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Abstrac t .  Vanstone and Zuccherato [3] propose a cryptographic system 
based on an elliptic curve modulo a composite number. We show that 
the composite numbers so constructed are easily factored, rendering the 
system insecure. 

1 I n t r o d u c t i o n  

Vanstone and Zuccherato [3] propose a cryptographic system based on an elliptic 
curve modulo a composite number N = pq,  whose factorization must remain 
secret. The primes p and q are constructed by a specific process, in order to make 
it easy to determine the size of the elliptic curve, and to enforce the property 
that  this size be a "smooth" number (its prime factors should not exceed 1016). 

The specific construction, however, renders N easy to factor. 
We give a straightforward method of factoring the sorts of integers that  arise 

in the system. The effect is to give yet another warning to be careful with every 
stage of the production of RSA keys. 

This note is organized as follows. In Section 2 we describe Vanstone and 
Zuccherato's scheme. Section 3 gives our method for factoring the integers that  
arise in this way. In Section 4 we speculate about possible extensions. 

2 B a s i c  S c h e m e  

Vanstone and Zuccherato [3] propose a cryptographic system based on an elliptic 
curve modulo a composite number N = pc/, whose factorization must remain 
secret. In section VII.C of [3], it is recommended to select 75-digit primes p and 
q with certain properties. Two methods are given for constructing such primes. 
The first constructs a 37- or '38-digit integer a (satisfying certain conditions 
which are irrelevant to the present discussion) and defines 

p = a 2 + 4 .  

The second defines 
p = a 2 - 3 a + 9 .  

More generally, suppose we are given small integer coefficients A, B, C and 
told that ,  for some unknown large integer a, the prime p satisfies 

p - -  A a  ~ + B a  + C.  
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Similarly we are told that q is of the form 

q =  Db2 + E b +  F. 

So A, B, C, D, E, F are small known integers, while p, q, a, b are large unknown 
integers. We are also given the product 

N = p q .  

(In practice, we may not actually know A, B , . . . ,  F, but instead have to exhaus- 
tively search over possibilities.) 

3 Factoring These Numbers 

Let us begin by completing the square: 

4Ap  = 4A2a 2 + 4 A B a  + 4 A C  
= (2Aa + B)  2 - ( B  2 - 4 A C )  
= x 2 - 6  

where x -- 2Aa + B ,  and 6 = B 2 - 4 A C  is the discriminant; ~ may be positive 
or negative. Similarly 

4Dq = y2 _ e 

y = 2Db + E 
�9 = E 2 - 4 D F  

and 
1 6 A D N  = (4Ap)(4Dq)  = x2y 2 - ~y2 _ ex2 + 6e. 

In this equation we know A, D, N, 6, e, but not p, q, x, y. 
The point is that ~ gives us a good approximation to the quantity 

xy ,  and from that we can compute the rest of the factorization. That is, 

&y ex 
~ / 1 6 A D N  = xy  2x 2y + smaller terms 

x~ 

Assume that Ap and Dq are roughly the same size, say 

Ap 10 -1~ < ~qq < 1010, 

so that 

= ~A]=_~___ + 0(1) < x_ 
10 s, 

Y V-q 

and that ~ and e are reasonably small, 

I,~l, I~l < lO5. 
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Then our uncertainty in the exact value of xy  is bounded by about  101~ and it 
will be feasible to exhaustively search in the neighborhood of [v/NJ to find the 
exact value. 

Given our guessed value of xy, we continue. Define I by 

r = ( = y )  2 - 1 6 A D N  + 5e = 6y 2 + ex 2 

6y 2 _ ex2 = •  4~ (=y)2  

from which we can compute 

and complete the factorization. 

• J r  2 - 

25 

y2 _ 

q = 4D 

Remark. We can use a sieve to accomplish the task of trying various values 
of xy  and seeing which ones yield integer values for y2. 

Remarlv.. If B is even, the factor of 4 can be dispensed with. So in the case 

g = (a 2 +4) (b  2 + 4 )  

we can simply use x = a, y = b, and 

4 Specu l a t i ons  

The present approach is not very robust. It does not work if p and q are of vastly 
different sizes: 

p << q. (1) 

It does not work if N is the product of three specially constructed primes: 

N = pqr = (a 2 + 4)(b 2 + 4)(c 2 + 4). (2) 

It does not work if N is the product of two primes, only one of which is known 
to be given by a quadratic formula: 

N = pq = (a 2 + 4)(q). (3) 

These failures represent possible areas of further research. 
This last problem (3) is reminiscent of the situation treated by the present 

author  in [1]; see also [2]. That  is, [1] considered the case N = pq where we know 
half the bits of p (either the (log 2 p)/2 = (log 2 N ) / 4  most significant bits, or 
the (log 2 p) /2  least significant bits, of p), and showed that  we could discover the 
factorization of N using lattice basis reduction methods. The unknown part of 
p accounted for (log 2 N ) / 4  bits. 

In the present case (3), our knowledge of p is of a different sort: we know 
that  p is of the form a 2 + 4, and again we have log 2 a = (log 2 N ) / 4  unknown 
bits. This is only a weak analogy; to our knowledge, the methods of [1] do not 
apply to the present problem. But they do encourage us to search for a factoring 
algorithm that  could make use of the sort of information given in (3). 
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