DO

Matij[bd, bk] = ij-permut(bd, b~;
FOR each bdfrom V DO

FOR each bkfrom V DO
MatJbd, bk] = Rij(b d, bk);

END;

Algorithm 2: R#(bd, b k)
Output : A boolean value indicates i f the two states are ij.symmetric.
BEGIN

Loop = TRUE;
WHILE Loop DO
BEGIN

IF Matu[b d, bk] THEN

FOR [each b d" in Succ(bd)] AND [each b k" in Succ(bk)] DO

Rij (bd t , b k");
ELSE

Loop = FALSE;
END;

END./* Algorithm */

6.2. Construction of the Consistent Graph

We compute the symmetries on the synchronized product in order to build the consis-
tent graph. Such symmetries are symmetries of the model and must be an inner symme-
tries with respect to the considered Biichi automaton.
Let A_,f be a Biichi automaton and let M be the structure of the state transition graph.

We define the symmetry on the product MxA_~f as follows:

65

Definition 6.2.1: Symmetry ~ detrmed on M x A _ ~ f

Vs, s" �9 S, Vb, b' �9 B such that: s~Atom(b) and s' ~Atom(b'),
(s, b) ~ (s', b') r 3r~ �9 A ut (M), ~n �9 ~ e b~b" A •(S) = S" .

The relation, 9(, is used to build a reduced graph G' = (AP', O', x', O' n, ~ ') consistent
with MxA_~f=(AP, O, "c, 0 o, dp). Next we present the corresponding algorithm.

A l g o r i t h m 3: C o n s i s t e n t G r a p h C o n s t r u c t o r
BEGIN

/* Symmetry Computation */
FOR each i, j from I DO

Rij() ;
Polynomial computation of 9~"

FOR each equivalence class of g~no f A_~f states DO

Choose a representative 6 ;

/* Consistent Graph Construction: */

FOR each (st~bo) from 0 0 such that sd=t~ o DO

- Compute the symbolic representative Rep(so t~ O) using the {9~,j}i, j

symmetries verified for t~ o (i.e. [Mati,j[b o, 1~ o 1=TRUEli,p.
- O" = O" u Rep(s o, t~ o);

- Push(Rep(so l~ 0));
END;/* FOR */

WHILE Stack is not empty DO BEGIN
rs = Pop();
FOR each arc (rs--> (s,b)) �9 p DO BEGIN

- Compute Rep(s,b);
- IFRep(s,b) is not in O" THEN
BEGIN

- O" = O" u Rep(s,b);
- Push(Rep(s,b));

END;/* IF */
- p" = p'u(rs--->Rep(s,b));

END;/* FOR */
END;/* WHILE */

END./* ALGORITHM */

The complexity of our model checking using symmetries is strongly dependent on the
complexity of the former algorithm. Therefore we can deduce its polynomial complex-
ity.

66

7. Conclusion and Perspectives

We have described two frameworks for performing efficient LTL model checking. Both
of them exploits the existence of symmetries reflected in the system and in the specifi-
cation formula to be checked. With the first one, we show how to build the most aggre-
gated structure by using the largest available symmetry relation. Such technique could
be computed using algorithms which, in the worst case, would have an exponential
complexity. The second framework computes a subset of symmetries with polynomial
complexity algorithms inducing a less condensed structure.
In comparison, the method proposed in [6,7] can be considered as a restrictive case re-
quiting the definition of a symmetry group.
Using the symmetry approach, two cases appear as the two extreme limits: the best one
where the structural symmetries of the system are entirely used, causing a maxi~rnal ag-

. /

gregaUon of states and the worst case m which any set of symmetrical objects is reduced
to a singleton, leading the reduced structure to be as large as the ordinary one.
We now aim at extending our methods to deal with specifications having nothing but
partial symmetries [12]. In such specifications, runs sometimes depend on the process
identities (i.e. static priorities based on identities), and sometimes not.
The implementation of this work is performed under GreatSPN2.0 developed by Chiola
& Garta from the university of Torino-Italy. It will be integrated into the CPN-AMI tool
developed by the group of distributed and cooperative systems of LIP6.

8. References

[1] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, "On Well-formed Colored
Nets and their Symbolic Reachability Graph", proc. of 11 th International Confer-
ence on Application and Theory of Petri Nets, Paris-France, June 1990.

[2] E. Clarke, T. Filkorne, S. Jha, "Exploiting Symmetry In Temporal Logic Model
Checking", 5th Computer Aided Verification (CAV), June 1993.

[3] E. Clarke,O. Grumberg, D. Long,"Verification Tools for Finit-State Concurrent
Systems", "A Decade of Concurrency-Reflections and Perspectives", LNCS vol
803, 1994.

[4] C. Courcoubetis, M. Vardi, P.Wolper, M. Yannakakis, "Memory Efficient Algo-
rithms for the Verification of Temporal Properties", In proceedings of CAV'90,
North Holland, DIMACS 30, 1990.

[5] M. Dam. "Fixed points of Biichi automata", In R. Shymanasundar, editor, Founda-
tions of Software Technology and theoretical Computer Science, volume 652 of
LNCS, pages 39-50, Springer-Verlag, 1992.

[6] E.A. Emerson, A. Prasad Sistla, "Symmetry and Model Checking", In Formal
Methods and System Design 9, pp 105-131, 1996.

[7] E.A. Emerson, A. Prasad Sistla, "Symmetry and Model Checking", 5th conference
on Computer Aided Verification (CAV), June 1993.

[8] E.A. Emerson, A. Parsad Sistla, "Utilizing Symmetry when Model Checking un-
der Fairness Assumptions: An Automata-theoric Approach", 7th CAV, LNCS
939, pp. 309-324, Liege, Belgium, July 1995.

[9] E.A. Emerson, "Temporal and Modal Logic", HandBook of Theoretical Computer
Science, Volume B, J. van Leeuwen (eds), 1990.

[10] E.A. Emerson and Chin-Laung Lei, "Modalities for Model Checking: Branching
Time Stricks Back", In Proc of 12h Annual Symposium on Principles of Program-
ming Languages, New-Orleans, Louisiana, January 1985.

67

[11] R. Gerth, D. Peled, M. Vardi, P. Wolper, "Simple On-the-fly Automatic Verifica-
tion of linear Temporal Logic", Protocol Specification Testing and Verification,
1995, Warsaw, Poland.

[12] S. Haddad, JM. Ili6, B. Zouari, M. Taghelit, "Symbolic Reachability Graph and
Partial Symmetries", In Proc. of the 16th ICATPN, Torino, Italy, June 1995.

[13] J-M. Ili6, K. Ajami, "Model Checking through the Symbolic Reachability Graph",
in Proc of TapSoft'97 - CAAP, pp 213-224, Lille, France, Springer-Verlag, LNCS
1214, Avril 1997.

[14] K. Jensen, G. Rozenberg (eds), "High Level Petri Nets, Theory and Application",
Springer-Verlag, 1991.

[15] Z. Manna, A. Pnueli. "The Temporal Logic of Reactive and Concurrent Systems:
Specification", Springer-Verlag, 1992.

[16] F. Michel, P. Az6ma, F. Vernadat. "Permutable Agents and Process Algebra", In
Proc. of TACAS'96, Passau, Germany, 1996, Springer-Verlag, LNCS 1055.

[17] C. Norris IP and D. Dill, "Better Verification Through Symmetry", In Formal
Methods in System Design, Vol 9, August 96, pp 41-76.

[18] D. Park,"Concurrency and Automata on Infinite Sequences", LNCS vol 114, 1984.
[19] K. Schmidt, "Symmetry Calculation", Workshop CSP Warschau 1995.
[20] M.Y. Vardi, "Alternating Automata and Program Verification", Computer Science

Today: Recent Trends and Developments.LNCS,Vol. 1000, Springer-Verlag 1995.
[21] M. Y. Vardi, "An Automata-theoretic approach to linear temporal logic (banff'94),

LNCS, 1043, 1996.

