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Abstract. Model checking is a useful technique to verify properties of dynamic 
systems but it has to cope with the state explosion problem. By simultaneous ex- 
ploitation of symmetries of both the system and the property, the model checking 
can be performed on a reduced quotient structure [2,6,7]. In these techniques a 
property is specified within a temporal logic formula (CTL*) and the symmetries 
of the formula are obtained by a syntactical checking. We show here that these 
approaches fail to capture symmetries in the LTL path subformulas. Thus we pro- 
pose a more accurate method based on local symmetries of the associated Biichi 
automaton. We define an appropriate quotient structure for the synchronized 
product of the Biichi automaton and the global state transition graph. We prove 
that model checking can be performed over this quotient structure leading to ef- 
ficient algorithms. 

Topic: Formal Methods. 
Keywords: Temporal Logic, LTL, Symmetries, Btichi automata, Model Check- 
ing, Verification. 

1. Introduction 
Checking system correctness can be performed by the specification and the verification 
of temporal logic formulas over a state transition graph which models the system be- 
havior. The well-known combinatorial explosion problem in space and time requires 
the development of efficient techniques in order to reduce the size of the graph to be 
built, with respect to some desired properties. 
One of the most promising technique has been initiated by Emerson & al [6,7]. It ex- 
ploits the symmetries of both the system and formula. Such a technique builds a quo- 
tient graph in which each node represents an equivalent class of states. The relation is 
induced by a subgroup of permutations preserving the state graph and the formula. In 
practice, the permutations act on a set of system processes with identical behavior. Pre- 
vious works have been already developed focusing on the safeness properties 
[1,14,17,19]. Other developments include model checking algorithms [2,13], model 
checking under fairness constraints [8] and application to system bisimulation [16]. 
Looking carefully at the technique described in [6,7], it appears that currently, the 
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CTL* model checking can make profit from the symmetries but in a restrictive way. 
Roughly speaking, two kinds of symmetries are detected: propositional symmetries 
(e.g. contain subformulas like f=  Vie ! fi where f / i s  a propositional formula involving 
the process i) and global symmetries with respect to a group of symmetries acting on 
the structure representing the formula (Biichi automata for linear temporal formulas like 

f= VielFfi) .  
The aim of this paper is to generalize the previous methods showing how local symme- 
tries can be exploited inside path subformulas of a CTL* formula. In this work, we limit 
the presentation to the case of LTL formulas. The general framework for branching time 
model checking can be developed using the iterated method of [10]. Unlike the ap- 
proach presented in [6,7], the considered Biichi automaton is not necessarily globally 
symmetric with respect to a predefined symmetry group. The starting point of our meth- 
od is the analysis of any B~ichi automaton associated with a LTL formula to be verified 
(see for instance [11]). Then we relate two states of the Biichi automaton if they repre- 
sent the same current and future behavior up to a permutation of processes. Given a per- 
mutation, this state relation can be computed in polynomial time. Similarly, in the 
system model, two states are related by a permutation with respect to their current value 
of the system variables. By applying these relations on the synchronized product of the 
Biichi automaton and the global state transition graph, we define an appropriate quo- 
tient structure. Then we prove that model checking over this quotient is equivalent to 
model checking over the synchronized product. However, the general computation of 
permutations wipes out the benefit of having a quotient structure (exponential complex- 
ity of computation). Therefore, we propose an alternative approach which computes, in 
polynomial time, an intermediate size structure. Such a structure has the same equiva- 
lence property as the quotient one and leads, in practical cases, to significant savings of 
space (even exponential). 
The next sections are organized as follows: part 2 presents the model of computation 
and briefly recalls the temporal logic used to specify properties, it also presents the rep- 
resentation of a linear temporal logic formula by means of a Btichi automaton; part 3 
presents the definition of system symmetries while part 4 presents the symmetries re- 
flected in a temporal logic formula; part 5 is the analysis of the model checking using 
symmetries and the proof of its validity; part 6 contains the operational model checking 
approach using symmetries; part 7 contains our conclusion and perspectives. 

2. M o d e l  o f  C o m p u t a t i o n  a n d  T e m p o r a l  L o g i c  

We can apply our work on any system where symmetries are defined within a group of 
permutations. So, let us consider a simple model of system. 

2.1. The Model 

We deal with finite state concurrent systems composed of many processes. Processes 
are identified by indices. They may share global variables but differ from local ones. 
The structure of such a system is defined as follows: 

Defini t ion 2.1.1: Finite State Concurrent  System 
We present a finite state system using the temporal structure M=(S, A, I, V, D, L, 
So) where: 

- S is the finite set of the states; Soc_S is the set of initial states; 
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- A c _ S x S  is the possible changes between states; 
- I is the set of process indices; 
- Vis the set of system variables; it is composed of two distinct subsets, V G, the set 
of global variables and V L the set of local variables. 
- D is the definition domain of variables. 
- L is the state labeling function, L: S x  (VGUVLXl )  ---~D such that: 

(i) L(S, Vg) is the value of variable vg of V G in state s; 
(ii) L(s, v l, i) is the value of variable v I of V L of process i in state s. 

Atomic propositions are built from the association of a value to a variable. 

R e m a r k :  

The structure o f  a system depends only on the value o f  the variables i.e. two different 
states must have at least one variable with different values. 

Definition 2.1.2: Global and Local Atomic propositions 
A global atomic proposition, is a pair (Vg, d) e VG• whereas a local atomic prop- 

osition is a triplet (vl, i ,d ) ~ V L X l X D  that depends on a process i. 

We define AP= {p] p e V G x D u VL X I x  D} the set of atomic propositions built on the 
global and local variables. 

We define prop: S ~ 2 AP such that prop(s) is the set of propositions associated with s. 

Definition 2.1.3: Atomic propositions holding in a state 
Global (respectively local) atomic propositions hold at state s of S (noted x) as fol- 
lows: s ~ ( v g, d) r L ( S, V g) = d ; (respectively s ~ ( v l, i, d) r L ( S, V l, i) = d ). 

In the following we recall some notions of temporal logic used to specify system prop- 
erties.The translation of linear temporal formulas to Btichi automata is also presented. 

2.2. Temporal Logic 

In a propositional Temporal Logic, the non temporal portion of the logic is proposition- 
al logic. Thus formulas are built up from atomic propositions, which intuitively express, 
atomic facts about the underlying state of the concurrent system, truth-functional con- 
nectives and the temporal operators. Furthermore, when defining a system of temporal 
logic, two possible views of the system, can be considered, regarding the nature of time. 
One is that the course of time is linear: at each moment there is only one possible future 
moment. The other is that time has a branching tree-like nature: at each moment, time 
may split into alternate courses representing different possible futures. In linear time, 
one reasons about sets of infinite sequences, while in branching time, one reasons about 
the possible futures of the current state leading to branching tree like structure. 
In our work we are mainly interested by the linear time temporal logic formulas. How- 
ever, the notion of branching time temporal remains the general framework in which 
our model checking can be extended. We use here two kinds of operators, temporal op- 
erators presented later and path quantifiers using the two symbols, A, E, to indicate re- 
spectively all or some paths. 
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2.2.1. Linear Temporal Logic (LTL) 

A well-formed linear-time temporal logic, dealing with our system, is constructed from 
the set of  atomic propositions AP, the standard boolean operators V (Or), --1 (Not), and 
the temporal operators X (neXttime) and U (strong Until). Precisely, formulas are de- 
fined inductively as follows: (1) Every member  of  A P  is a formula; (2) if  (p and ~ are 
formulas then so are ~(p, (p v ~, X(p, (p U ~I/. 
An interpretation for a linear-time temporal logic formula is an infinite word {=xoxl... 

over an alphabet 2 AP. For more precision, the elements of  2 AP are interpreted as assign- 
ing truth values to the elements of  AP: elements in the set are assigned true, elements 
not in the set are assigned false. We note ~i the suffix of  { starting at x i. The semantics 
of  LTL is defined in the following: 

- ~ ~ tx i f f  tXe Xo , for ct~ A P  . 

- ~ ~ ~q~ iff ~ (~  ~ q~). 
- ~ = t p v ~  i f f ( ~  tpor~  ~ V ) .  
- ~ ~ X q ~ i f f ~ l  ~tp. 

- ~ ~ q) U ~ iff  3i>0  such that ~i ~ ~/and ~j ~ qo O<Vj<i .  
As some abbreviations, one can introduce additional linear operators: the eventuality 
operator F where F(p= true U (p, the always operator G where G(p=~F~tp. 

2.2.2. From LTL to Biichi automata 

A Biichi automaton is a finite automaton which accepts infinite sequences. A sequence 
is accepted if, and only if, it is recognized by the automaton and meets infinitely often 
one of the accepting states (called also designated states). 
It has been shown that any LTL formula can be translated to a Biichi automaton in order 
to perform efficient model checking. Indeed, Biichi automata are strictly more expres- 
sive than LTL formulas and equivalent to linear-time Mu-calculus [5,18,21]. 

Defini t ion 2.2.3: Bi iehi  automata  
A Btichi automaton [6] is a tuple A=(AP, B, p, B o, E, F) where: 

- B is a set of  states. Each state b of  B is defined by the set Atom(b)  c_AP. 

- p: B--->2 B is a nondetermistic transition function. 
- Boc_B is a set of  starting states. 

- E: B ~ 2 AP . 

- Fc_B is a set of  accepting states. 

3. Symmetries on Models 

Given a permutation n: I-->I on the set of  process indices, we want to determine wheth- 
er two states of  the state transition graph are symmetric up to this permutation. Effec- 
tively, a permutation is said to be a symmetry if and only if it preserves the possible 
changes between states. We define the symmetries on the model represented by the 
structure M=(S, A, I, V, D, L, So). 

Definit ion 3.1: S y m m e t r y  on a State Transi t ion Graph 
A permutation ~ on I, is a symmetry iff: 
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(1) For each state s~ S, there is a unique state s" denoted n(s) which satisfies: 
(i) VVg ~ VG, L(~(s),V g ) = L(S, Vg); 

(ii) Vi ~ L Vv t ~ V L, L (~ (s), v t, i) = L (s, v t, ~ (i) ). 
(2) Permutation n satisfies the following condition: 

(Vs~ S), (Vs2~ S), ( (s l ~ s2) ~ A r (~ ( s  l) ~ rc(s2) ) ~ a). 

The group of symmetries defined on M is called the automorphisms group of M and de- 
noted Aut(M). 

4. Symmetries  on Formulas  

In [7], the symmetries of a temporal logic formula to be verified are obtained by a syn- 
tactical checking while in [6], they result from the analysis of the corresponding Bfichi 
automaton. By looking carefully at this method, it appears that symmetries of a CTL* 
formula are obtained in a restrictive way. Roughly speaking, many techniques are pro- 
posed based on the detection of a group of symmetries: 
(1) State symmetries obtained from (sub)formulas like Vi~ lfi where3~ is proposition- 

al involving process i. Effectively, the symmetries resulting from formulas like 

f =  EF(Vi~ I f / ) ,  f=  EF(Aie If/) constitute the group Sym(I), the group of all the 

permutations between the elements of L Those computed for formula like f=  EFf/ 
constitute the group Stab(i) (the group of all the permutation between the elements 
of I \ {i}). 

(2) The former approach fails to capture Path symmetries in LTL subformulas like 
f= Vi~ lFf/, f= Ai~ iFfi . Thus, the method of [6] introduces a complementary 
framework by detecting a group of symmetries acting on the states of Biichi au- 
tomaton. 

All these approaches are inefficient for formulas like [ =  AI,~ "J. l(f/Ufj) because the 

group of symmetries is reduced to the identity. However, the former formula contains 
local symmetries that can be reflected in some states of its biJchi automaton. 
In this section, we propose a more accurate method based on the exploitation of local 
symmetries computed for some states of the automaton. Hence, we show that the exist- 
ence of a group is not required to exploit symmetries. 

We compute, the symmetries on a Biichi automaton, A=(AP, B, P, Bo E, F). The states 
equivalence can be detected using the relation defined as follows: 

Definition 4.1: Permutation on a set of atomic propositions 
Let ~ be a permutation on I. Let AP 1 be a set of atomic propositions, there is a set 
AP 2 denoted n(AP1) which satisfies: 
rc(APl) =AP2= { (v g, d')Iv (v g, d) ~ A tom(b), 3 (v g, d') ~ Atom (b') where (d" = cO}u 

{(vt,J,d')[Vi~ /, V(V/, i,d) ~ Atom(b), qj~ 1,3(vl,J,d" ) ~ Atom(b')where(d'= d)} 

Def'mition 4.2: Equivalence of two states of a Biichi automaton 
A relation ~ is the coarsest relation that defines the equivalence of two states of a 

Biichi automaton�9 It fulfills the following two requirements: Vb, b'~ V, b~e~b" iff: 
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(1) There is a permutation g that satisfies the two conditions: 

(i) b E 5rr b" ~ 5r; (ii) Atom(b" )=re(Atom(b)). 

(2) Vb~ [b--> b~], 3b'~ [b' ~ b'~][ (b~ ~b'~). 

Generally, ~ is not an equivalence relation. It can be computed in a polynomial time 
using a fixed-point computation starting with condition (1) and by applying (2). 

Example 1: Let us consider the following Biichi automaton representing the formula 
f = [ (pi UP3 ) v (P2 UP3) ] ̂  (P! UP2) for a system of three processes P1, P2, P3, where 

Pl, P2, P3 are three atomic propositions. 

b2~Pl 33 bl 

b5 

~ )  Entry State 
O Final State 

Figure 1: Bfichi automaton of the formulaf 

In this automaton, the only global symmetry group acting on the states is the identity. 
However, one can observe that states b 7 and blo are symmetrical with respect to defi- 
nition 4.1 (permutation ~ such that rc(1)= l, rc( 2 )= 3, ~( 3 )= 2 is used). Similarly, other 
symmetries can be detected between b 3 and b 4, b 5 and blo, b 1 and b 9 etc. Conversely, 
b 7 and b 6 are identically labelled but not symmetrical. 

In the next section, we show how to perform an efficient model checking using the 
Biichi automaton representation and the proposed symmetries. 

5. Analysis of Model Checking using symmetries 

Classically, model checking is realized by (1) considering the Btichi automaton, A f of 

the negation of formulafto be verified; (2) building the synchronized product of this 
automaton and the one which models the behavior of the system; (3) searching in the 
synchronized product a sequence which has an accepting state repeated infinitely often 
in order to prove that the negation of the formula holds. The meaning of such algorithm 
is that one must verify that any behavior of the system validates the formula. This algo- 
rithm can work in an "on-the-fly" fashion [11] so as to avoid the construction of the 
whole graph of the strongly connected components. 
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5.1. Synchronized Product 

The synchronized product of M and A_~f is noted MxA_~f and is defined as follows: 

Definition 5.1.1: Synchronized Product 
The synchronized product of M=(S, A, I, V, D, L, So) and A_~f=(AP, B, p, B o, E, F) 

is the automaton MxA_,f=(AP, O, F, O 0, ~ )  defined below: 

- O= { (s, b) l s ~ S A b ~ B A (E(b) c_prop (s)) } ; 
- O0= { (s, b) ~ Ols ~ S O A b ~ B o ]; 
- ((si, bi) ---> (sj, bj)) E I ~ iff (si---->sj) E A A (bi-->bj) E p. 
- dp= {(s ,b)~ O[s~ SAb~ F}. 

By means of such a product, a formulafholds through M, if and only if there is no path, 
in MxA_~f, in which an accepting state is repeated infinitely often. Classically, the sat- 

isfaction of a formula is expressed as follows: 

M~--afr 3p= (s O, bo)... (Sl, bl)... (Sm, bm)... (Sn, bn) in MxA_,f where l< rn < n 

such that: (1) bm ~ F; (2) (Vi,j~ l,i~j, ( (si, bi) = (sj, bj) r { i,j} = {l,n})) 

5.2. Quotient Structure 

In order to reduce the size of the synchronized product structure, we only consider ca- 
nonical representatives of the symmetrical states instead of all the states. 
Consequently, we build a graph of representatives with respect to a symmetry relation, 

defined on MxA_~f as follows: 

Definition 5.2.1: Symmetry Relation, ~, Defined on M• 

Vs, s' ~ S, Vb, b" ~ V such that s~Atom(b) and s' ~Atom(b'), 

(s,b)R(s',b') iff 3xE Aut(M) such that bg~b" and r~(s) = s'. 

Observe that Ris an equivalence relation since it is defined on the group Aut(M). There- 
fore, we can define the quotient structure of the synchronized product MxA_~f denoted 

MxA_~f= (MxA_,f)/9( as follows: 

Def'lnltion 5.2.2: The Quotient Structure M •  

The quotient structure MxA_~f is defined by means of the representatives of the 

state orbits of MxA_,f. The orbit of (s, b) ~ O is defined by the set: 

O(s,b) = { (s',b') ] 3 ~  Aut(M), (re(s) = s') A (b~b')where,  s' ~Atom(b') }. 
From each orbit O(s,b), we pick an arbitrary representative denoted (s, b). 

The representative can be efficiently implemented by defining a canonical representa- 
tion based on a lexicographical order [1]. 
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5.3. Model Checking Correctness 

In this section we validate our approach by showing that the model checking based on 
the proposed quotient synchronized product is equivalent to the one performed by 
means of the ordinary structure. Intuitively, we prove that the existence of an accepting 
state repeated infinitely often in the quotient structure is equivalent to the existence of 
an accepting state repeated infinitely often in the ordinary synchronized product. 
Hence, we can prove the satisfaction of temporal logic formulas by using our approach 
of symmetry. 
We start our proof by the correspondence between both the quotient and the ordinary 
structures of the synchronized product. 
Let MxA_.,f represents the structure resulting from the synchronized product of the 

state transition graph and the automaton and let MxA_~y= (MxA_~f) /R be its quotient 

structure with respect to the relation Rintroduced in definition 5.2.1. For each symbolic 
path in the quotient structure there is an ordinary path in the synchronized product such 
that the corresponding states of the two paths are symmetrical with respect to R 

Lemma: Correspondence Lemma 

3 (So, bo) . . . . .  (Sn, bn) ~ MxA..,fr (S'o, b'o) . . . . .  (S'n, b'n) ~ MxA_~f such that 

0 < •i < n, (s" i, b'i) R(s i, bi) 
Proof: 
the ~ direction is immediate from the definition of quotient structure. 

For the ~ direction, we proceed by induction on, n, the length of the path: 
(i) n=O, This case is very simple since for any (S'o,b'o) such that 

( S'o, b'o) R(  s O, b o), the lemma is proved. 

(ii) We assume that the lemma is proved for a given length equal to n and we verify 

that it is proved for a length equal to n+l.  Let us consider (so, bo) . . . . .  (sn, bn) in 

M x A f ,  and let us recall that by assumption, we have (s" o, b'o) . . . . .  (S'n, b'n) in 
< " <  , , MxA_~f such that O _ V t _ n , ( s i ,  b i)~(si ,  bi). Let us consider an edge 

" " r s " b " (sn, bn)-->(Sn+i,bn+l)ofMxA_~f ,  thus, q(s  mb n)-->~ n+l' n+l) i nMxA-~ f  
i i  I i  � 9 1 4 9  i i  

such that (s n,b n)tl~(Sn'bn) and (s n+l,b n+ 1) R(Sn+l,bn+l)" We have already 

�9 " s b S o ' s '  b ' ' ~ "  " . . . .  (S n'b n)R( n" n)" '( n' n ) K t s  n '~  n )and f lomthede f in i t i ono f there la t ion  
--I �9 ~ z  S t � 9  , .  �9 �9149  t � 9 1 4 9  ~. "m,s n = t n) and b n ~ b  n" Hence, there is a state s n+l = r~(s n+l) and an 

I �9 t r  I � 9 1 4 9  

automaton state b n + 1 such that b n + 1 ~ b  n + 1 where s n + 1 = n(s n + 1) ~ 

" -A  m ' ' ' n(Atom(b n+I)) -  to (b n+l)" Therefore, (s n+i,b n+I) is a state of MxA_~f 
r t  tp 

and since, there is an arc ( s n, b n) '') ( S"n + I' b"n + l ) ' the arc 
t (S'n, btn ) ---) (s n+l,bn+l)  is an arc of the same structure also. 

From this lemma, we now prove the equivalence of the existence of paths verifying the 
formula, in both the quotient and the ordinary synchronized product: 
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T h e o r e m :  T h e  t w o  f o l l o w i n g  s t a t e m e n t s  a r e  e q u i v a l e n t :  

(i) There is a path (so, bo) . . .  (Sl, bl) . . .  (sm, bm). . .  (sn, b n) in M •  f where l<_m<n 

such that: (1) brae F ;  (2) V i ~ j ,  ( (si, bi) = (sj, bj) ) r ( { i , j} = {/,n}). 

(ii) There is a path (s" o, b 'o) . . .  (s'  l, b ' l ) . . .  (s m' b m ) " "  (s n' b n) in MxA_~f  where 

l < m < n  such that: (1) bm~ F ;  (2) V i i i ,  ((s ' i ,b ' i)  = (s~,b~))  r ({i,j} = {l,n}). 

P r o o f :  

(!) (i) ~ (ii): Letusconsider (so, bo) . . .  (st, b�9 (Sm, bm). . .  (sn, bn) theshortestpath 

that verifies (il) in M x A _ , f .  From the correspondence lemma there is a corre- 

sponding path (s" o, b'o) . . . . .  (s" l, b'l) . . . . .  (s" m, b'm) . . . . .  (S'n, b'n) in M x A  f .  We 

prove that it verifies the following two statements: 
(ii 1) b m ~ F ,  effectively, symmetries built on the automaton preserve accepting states; 

(ii2) Two directions have to be proved. The ~ direction is straightforward since 
St �9 ~ (s'i ,b'i)  = ( j, b j) ( (si, bi) = (sj, bj) ) , consequently we deduce from 02 that 

{i,j}={l,n}. For the~di rec t ion ,  we have {i,j}={l,n}, so from (i2), 

(si, bi) = (sj, bj). By assumption, {i,j}={l,n}, so, (sl, bl) = (Sn, bn) from 02). The 

�9 ' ' b '  . proof is now made by contradiction assuming that (s l,b l) ~ (s m, m) In this 

case, (s' l, b'l) •(s" m, b'm) since their representatives are equals. Consequently, 

from the correspondence lemma, we have an infinite path in which there is an in- 
finite number of subpaths of the form 

s" b' ~ ' b' n+k(n-l) '  n+k(n-l)J " ' ' ( s  n+(k+l)(n- l ) '  n+(k+l)(n- l ) )  where k=O,1 .... and 

" " b" " - ' s '  f o r l < V i < n ,  ts  i+~(n-t), i+k(n_l)jZt~[ i,b'i). Because we deal with finite state 

transition graph, this infinite path must contain a circuit. Let us consider 
(S'o,b'o) . . . . .  ( sx ,  b'x) . . . . .  (S'y, b'y) the shortest path that meets twice the same 

state where: (S'x,b" x) = (s'y,b'y) and x > l , y > n .  To simplify the proof we consid- 

er x<y and we denote f(x)=x-k(n-l), f(y)=y-k(n-l) such that f ( x ) , f ( y )  ~ [l,n]. 

Since ( (s" x, b'x) = (S'y, by) )  ~ ( (s x, bx) = (Sy, by)) ~ (Sf(x), by(x )) = (Sf(y), by(y)) 
we have two cases. In the first one:f lx) , f (y)  are from [l,m[or]m,n]. By considering 

(S'o,b'o) ..... (S'l,b'l) ..... (s'f(x),b'fcx)), (S/(y) +l,b f(y) +I) ..... (s m,b m), (S n,b n) 
�9 " .., " " " b" s" " ' " " " b ' "  (s o, b o)," (S l, b l) . . . . .  (s in '  m) ' (  f (x) 'b  f (x)) ' (S  f (y )+l ,b  f (y)+l  ) . . . . .  (S n' n) 

with respect to the position off lx) ,  f ly)  in the domain, we have a shortest path than 
�9 ' (s m'b m)' (s n'b n) that verifies the two conditions (s" o,b'o) . . . . .  (s l, b l) . . . . .  ' ' ' ' 

(iil) and (ii2) which is opposite to the initial assumption. In the second case: f ix )  
is from [l,m[ and f l y )  from [re, n]. By considering the following path that verify 

�9 ' ' ' : s '  b '  ~ ' ' (ill) and (ii2), (s o,b o) . . . . .  (S f (x) 'b  f(x)) . . . . .  ~ m' m . . . . . .  (S f (y) ,b  f(y)), w e  

have a shortest path than (s'  o, b'o) . . . . .  (s l, b 1) . . . . .  (s m' b m)' (S'n' b'n) which is 

contradictory with the initial assumption. Consequently (S'l,b'l) = (s m,b m) " 
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(ii) ~ (i): Let us consider the set of paths: 

l-l={(so, bo)...(Sl, bl)...(sm, bm)...(sn, bn) such that (Sl, bl) R (snvb m) and bm ~ El. 

1-I~O from the assumption (il). Let us consider rc=(so, bo)...(sn, bn) one of the 

shortest path of H. From the correspondence lemma, q~ = (s o , ~ ) . . .  (s n,-V'n~) a 

representative path where (si, bi)R(s'i,b'i). Consequently, ~ verifies (il) 

( s / , ~ )  = ( ~ )  and (i2) b'me F. We have to prove that, 

V{i , j}  ~ {l,n} ~ ( ~ )  ~ ( ~ ) .  We suppose that 

q{i,j} ~ {l,n}, ( ~ )  = ( ~ ) ,  hence, either, (s'i,b'i) = (s~,bj) which is im- 

possible from (ii2), or, (s' i, b'i)R(s'j, b'j). Hence, three cases can appear, in the 

first one we have (i<j<l) v (l<i<j<m) v (m<i<j<n): by considering the path 
(so, bo)...(si, bi)(Sj+l,bj+l)...(sn, bn) we have a shortest path than rc belonging to H 
which is opposite to the initial assumption. In the second case we have 
i<l<j<m<n: by considering (sobo)...(si, bi)(Sj+l,bj+l)...(sn, bn)(Sl+l, bl+l)...(sj, bj) 
we have a shortest path than g belonging to l-I which is opposite to the initial as- 
sumption. In the last case we have l<j<m<j<n: by considering 
(sobo)...(si, bi)...(sm, bm)...(sj, bj)...(sn, bn) we have also a shortest path than ~ be- 
longing to l-I which is contradictory for the initial assumption. Consequently, 

V{i , j}  ~ {l,n} ~ (s i~,~) ~ (s j~,~). 

5.4. Consistent Graph 

The quotient structure is the smallest structure that can be built to perform model check- 
ing using symmetries. In the worst case, { ~ } ~  requires an exponential time construc- 
tion therefore, we propose a new approach based on the construction of an intermediate 
structure, called consistent graph which does not require the computation of all the re- 
lations induced by the symmetries. 
In such a graph, (1) reachability is preserved with respect to the ordinary synchronized 
product; (2) the transition relation of the ordinary synchronized product is preserved ac- 
cordingly to the symmetry relation Rin the consistent graph; (3) the transition relation 
of the consistent graph product is preserved accordingly to the symmetry relation Rin 
the ordinary synchronized. Hence, All paths are preserved with respect to R 
Such a consistent graph will be used in section to propose an efficient model checking 
in polynomial time. 

Definition 5.4.1: Consistent Graph 
Let G=MxA_~f=(AP, O, x, O 0, ~ )  and let G" = (AP',@','c',O'o,~') we call G' 

consistent with G iff: 
(1) V(s,b)~ O such that (s,b) is reachable from (So, bo)~ 6) o, 3(s' ,b')~ 0" 
reachable from (S'o,b'o) ~ 0 '  0 such that (s',b') R(s,b). 
(2) V(s,b)~ 19 such that (s,b) is reachable from (so, bo)E @ O, V(s ' ,b ')~ 0" 
reachable from (S'o,b'o)~ 0" 0 such that (s',b')R(s,b): 
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if (s ,b)-->(Sl ,bl)ex then 3 ( S ' l , b ' l ) r  where (s'l,b'1)~l~(Sl,bl) 

such that (s', b') ~ (s" 1, b'l) ~ x'.  
(3) V (s,b) ~ O such that (s,b) is reachable from (so, bo) ~ O o , V (s',b') ~ O" 
reachable from (s" o, b'o) e O" 0 such that (s', b') ~ s ,  b): 

if (s',b') ---> (S'l,b'l) ~ "c" then 3(sl,b1) ~ O where (Sl,bl)R(S'l ,b'l)  
such that (s,b) ~ (Sl,bl) ~ x. 

The following lemma highlights the correspondence between the quotient structure 

MxA__,f and the graph consistent with MxA.~f. 

Lemma: Consistent Graph Correspondence 

3(so, b O) . . . . .  (sn, b n) ~ MxA__,fc:~3(S'o,b'o) ..... (S'n,b'n) ~ G" consistent with 

G= M x A  f such that O<'Vi < n, (s'i, b'i) R(si, bi). 
Proof: It is similar to the one used for the correspondence lemma (section 5.3). 

Hence, we can prove the model checking equivalence between the quotient structure 
and the graph consistent with the ordinary structure using correspondence lemma of the 
consistent graph. 

Theorem: The two following statements are equivalent: 

(i) There is a path (so, bo)...(si, bt)...(sm, bm)...(sn, bn) in G = M x A f  where 
l<m<n such that: 

(1) bmE F; (2) Vi i i ,  ((si, bi) = (sj, bj)) r ({i,j} = {/ ,n}) .  

(ii) There is a path (s" O, b'o)... (s" l,b'l)... (S'm, b'm)... (S'n, b n) in G" consistent with 

G= MxA_.,f where l<m<n such that: 

; V . . . . . .  (1) brn~F (2) t~ j , ( ( s i ,  b i ) = ( s j ,  bj))c:~({i , j}  = {/,n}). 

Proof: This proof is similar to the one presented in the theorem of model checking 
equivalence (section 5.3) using the consistent graph correspondence lemma. 

6. Operational Approach 
The construction of a quotient structure is performed by checking, for each node built 
during the synchronized product, whether it is symmetrical with an already computed 
one. For this, an equivalence test has to be performed in an exponential time O(n. t) (in 
the worst case), where n is the number of processes. Clearly, this would damage the 
benefit to have a condensed structure. 
The following section introduces an operational approach in order to reduce the com- 
plexity of the construction algorithms. Nevertheless, the resulting state transition graph 
may have a larger size than the quotient structure because we compute only a reduced 
subset of symmetries. However, it is a consistent structure with both the ordinary and 
the former quotient structure, thus the model checking can be performed equivalently. 
This section aims at presenting efficient algorithms to compute symmetries and to con- 
struct the consistent graph. 
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6.1. ij-Symmetry on B(ichi automata 

We now define a set of symmetries called the ij-symmetries in such a way that it repre- 
sents a subset of R 

6.1.1. ij-Symmetry Definition 

Let A=(AP, B, p, Bt~ E, F). A relation ~,j is a coarse relation that defines the equiva- 
lence of two states of a Biichi automaton with respect to two given processes. It fulfills 
the following definition: 

Vb, b ' �9  B, bg~;jb' iff the following two conditions hold: 

(1) Vb, b ' �9  B, they satisfy an ij-permutation, hi, j, such that: 

- b � 9  Fc=~b'�9 F 
-Atom( b ' ) = A tomOq,j( b ) ) = 

{ (vg, d')I~'(vg, d) �9 Atom(b),3(vg, d') �9 Atom(b')where (d'=d)}u 

{ (vl,j, d')IV(Vl, i, d) �9 Atom (b), 3 (vl,j, d') ~ Atom (b') where (d' = d) }u 
{ (vl,j,d')lV(Vl,j,d) �9 Atom(b),3(v l, i,d') �9 Atom(b')where(d' = d)}u 
{ (Vl, k,d')lV(Vl, k,d ) ~ Atom(b),kr k, d') ~ Atom(b') where(d' = d) } 

(2) gb 1 [b--~b11,3b" I [b'-+b" l] I(bl~p'x). 
From this definition we define an inner symmetry, ~ with respect to I as follows: 

Vi , j �9  I, (b, i)~n(b ,J)r where ~/n= (i,j P~/,j) . Hence, the inner symmetries 

presented by the relation ~ constitutes a subset of the set of symmetries presented by 

Rsuch that: b~(inb'~bRb' .  Based on ~ the next section proposes an efficient algo- 
rithm for the determination of the symmetries which are reflected in a Biichi automaton. 

6.1.2. ij-Symmetry Computation Algorithms 

The computation of the inner symmetry starts from the computation of the ij-symmetry 
presented in the definition 6.1.2. 
L e t f b e  a temporal specification formula and let A_~f be the representation of its nega- 

tion in terms of BiJchi automaton. 
Firstly, we calculate, for a pair (i,j) of process indices, an initial partition of the 
states of A_~f using the definition 6.1.2 of ij-permutation. This results in a set of 

state pairs that ~,erify the ij-permutation. 
Secondly, we restrain the computed ij-permutations to ~ j  symmetry by checking 
the preservation of the transition relation (using the definition 6.1.2). For each 
state, we save the set of ~ j  symmetries. 
This algorithm is repeated for each pair i,j of process indices. 

Let B={b I ... bin} be the states of A_~f where IBl=m is the number of states. Let I be the 

set of process indices such that III =n. We construct a set of boolean matrices that rep- 
resent the symmetry relation between the states of B. We note Matij the matrix repre- 
senting the symmetry ~,j where Matij[b d, b k] is true if b d, b k are symmetric. We note 
Mat the set of all the matrices Matij. 
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In the following, we present the function R/j which compute the ij-symmetry in the au- 
tomaton. This function calls two functions: the first one ij-permut(bl,b2) which checks 
the (]-permutation for two given states b I and b 2. The second one Riy~bl, b2) which 
checks if the two states, b 1, b 2, are ij-symmetric. Note that The function Succ(b) com- 
putes all the successors of a given state b, 

It must be noted that the complexity of the following algorithm is O(m 5) for a given i,j. 

Hence, The determination of all the ij-symmetry have a complexity of O(n 2 x m 5) which 

means a polynomial complexity. Furthermore, the computation of ~ n = (  iu.i~i,j]* can 

be restricted to have, also, a polynomial complexity. 

Algorithm 1". R ~.,~) 
Output : A boolean value indicates i f  the two states are ij -symmetric. 
BEGIN 

FOR each bdfrom V DO 
FOR each bkfrom V DO 

Matij[bd, bk] = ij-permut(bd, b~; 
FOR each bdfrom V DO 

FOR each bkfrom V DO 
MatJbd, bk] = Rij(b d, bk); 

END; 

Algorithm 2: R#(bd, b k) 
Output : A boolean value indicates i f  the two states are ij.symmetric. 
BEGIN 

Loop = TRUE; 
WHILE Loop DO 
BEGIN 

IF Matu[b d, bk] THEN 

FOR [each b d" in Succ(bd)] AND [each b k" in Succ(bk)] DO 

Rij (bd  t , b k" ); 
ELSE 

Loop = FALSE; 
END; 

END./* Algorithm */ 

6.2. Construction of the Consistent Graph 

We compute the symmetries on the synchronized product in order to build the consis- 
tent graph. Such symmetries are symmetries of the model and must be an inner symme- 
tries with respect to the considered Biichi automaton. 
Let A_,f be a Biichi automaton and let M be the structure of the state transition graph. 

We define the symmetry on the product MxA_~f as follows: 
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Definition 6.2.1: Symmetry ~ detrmed on M x A _ ~ f  

Vs, s" �9 S, Vb, b' �9 B such that: s~Atom(b) and s' ~Atom(b' ), 
(s, b) ~ (s', b') r 3r~ �9 A ut (M), ~n �9 ~ e  b~b"  A •(S) = S" . 

The relation, 9(, is used to build a reduced graph G' = (AP', O', x', O' n, ~ ' )  consistent 
with MxA_~f=(AP, O, "c, 0 o, dp). Next we present the corresponding algorithm. 

A l g o r i t h m  3:  C o n s i s t e n t  G r a p h  C o n s t r u c t o r  
BEGIN 

/* Symmetry Computation */ 
FOR each i, j from I DO 

Rij( ) ; 
Polynomial computation of 9~" 

FOR each equivalence class of g~no f A_~f states DO 

Choose a representative 6 ; 

/* Consistent Graph Construction: */ 

FOR each (st~bo) from 0 0 such that sd=t~ o DO 

- Compute the symbolic representative Rep(so t~ O) using the {9~,j}i, j 

symmetries verified for t~ o (i.e. [Mati,j[b o, 1~ o 1=TRUEli,p. 
- O" = O" u Rep(s o, t~ o); 

- Push(Rep(so l~ 0)); 
END;/* FOR */ 

WHILE Stack is not empty DO BEGIN 
rs = Pop(); 
FOR each arc (rs--> (s,b)) �9 p DO BEGIN 

- Compute Rep(s,b); 
- IFRep(s,b) is not in O" THEN 
BEGIN 

- O" = O" u Rep(s,b); 
- Push(Rep(s,b)); 

END;/* IF */ 
- p" = p'u(rs--->Rep(s,b)); 

END;/* FOR */ 
END;/* WHILE */ 

END./* ALGORITHM */ 

The complexity of our model checking using symmetries is strongly dependent on the 
complexity of the former algorithm. Therefore we can deduce its polynomial complex- 
ity. 
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7. Conclusion and Perspectives 

We have described two frameworks for performing efficient LTL model checking. Both 
of them exploits the existence of symmetries reflected in the system and in the specifi- 
cation formula to be checked. With the first one, we show how to build the most aggre- 
gated structure by using the largest available symmetry relation. Such technique could 
be computed using algorithms which, in the worst case, would have an exponential 
complexity. The second framework computes a subset of symmetries with polynomial 
complexity algorithms inducing a less condensed structure. 
In comparison, the method proposed in [6,7] can be considered as a restrictive case re- 
quiting the definition of a symmetry group. 
Using the symmetry approach, two cases appear as the two extreme limits: the best one 
where the structural symmetries of the system are entirely used, causing a maxi~rnal ag- 

. . . . . .  / 

gregaUon of states and the worst case m which any set of symmetrical objects is reduced 
to a singleton, leading the reduced structure to be as large as the ordinary one. 
We now aim at extending our methods to deal with specifications having nothing but 
partial symmetries [12]. In such specifications, runs sometimes depend on the process 
identities (i.e. static priorities based on identities), and sometimes not. 
The implementation of this work is performed under GreatSPN2.0 developed by Chiola 
& Garta from the university of Torino-Italy. It will be integrated into the CPN-AMI tool 
developed by the group of distributed and cooperative systems of LIP6. 
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