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Abst rac t .  A broadcast encryption system allows a center to communi- 
cate securely over a broadcast channel with selected sets of users. Each 
time the set of privileged users changes, the center enacts a protocol to 
establish a new broadcast key that only the privileged users can obtain, 
and subsequent transmissions by the center are encrypted using the new 
broadcast key. We study the inherent trade-off between the number of 
establishment keys held by each user and the number of transmissions 
needed to establish a new broadcast key. For every given upper bound 
on the number of establishment keys held by each user, we prove a lower 
bound on the number of transmissions needed to establish a new broad~ 
cast key. We show that these bounds are essentially tight, by describing 
broadcast encryption systems that come close to these bounds. 

1 Introduct ion 

Broadcast encryption addresses the problem of the allocation of secret keys to 
users in order to enable a center to broadcast to selected subsets of users with 
security. This is an important problem in the larger area of network security, and 
it has increased in prominence with the growth of the pay-television industry. 

Our model is a formalization of that  of Fiat and Naor [7]. Each user ini- 
tially holds a personalized subset of all possible establishment keys. Each time 
the center needs to establish a new broadcast key it enacts an establishment 
protocol. This protocol consists of a sequence of transmissions, each transmis- 
sion is encrypted using a different establishment key. A transmission can only 
be decrypted by users who have the corresponding establishment key in their 
personalized set. The broadcast encryption system should be designed so that  
only privileged users are able to compute the new broadcast key when the proto- 
col ends. Subsequent transmissions by the center are encrypted using the newly 
established broadcast key. 

* The author's research was supported in part by the National Science Foundation 
operating grants CCR-9304722 and NCR-9416101. 

** This author's research was done while a graduate student in the Mathematics De- 
partment, University of California at Berkeley. 
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As an example, consider the simple broadcast  encryption system in which 
each user has a unique establishment key. To establish a new broadcast  key, 
select a random key B and send one transmission for each of the privileged 
users, encrypting B with the establishment key of the user. This protocol only 
requires a small amount  of storage as each user holds just one establishment 
key. However, it requires a large amount  of communication because the number  
of transmissions is equal to the number  of users in the privileged set. At the 
opposite end of the spectrum, consider the broadcast  encryption system tha t  
assigns to each set of users a unique establishment key, and each user holds 
the keys for all sets in which it is a member .  To establish a new broadcast  
key, select a random key B and send one transmission encrypting B using the 
establishment key associated with the set of privileged users. This system only 
requires one transmission (low communication).  However, it requires each user 
to hold as many  establishment keys as there are privileged sets in which it is a 
member  (high storage). These two examples suggest there is a trade-off between 
the number  of transmissions needed to establish a new broadcast  key and the 
number  of establishment keys held by each user. This trade-off is the subject of 
this paper.  

We focus on the case in which the privileged sets consist of all sets of users of a 
certain fixed size. It  is not unreasonable to focus on such a collection of privileged 
sets, since in practice the number  of users requesting any given broadcast  can 
be bounded accurately a priori. For example, the set of excluded users may just 
be those who have neglected to pay their pay-television bill tha t  month.  Over 
time, the number  of delinquent users is likely to be relatively stable (and small). 

We prove tha t  for a given upper  bound on the number  of establishment keys 
held by each user there is an inherent lower bound on the number  of transmissions 
needed to establish a new broadcast  key. For different types of protocols, we 
then describe constructions tha t  come within a constant factor of these bounds, 
thereby demonstrat ing tha t  our trade-off bounds are close to optimal.  We note 
tha t  our bounds do not take into account how much information is sent with 
each transmission. Most of our constructions do not send much information (i.e. 
just  a single key) with each transmission. 

The organization of this paper  is as follows: Section 2 describes previous 
work in this area, Section 3 contains all the definitions and notation, Section 
4 describes the model from a set theoretic perspective and the mathemat ica l  
tools that  we use, Section 5 contains lower bounds on the number  of keys per 
user in broadcast  encryption systems (our main results), Section 6 describes 
constructions tha t  are close to these bounds, and Section 7 is a brief conclusion. 

2 P r e v i o u s  W o r k  

Previously, bounds in the general broadcast  encryption model have been given 
for various parameters.  Fiat and Naor [7] introduce broadcast  encryption and 
describe several constructions. They  focus on a feature of broadcast  encryption 
systems called resiliency. A broadcast  encryption system is k-resilient if a center 
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is able to broadcast to any set of privileged users with the assurance that  no 
disjoint coalition of k excluded users can receive the broadcast even by shar- 
ing their establishment keys .  They construct both unconditionally secure and 
computationally secure systems of various resiliencies. Our lower bounds apply 
even to 1-resilient protocols, and thus our bounds are as strong as possible. In 
addition, some of the establishment protocols we describe are resilient against 
arbi trary coalitions of excluded users and come close to the trade-off parameters 
of our lower bounds. We also describe less resilient establishment protocols that  
meet our lower bounds. 

Blundo and Cresti s tudy unconditionally secure broadcast encryption sys- 
tems further in [2]. They prove information theoretic lower bounds for a model 
of unconditionally secure broadcast encryption focusing on zero-message broad- 
cast encryption (no transmissions by the center) and interactive broadcast en- 
cryption. Here we present broadcast encryption systems in which the number of 
keys per user is much smaller than the zero-message schemes in [2] by allowing a 
positive number of transmissions. These transmissions take the form of one-way 
(i.e. noninteractive) broadcasts from the center to the users. 

In [4] constructions and lower bounds for a model of unconditionally secure 
broadcast encryption are presented. The authors of [4] are also interested in the 
communication-storage trade-off. In their model each user is given some secret 
information and the users use the information to compute common keys via a 
key predistribution scheme such as in [1] or [3]. The efficiency of the systems 
in [4] is measured by considering the amount of secret information held by each 
user as compared to the information content of the broadcast made to establish 
the broadcast key; and the size of the broadcast as compared to its information 
content (i.e. it is an information theoretic model). In this paper we assume that  
the users are actually given the keys (for example, in an integrated circuit (IC) 
card) rather than the information with which to compute them, and commu- 
nication is measured in terms of the number of keys needed to establish the 
broadcast key (the number of transmissions). The efficiency of our systems is 
measured by comparing the number of keys per user to the number of transmis- 
sions. These are both important  practical parameters. In an implementation of a 
broadcast encryption system, a user's keys may be contained in an IC card with 
only limited memory, and the broadcasting center may want to limit the num- 
ber of transmissions due to cost-efficiency concerns. Because of the differences 
between our measurements of efficiency and those in [4], the optimal systems in 
[4] are generally not optimal in our model. For example, they present an op- 

X timal scheme using resolvable designs, with ({) transmissions to broadcast to 

a privileged set of size x, out of a universe of n users, that  requires each user 
to generate n-1 (~-1)  keys. In this paper we present a system in which each user 

has ,~-1 ( I - 1 )  keys and only 2 transmissions are needed. Another difference between 

[4] and this paper is in the mathematical tools used to prove lower bounds on 
the trade-off between communication and storage. A s tudy of the keys per user 
versus transmissions trade-off is well suited to a combinatorial analysis. Results 
from extremal set theory lead to tight bounds on the number of keys per user 
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in terms of the number  of transmissions. 
Stinson and Trung [12] continue the analysis of the trade-off studied in [4] 

by presenting new constructions of key predistribution schemes and broadcast  
encryption systems. They also prove new lower bounds on information rates of 
the aforementioned trade-offs. 

A survey of broadcast  encryption systems (constructed prior to [4]) can be 
found in [ll]. 

3 D e f i n i t i o n s  a n d  N o t a t i o n  

We are largely mot ivated by the scenario of pay-TV in which there is a set of 
users who have paid to watch a part icular  TV station. We call the users who 
have paid for this service the set of privileged users, and the collection of users 
who are not in the set, excluded users. We want to allocate establishment keys 
to users in such a way tha t  the center can establish a new broadcast  key with 
which to encode the T V  station for any part icular  set of privileged users. Any 
excluded user should be unable to decipher the broadcast  key. We'll denote the 
collection of privileged sets of users by 7 ~. 

In this paper,  we let 7~ be the collection of all subsets of users of size n - m, 
where n is the total  number  of users, and m is the size of an excluded set of 
users. We show tha t  the number  of keys per user can be reasonably small when 
either rn is much smaller than n (m < <  n/2) or m is very large (m > >  n/2). 
It  is likely tha t  one of these scenarios will be the case in practice. For example, 
to a pay-television stat ion m is the number  of users who do not pay their bill 
in a given month; usually this is a small number.  On the other hand, to a pay- 
per-view provider m is the (usually large) number  of users who do not request 
to view a particular film. 

Let S denote the set of all establishment keys. The set of establishment keys 
known by user u, is denoted by U c S. Let K --- IS I be the total  number  of 
establishment keys, and let ]UIm~= = maxu ]UI. For a set of privileged users, 
P E T', the set of establishment keys which the center uses to establish the 
new broadcast  key will be denoted by Sp C S. The number of transmissions is 
defined to be t = m a x p e  p ]Sp[. 

The focus of this paper  is the trade-off between the number  of transmissions, 
~t, and the max imum number  of keys per user, ]U I . . . .  

The  broadcast  key used to encrypt the T V  stat ion for the users in P is 
denoted by Bp. To each privileged set P there is an associated establishment 
protocol. The establishment protocol defines which subsets of keys in Sp are 
sufficient to recover Bp. Two natural  establishment protocols are what  we call 
the OR and AND protocols. If the center is broadcast ing to P with an OR 
protocol then a user needs at  least one key in Sp to be  able to decrypt Bp. 
With an AND protocol a user needs all the keys in Sp to be able to decrypt 
Bp. We will discuss specific examples of broadcast  encryption systems tha t  use 
these protocols later. 
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We'll often refer to establishment keys and establishment protocols as, simply, 
keys and protocols. However, we will always distinguish between (establishment) 
keys and broadcast  keys. 

Suppose the center wants to establish a broadcast  key Bp to broadcast  to the 
users in the privileged set P .  The center first generates random binary strings 
Bp and Tp. For each key k E Sp the center then generates a string c~(Bp, Tp) 
based on the establishment protocol associated with P.  The string cP(Bp, Tp) 
is then encrypted,  in a computat ional ly secure way, so tha t  key k is necessary 
to decrypt it. Each user u is able to recover {cP(Bp, Tp) : k E U}. We assume 
tha t  a user w for which k r W gains no information about  cP(Bp, Tp) from 
the encryption of cP(Bp,Tp). For each privileged set P there is a function dR 
which on input all the information user u E P is able to decrypt,  outputs  Bp. 
The following conditions must  be met  by any establishment protocol: 

I. Any privileged user is able to recover enough information to construct 
the broadcast  key, i.e. Vu E P, dp({cP(Bp, Tp) : k e U}) = Bp. 

II. For any possible decoding algorithm d~,, and for any possible output  
s t r ing/3 of the decoding algorithm, each string a E {0, 1}IBPI is equally 
likely to be the broadcast  key, i.e. Vw ~ P,  Vd~,, Va E {0, 1} Isp[, V/~ C 
{0, 1} IBPI, Pr[Bp  = ald~p({cP(Bp,Tp): k E W}) = •] = 1 2-7~" 

Note tha t  an excluded user w may  be able to obtain some information if he has 
some of the keys used to encrypt  the transmissions. The  broadcast  encryption 
system must  be designed so tha t  the broadcast  key is uniformly distr ibuted even 
with this information. 

For an OR protocol the center sets Tp = 0, the empty  string. Since any 
key in Sp must  be sufficient to decode Bp, the center defines cP(Bp,O) to be 
Bp for every k E Sp. In other words, the center replicates Bp, ISpI number  of 
times. Then dp({cP(Bp,O) : k E U}) P = c k (Bp, ~) = Bp for all k E Sp. It  is 
impor tant  to note here tha t  OR protocols are secure against arbi t rary  coalitions 
of excluded users since any excluded user has none of the keys in Sp and it is 
necessary to have at least one of the keys in Sp to decode Bp. 

The OR Protocol 

- Any one key in Sp is sufficient to recover the broadcast  key, Bp. 
- Secure against arbi t rary  coalitions of excluded users, since any excluded 

user has none of the keys in Sp. 
- Implementat ion:  

1. Set Tp=O. 
2. For all k E Sp, cP(Bp, Tp) = Bp. 
3. For all u E 7 ~, 3k E Sp ('1 U such tha t  P dp(c k (Bp, Tp)) ~- Bp. 

For an AND protocol with Sp = { k l , . . .  ,k~}, r _< t, the center generates 

r - 1 random strings Tpk l , . . . ,Tp  k~-I and defines Tp k~ to be B p  G Tp ~1 ~ . . .  
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T k r - ' .  The  string Tp is the concatenation of Tpk~,..., Tp k'. For each ki E St,, 
cP(Bp,Tp)  = T~,', and for every user u in P, dp({cP(Bp,Tp) : k E V}) = 

r P G~=lCk, (Bp, Tp) = Bp. If a user is missing k~ E Sp then the user will be unable 

to decode cP (Bp, Tp) = T k', and hence will not be able to decode Bp. 

The AND Protocol 

- It is necessary to have all of the keys in Sp to recover Bp. 
- Secure against a coalition of one excluded user; two excluded users may be 

able to recover Bp by pooling their keys. 
- Implementation: 

1. Let S p  = {kl, ...,kr}, r ~_ t. For all i < r, T k• is a randomly chosen 
string in {0, 1} IBel, T~, ~ = Bp va-~p"r'mkl va...vz~.p'Zm ,'r,'T k ' - I  and Tp = T kl II 7kp 2 II 

P 2. For all k, E Sp,  Ck, (Bp, Tp) = T~'. 
3. For all u E P ,  Vi = 1, . . . , r  ki E U, and dp({cP(Bp,Tp)  : i = 

r P S 1, . . . ,r}) = $,=lck,( p,Tp) = Bp. 

We can implement other establishment protocols by using these same ideas 
of replication (as in the OR protocol) and exclusive-or (as in the AND protocol). 
We will discuss other establishment protocols more in later sections. 

Finally, it will be helpful in our later discussion of establishment protocols to 
have a function associated with each privileged set P that  on input a subset of 
Sp returns a value of 1 if the subset is sufficient to decode Bp, and 0 otherwise. 
This function is referred to as a characteristic function for the establishment 
protocol associated with P. This is formalized below. 

Let Xu E {0, 1} K be the characteristic string of the keys held by user u. Let 
Xu, n xu, be the characteristic string of the intersection of sets Ui and U 3. Let D 

denote the inclusion poset on {0, 1} K (see Section 4.2 for definition). For every 
subset P E 7 ) we have a monotonically increasing function fp  : D --~ {0, 1}. Let 

Xsp E {0, 1} K be the characteristic string of Sp, then xsphas  at most t ones. 
The following hold: 

I. VP E "P,Vu E P, fp(xtr n XSp) = 1 
II. VP E/), Vw ~ P ,  f p  (XW n Xsp) = 0 

For example, let the number of users be n = 3 and let :P be the collection 
of all subsets of users of size 2. Then with K = 3, t -- 2, and OR protocols 
for each P, i = 1, 2 , . . . ,  6, the following characteristic functions (monotonically 
extended) satisfy the above properties: 

f{~1,~2} (1, 0, 0) = 1, f{~1,,~2}(0, 1,0) = 1, f{ul,~2}(0, 0, 1) = 0 
fNl,~a} (1, 0, 0) = 1, fN~,~a}(0, 1,0) = 0, fNl,ua} (0, 0, 1) = 1 
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fN2,u3}(1,0, O) = O, f{u2,~,3}(O, 1,0) = 1, f{~,2,u3}(O,O, 1 ) = 1 

In this example, Vi, j,  1 < i , j  <_ 3, S{u.,uj} = {ki, kj}. 

4 A S e t  T h e o r e t i c  A p p r o a c h  t o  B r o a d c a s t  E n c r y p t i o n  

4.1 E s t a b l i s h m e n t  Protoco l s  

In Section 3 we introduce the functions { fp}p;  the characteristic functions of 
the establishment protocols associated with the privileged sets. From each fp  a 
set theoretic description of each privileged set can be derived. This description 
suggests a natural construction with OR protocols. Also, this description may 
be helpful in proving other protocol specific lower bounds. We first describe 
how each fp  is equivalent to a certain logical formula involving the boolean 
operations V and A, and then we show how to translate this logical formula into 
a set formula for P.  

Def in i t ion  1. Let Z be a set containing the symbols k l , . . . ,  kK that  is closed 
under the boolean operations A and V. A formula is any member of ,U. 

To find a formula that  corresponds to a function fp,  we simply consider all 
sets of keys {Ai} that  suffice to receive the broadcast key (i.e. fP(XA,) = 1). 
An fp  function can then be expressed as a formula by taking the disjunction of 
all formulas of the form AkEAk. To find an equivalent formula we only consider 
minimal sets Am that  suffice to receive the broadcast key. For example, let Sp = 
{kl, k2, k3} and let f p  be defined as follows: 

fp(O, 0,0) = O, fp(1,O,O) = O, fp(O, 1,0) = O, fp(O,O, 1) = O, 
fp(1,  1,0) = 1, fp(1,0,  1) = 1 , fp(0,1 ,  1) = 1,fp(1,  1, 1) = 1. 
Then we can represent f p  by the formula (kl Ak2)V(kl Aka)V(k2Ak3)V(kl  A 

k2 A ka) or equivalently, alp = (kl A k2) V (kl A ka) V (k2 A k3). We can translate 
this into a set theoretic formulation by letting ~ denote the set of users who 
have key k~. 

To implement a protocol given a formula, simply use a separate AND protocol 
on each of the conjunctive subformulas as described in Section 3. To implement 
the previous example use three independently generated AND protocols, for the 
same broadcast key Bp, on the conjunctive subformulas. 

Def in i t ion  2. Let Ks  be a collection of sets containing the symbols ~1,. - . ,  KK 
that  is closed under the operations of intersection, n, and union, U. A set formula 
is any member of Z's. 

We have the following theorem that  holds for any set system 7 9 . 

T h e o r e m  3. A broadcast encryption system with characteristic functions {re}Pep 
and K keys total exists if and only if there are K sets ~1, . . . ,  gg ,  each contained 
in {Ul , . . . , un} ,  such that VP E 7 9 there exists a set { i l , . . . , i r p }  C {1,. . . ,K}, 
(rp < t) and P is equal to a set formula ayp with set symbols ~ 1 , . " ,  a~r~,. 
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P r o o f :  Assume we have such a broadcast  encryption system. Then for all P �9 7 ) 
there is a boolean function f p  and a set Sp of at  most  t keys, tha t  returns one 
on input a characteristic string Xu N Sp if u �9 P,  and returns zero if u !~ P.  
To construct a formula tha t  describes fp ,  first form the conjunction of the set 
of key symbols corresponding to a minimal set of keys in Sp that  suffices to 
decrypt Bp for each privileged user. The formula consists of the disjunction of 
all the subformulas formed in this way (i.e. one for each privileged user). If  we 
subst i tute ~i for k~, • for A, and U for V then we obtain a set formula for P.  

Conversely, allocate to user i key k~ if and only if u~ �9 nj. Translate the 
set formulas into formulas for monotonic encryption functions by reversing the 
above substitutions. Then we have a broadcast  encryption system for 7 ) with at 
most  t transmissions. The  sys tem can be implemented as described previously.[] 

The  previous theorem proves broadcast  encryption systems can also be de- 
fined in a set theoretic manner.  This description doesn ' t  capture all aspects of 
the implementat ion of the system; for example, the length of the transmissions 
is not explicitly defined. 

The following Corollary gives a necessary and sufficient characterization of 
OR protocols. 

C o r o l l a r y  4. There is a broadcast encryption system with OR protocols for 7 ), 
at most t transmissions, and K keys total if  and only if there are K subsets ~ = 
{~1 , . . . ,  ~K} of { u l , . . . ,  un} such that for all P �9 7 ~ there are 1 ~ i l , . . . , i r p  ~_ 
K,  rp ~ t, such that P = U~=la~j. 

Given any collection of key establishment protocols we can prove corollaries 
to Theorem 3, as we did above for a collection of OR protocols. A construction 
of a broadcast  encryption system with OR protocols follows natural ly from the 
set theoretic characterization given here. 

4.2 M a t h e m a t i c a l  Too l s  

In this section we describe a couple of concepts and theorems tha t  we use to 
establish our main results; lower bounds on the number  of keys per user in 
broadcast  encryption systems. The  previous section indicates tha t  i t 's  helpful to 
think of broadcast  encryption systems in a set theoretic way, and the mathe-  
matics we discuss here is from the area of extremal set theory. 

D e f i n i t i o n  5. A poser (partially ordered set) is a set A with a binary relation 
< such that:  

(i) a < a for all a �9 A (reflexivity) 
(ii) if a ~ b and b < c then a < c (transitivity) 
(iii) if a < b and b < a then a = b (ant isymmetry) .  

Example 1. The inclusion poser on { 1 , . . . ,  K}  consists of the subsets of { 1 , . . . ,  K} 
ordered by inclusion. 
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D e f i n i t i o n  6. An antichain is a set of elements of a poset tha t  are pairwise 
incomparable.  

Sperner [10] proved a famous result on the size of an antichain in the in- 
clusion poset (often called a Sperner family). The following is a strengthening 
of this result. I t  was discovered independently by Lubell [8], Meshalkin [9] and 
Yamamoto  [14]. Although it is also a special case of a result of Bollobs [5], it is 
usually referred to as the L Y M  inequality. 

Lemma 7 LYM Inequality, Bollobzls, Lubell, Meshalkin and Yamamoto.  
S ~ Let $ 1 , . . . ,  S~ be subsets of { 1 , . . . ,  K}  such that { *},=1 is an antichain m the 

incluswn poser, and let f t  denote the number of sets of size ~, 0 < ~ < K .  Then 

~-~fe s <_1. 
s  

To prove lower bounds, we rely heavily on the combinatorial  concept of a 
sunflower. 

D e f i n i t i o n  8. A set system ~ = ( F 1 , . . . ,  FM) is a sunflower with M petals if 
vir l<i, j<M 

M 
FINE3 = N~=IFr 

M F~ N~=I ~ = C~- is called the center of the sunflower. 
A petal in the sunflower .T is a set of the form F, - (AM1F~) = F, - Cy .  

The following famous results gives a lower bound on the size of a sunflower 
in a set system. 

L e m m a  9 S u n f l o w e r  L e m m a ,  ErdSs and Rat io .  Let t,n be positive integers. 
Let ~r be a collection of n sets, each of size at most t. Then 9 v contains a sun- 

n i l  t 
flower of size at least t 

5 Lower B o u n d s  

In this section we prove lower bounds on the number  of keys per user for a variety 
of protocols. We begin with OR protocols, as these are both  simple and very 
secure. In Section 5.2, we show tha t  the ideas behind the proofs in Section 5.1 
can be extended without  much difficulty to a much larger class of protocols tha t  
we call consistent protocols. Consistent protocols are interesting because they are 
more general, but  still easy to implement.  In Section 5.3 we prove lower bounds 
for a broadcast  encryption system with an arbi t rary  collection of protocols. For 
the case of all OR protocols and consistent protocols, the bounds are the same. 
For an arbi t rary  collection of protocols and small t, we prove a lower bound on 
IUfm~ tha t  is on the same order as in the previous two cases. 
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5.1 OR P r o t o c o l s  

In this section all the protocols are OR protocols. We are particularly interested 
in OR protocols because, as mentioned in Section 3, any OR protocol is resilient 
against arbi trary coalitions of excluded users. 

To motivate our lower bounds on the number of keys per user we first consider 
the relationship between K the total number of keys, and [7)1, the number of 
privileged sets. To do this, we prove the following simple corollary of the L Y M  
inequality. 

C o r o l l a r y  10. I f S 1 , . . . , S r  are subsets of { 1 , . . . , K }  such that Vi, 1 < IS d _~ 
S 7" - -  . t < K / 2  { d , = l  is an antichai,  the inclusion poser, then < 

P r o o f :  If t <_ K /2  then for every e, 1 _< l _< t, then (K) < (K). The result 
follows from the L Y M  inequality. [] 

L e m m a  11. Let t ~ K/2 .  Then in any broadcast encryption system with OR 

protocols, K is J'-2((=)l/t). 

P r o o f :  Since {Sp}pep is an antichain, we can apply Corollary 10 to get (K) > 
( : )  [] 

It follows from the previous lemma that  lUting= is ~2(�88 (n~l/t),m, . However a 
larger lower bound can be proven when m is much smaller than n. We show 
that  for arbitrary but  fixed (with respect to n) values of m and t, the maximum 
number of keys per user and the average number of keys per user are both 

$2((=) 1/t). To prove these two results we rely on the Sunflower lemma of ErdSs 
and Rado. 

T h e o r e m  12. In any broadcast encryption system with OR protocols, [U[ma= _> 

P r o o f :  From Lemma 9 we know that  the set system {Sp}pETp contains a sun- 

flower, 9 ~, of size at least ~ .  Consider a set SpC~.  The  users in P :  must, 
as a group, contain at least one key in each of the other petals of the sunflower; 

therefore they collectively have at least (~,)1/, _ 1 keys, and so, some user in the 
t ) - 1  / m  keys. [] 

We can also use Lemma 9 to get a lower bound on the average number of 
keys per user. For this it suffices to show that  the number of sets in {Sp}eep  
that  aren' t  in a sufficiently large sunflower is exponentially small. 

T h e o r e m  13. In any broadcast encryption system with OR protocols the average 

number of keys per user is at least (~)1/~ 
8 t i n  " 
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P r o o f i  Let S : {Sp : P E 50}. Find sunflowers ~-i in S _ Oli-1 ~-j each of size 

g = ~ until there are no more. Let s be the number of sunflowers found in 

this way. The number of sets in S tha t  aren' t  in sunflowers is less than ~ by 
Lemma 9. 

Let E,  = {SP, i , . . . , Sp ,  t}, 1 < i < S. Consider a set Se,, in sunflower ~'i. 
None of the users in P (  have any of the keys in Sp , ,  so as a group they must have 

a key in each of the petals {Sp,~ - C5,}T#3. Therefore, Y~e~'$~ IVI -> I*'~i/' - 1. 

If we let T be the sum of [U] for all users u who are excluded by some set Pg of 

some sunflower, Oc,, then since each user is excluded by ~ privileged sets, we 
n 

have: 

lUll+]U21+ + IUnI > T > [ ]P2J~it/t ] ... 1 I50111-1/2 t] 1 
- - m / < 5 0 1  

Therefore, the average number of keys per user is at least ~ .  [] 

5.2 Cons i s t en t  E s t a b l i s h m e n t  P r o t o c o l s  

Just as we've considered broadcast encryption systems with all OR protocols, we 
might consider broadcast encryption systems in which the protocols are all the 
same, though not necessarily of the OR type (e.g. all AND protocols). In fact, 
we can generalize this notion a bit to obtain what we call consistent protocols 
and show that  the results from Section 5.2 hold when the protocols for the 
privileged sets are consistent. Such a collection of protocols will in general be 

: simpler to implement than an arbitrary collection of protocols, but  they will not 
generally have the high security of the OR protocols. Informally, the protocol for 
P is consistent with the protocol for P '  if any subset V C S p n  S' e suffices to 
receive Bp if and only if it suffices to receive Bp,. We formalize the definition of 
consistent establishment protocols in terms of the characteristic functions below 
and prove lower bounds in this case. 

Def in i t ion  14. The  functions {fP}Pep are consistent iff for all P1 ~ P2, and 
for all characteristic strings Xv where V C SpI n Sp2 , fP1 (Xv) = fp~ (Xv). 

T h e o r e m  15. In any broadcast encryption system with consistent protocols, 

I U I m =  > ( = ) ' '  
- -  2 t r n  " 

Proof." From Lemma 9 we know that  the set system {Sp}pe~, contains a sun- 

flower, 9 r ,  of size at least !(~)11/' Consider Sp 1 E ,T. For every Sp, E b r different 
t " 

from Sp~, there is some user u E P~ N P,. Since the functions { fp}p  are consis- 
tent user u must have a key in Sp, that 's  not in Sp 1 n Sp,, so user u has a key 
in the petal Sp, - Ca:. By this argument, at least one of the m users in P~ must 
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have a key in each of the petals Sp, - Cy, i ~ l ,  so some user in P~ has at least 

T h e o r e m  16. In any broadcast encryption system with consistent protocols the 

average number of keys per user is at least (=)~/~ 8trn " 

P r o o f i  Apply the same modification to Theorem ~13 as was applied to Theo- 
rem 12 to prove Theorem 15. [] 

5.3 General  Es tab l i shment  Pro toco l s  

In this section we consider broadcast  encryption systems in which the protocols 
corresponding to the individual privileged sets are not necessarily related. When 
t is small, we can extend the ideas of the previous section to get a lower bound on 
the max imum number  of keys per  user. Recall that ,  practically, a small value for 
t is a desirable feature of a broadcast  encryption system, as it usually indicates 
that  a broadcast  key can be established quickly and inexpensively. 

T h e o r e m  17. In any broadcast encryption system with at most t < v ~  n 

transmissions, IVim~ is ~2((~n)l/t). 

To facilitate the proof of Theorem 17 we have the following definitions. Let 
9 v be a sunflower with center C~-. Let T C C f .  

D e f i n i t i o n  18. A block, LT, is the set of all users u, such that  Ui n C~: = T. 

D e f i n i t i o n  19. A block is split by a petal  S p  -- C f  of the sunflower ~ if there 
exist ui, u 3 E LT such that  u, E P and uj E pc.  

P r o o f :  By Lamina 9, the set system { S p } p e T ~  contains a sunflower .%" of size 

[P~'/*, with center Cy.  There are at most  2 t subsets of C~:. Let L1 . . . . .  Lt (g <_ 2 t) 
be the blocks corresponding to those subsets. 

Since for all P, E •, ]P~C I = m there are at  most  2 tm petals in 5 ~ which don' t  

split any of the blocks, Li. Therefore, there are at  least ]PI1/* - 2 tm petals tha t  t 
1~I l I t  _2t-~ 

each split some block. Some block must  be split by at least ~' 2~ petals. 
Let L~ be such a block. We have the following two cases: 

(i) If IL,[ < 2m then there are at most  4rn 2 ordered pairs of users tha t  could 
Cly _2,m 

be split. So, some user has at least 2~4m2~ keys. 
(ii) If  ILil > 2m then if Sp  is a petal  tha t  splits L,, P must  include at least 1/2 

of the users in L,. Therefore the average number  of keys amongst  the users 

in Li is at least �89 (PJT_~ \ t2~ - 2 t ( m - 1 ) ]  keys. 

[] 
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6 C o n s t r u c t i o n s  

In this section we demonstra te  that  the lower bounds from Section 5 are essen- 
tially tight by describing broadcast  encryption systems tha t  come close to the 
bounds. The first construction is for the most  secure case of OR protocols, the 
second construction uses all A N D  protocols and the third construction uses con- 
sistent protocols. Also, in the first two constructions a relatively small amount  
of information is sent with each transmission. The last construction may have 
large transmission sizes. 

T h e o r e m  20. There is a broadcast encrypt ion sys t em with OR protocols in 
n--1 which ]Ulma= is ([,~m1_1). This ~s close to optimal for  large t. 

P r o o f :  Note tha t  with OR protocols we would never need more than n - m 
transmissions. Let a consist of all subsets of { u l , . . .  ,u~} of size [~-~--~1. This 
construction (cons t ruc t ion/ )  has ([~-~ml) keys total. 

t 
n We can use approximations to binomials to show tha t  the rat io of ([n-~mT) 

n - - m  

0 et to our Bound from Theorem 12 is ( ~ ) .  In particular,  

( e t ) ~  > (,~2m)l/t > 

( ,~ ~l/t  and so the above construe- Therefore, for large t, (n-~,,) is close to , , - m ,  , 

tion is close to optimal.  [:3 
Although the above theorem shows tha t  we cannot always reach our lower 

bound on the number  of keys per user with OR protocols, we can construct 
optimal  broadcast  encryption systems for arbi t rary  t and m with other protocols. 
For both  of the following simple broadcast  encryption systems the number  of 

keys per user and the total  number  of keys are on the order of (n)  1/t. Except  in 
the case m > n /2 ,  m > t they are not as resilient against colluding users as OR 
protocols. Also, construction I I I  may require tha t  a large amount  of information 
be sent in each transmission. 

I I .  A broadcast  encryption system for t < m: 
n Let K = ([.~]). Note tha t  this implies tha t  the number  of keys per user is 

on the order of our proven lower bounds. 
For every subset A of [m/ t ]  users create a key, kd .  Give kA to every user 

except those in A. Given any set of m excluded users, pc ,  choose A 1 , . . . ,  At  C_ p c  
such tha t  U~=IA, = p c  and IA, I = [m/ t ] .  Let k, be the key that  all the users 
in A, are missing. We'll decide to t ransmit  information using these keys in such 
a way that  a user must  have all of k l , . .  �9 kt to receive the broadcast key. This 
system uses A N D  protocols with SM = { k l ,  . . . , kt }. 

In the notat ion of the previous section, ~ = {n l , . .  �9 ~K} is the collection of 
all subsets of { u l , . . . ,  u,~} of size n - [~1 .  
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Two broadcast  encryption systems tha t  use the same set of keys are comple- 
mentary  if the set of keys tha t  user i holds in one system is the complement  of 
the set of keys the same user holds in the other system. Therefore, if we can use 
OR protocols to broadcast  to any set of n - m users in a BES, then we can use 
AND protocols to broadcast  to any set of m users in the complementary  BES. 
When m ~ n/2 and m > t we can use the method of construction I I  to find a 
broadcast  encryption system fo r / ) c  = {pc : p E 7 )} (the complementary  BES). 
This system uses OR protocols for P and the number  of keys per user is close 
to our lower bounds. 

We can increase the resiliency of this broadcast  encryption system by in- 
creasing the size of the subsets A of the first paragraph.  This will increase the 
likelihood that  a subset of colluding users are all missing a part icular  key. I t  will 
also increase the number  of keys per user. 

I I L  A broadcast  encryption system for t > m: 

Let ([K]) be the least integer greater than  or equal to n, so the number  of 

keys per user is on the order of the proven lower bounds. 
Let Ui be the set of keys held by user ui. Choose n subsets U1 , . . . ,  Un of 

the key set { 1 , . . . ,  K}  each of size K - r-~l.  Let P be a set of privileged users. 
We'll t ransmit  to user ur E P with the keys in Ur N[U~epc U c] using an AND 
protocol. The number  of transmissions is [ U,ep~ UCl _~ t (often, this is a strict 
inequality). This last inequality holds because each user is missing exactly F~I  
keys. 

Note tha t  for us to be able to recover the broadcast  key, us must  have all the 
keys in U~ N[U~Epr U c] for some u~ E P.  If U,. N[Uiepc UC] c_ Us and us E pc  
then Ur M U2 = 0. This implies tha t  Ur -- Us, a contradiction, so the system is 
secure. 

7 C o n c l u s i o n  

In this paper,  we've studied the trade-off between the number  of keys per user 
and the number  of transmissions in broadcast  encryption systems. These are 
impor tan t  parameters  to s tudy because they measure quantities tha t  effect the 
cost-effectiveness and speed of a broadcast  encryption system. The number  of 
keys per user has a positive correlation with the amount  of memory  per user, 
and the number  of transmissions effects the speed of the system. These are the 
first proven lower bounds for these parameters ,  as far as we know. Some simple 
constructions demonstrate  tha t  these bounds are essentially tight. 

An additional consideration, not fully addressed here, is tha t  of the size of 
each transmission (or bandwidth).  Our first two constructions are efficient in this 
respect, as they each require only tha t  a binary string of the same size as the 
broadcast  key be sent with each transmission. The third construction, however, 
requires tha t  O(n) binary strings of the same size as the broadcast  key be sent 
with each transmission. 
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