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A b s t r a c t .  In response to the current need for fast, secure and cheap 
public-key cryptography, we study an interactive zero-knowledge identi- 
fication scheme and a derived signature scheme that combine provable 
security based on the general problem of computing discrete logarithms 
modulo any number, short identity-based keys, very short transmission 
and minimal on-line computation. This leads to both efficient and secure 
applications well suited to the implementation on low cost smart cards. 

We develop complete proofs of completeness, soundness and statistical 
zero-knowledge property of the identification scheme. The security anal- 
ysis of the signature scheme leads to present a novel number theoret- 
ical lemma of independent interest and an original use of the "forking 
lemma" technique. From a practical point of view, the possible choice 
of parameters is discussed and we submit performances of an actual im- 
plementation on a cheap smart card. As an example, a complete and 
secure authentication can be performed in less than 20 ms with low cost 
equipment. 

K e y  words.  Identification scheme, digital signature, security analysis, 
general discrete logarithm problem, minimal on-line computation, low 
cost smart cards. 

1 I n t r o d u c t i o n  

Besides confidentiality, cryptographers  face two impor tant  problems: authenti-  
cation and signature or, in plain words, how to prove one's identity and how 
to digitally sign a document.  Recently, several proposals have already addressed 
those two questions, put t ing forward elegant solutions, many  of them based on 
the concept of zero-knowledge introduced in 1985 by Goldwasser, Micali and 
Rackoff [11]. In order to assess the performances of those schemes, four proper-  
ties have to be considered: 

- The most  impor tant  concern is, of course, security. Basically, a system is 
supported by the claim tha t  nobody has been able to jeopardize it so far. 
This is of course impor tant  but,  in many  applications, it is not a satisfactory 
guarantee.  A much bet ter  paradigm tries to prove security in a ma themat -  
ical sense, i.e. to establish theorems claiming that  illegal actions such as 
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impersonation are as difficult as solving a specific problem whose difficulty 
is well-established. Among these problems are integer factorization [4] or the 
computation of discrete logarithms in a finite group [23]. Half way between 
heuristic validation and formal proofs are proofs in a model where concrete 
objects are replaced by some ideal counterparts: applying this paradigm to 
hash functions yields the random oracle model described by Bellare and 
Rogaway in [1]. Although this approach may not be considered as offering 
absolute proofs of security for specific schemes, it provides a strong guarantee 
about their general design. 

- Next, the size of the data involved in the scheme is of crucial practical 
significance. We usually need short public and private keys, we want to 
reduce the amount of transmissions and, lastly, the length of the generated 
signatures is an important parameter in many applications. 

- Another key property is the time complexity of the scheme which controls 
the cost of the devices on which it may be implemented. There, we have 
to distinguish between the time needed for the precomputations that can be 
performed off-line possibly by a trusted authority (use & throw coupons [16]) 
and the calculations that have to be done on-line during authentication or 
signature. The latter is often the bottleneck of many applications, especially 
when smart cards are used. 

- Finally, in situations where a directory is not available, public keys need 
to be certified. A few paradigms are known; the simplest consists in having 
some authority sign the key in order to produce a certificate. This often 
degrades drastically the performances of a scheme, especially in terms of 
size. A simpler and more efficient technique has been proposed by Shamir 
[19] and just consists in using public keys so closely related to the identity 
that they do not have to be further certified. 

In this paper, we study an interactive zero-knowledge identification scheme and 
a derived signature scheme that combine provable security based on the general 
discrete logarithm problem (which difficulty is equivalent to the one of factoring 
integers and computing discrete logarithms modulo prime numbers), identity 
based short keys, very short transmissions and signature size and minimal on-line 
computation. This provides a solution for applications which require efficient and 
secure identification or signature generation while using only low cost individual 
devices. A typical example is "on the fly" authentication at a toll where the time 
needed to transmit data and to perform on-line calculations is very short, about 
0.1 seconds. 

R e l a t e d  W o r k  

In 1989, C. Schnorr [18] proposed an identification and a signature scheme based 
on the problem of computing discrete logarithms in groups of prime order. In 
these schemes the size of the data is short and the computations load is quite 
acceptable. Moreover, they are provably secure in the random oracle model [18, 
17, 21]. Towards a more precise description, let p be a prime number, q a large 
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prime divisor of p - 1 and g an element of Zp of order q. The user receives a 
secret key s in Zq and the corresponding public key v = g-8 mod p. If he wants 
to be identified, he generates x E Z~ at random and sends the commitment 
t = g~ rood p to the verifier who answers a challenge c randomly chosen in [0, k[. 
Then the prover computes y = x + s c  mod q and sends y to the verifier who 
check the equation t = g ~ v  c mod p. 

Modifications of the Schnorr scheme that  achieve additional properties have 
already been proposed [2, 7]. Basically, they use a composite number in place of 
p to provide identity-based public keys. A way to improve the protocol efficiency 
is to get rid of modular reductions during identification or signature. Exponen- 
tiation modulo p can be performed off-line by the user's device or precomputed 
by an authori ty in a use & throw coupons [16] setting. Therefore, in order to 
further reduce the on-line computation to a very simple operation, it is tempting 
to eliminate the second modulus q by performing operations in Z. This has been 
proposed by Girault  in [8] as an example of protocol allowing "self-certified" 
public keys. 

Our Results  

In this paper we show that ,  using the above scheme, it is possible to achieve 
a combination of the strongest properties tha t  one can demand. In section 2 
we study the identification scheme and we prove that  it is secure against active 
adversaries for any modulus n, provided the computation of discrete logarithms 
modulo n is hard. Next, we prove that ,  with suitable parameters,  the protocol 
is statistically zero-knowledge. In section 3, we introduce a derived signature 
scheme and we use the random oracle model in order to validate the proposed 
design, showing that  if an adversary is able to forge a signature under an adap- 
tively chosen message attack then he is able to compute discrete logarithms 
modulo n. Finally, section 4 is more practical on character: we discuss how to 
choose secure parameters in order to resist to the most efficient known attacks 
against factorization and discrete logarithm (4.1); we show that  the schemes 
support  identity based public keys (4.2) and explain how to optimize the data  
size (4.3), and finally we give the performances of two smart  cards applications. 

It should be clear that  we have not invented a new scheme. Rather, we 
have given a thorough theoretical and practical t reatment  of a scheme that  had 
not received strong attention from the crypto community, presumably because 
it lacked this type of analysis and, accordingly, might have been considered 
as dangerous despite its potential advantages. This is consistent with a current 
trend of today's  cryptography and other examples appear in the recent l i terature 
[20]. 

2 I d e n t i f i c a t i o n  S c h e m e  

Let us first introduce some notation. For any integer x, Ixl is the number of 
bits ([log2(x)J + 1) of x. We use functions &, defined by & ( t r u e )  = 1 and 
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& (false) = 0, and ,k, where ,k(n) is the highest order of any element of Z~. 
It is well known that  if the factorization of an odd integer n is 1-]i Pi e  ̀ then 
,k(n) = lcmi (pi e '-I  ( P i -  1)). Our computing model is the probabilistic polyno- 
mial t ime Turing machine (PPTM([nl)), which running time is a polynomial in 
In I. Finally, we recall a well-known (see [17]) probabilistic lemma: 

Lemma 1. Let A C X • Y ,  such that Pr {A(x, y)} >_ ~, 
x , y  

andY2= { a E X /  Pry {A(a,y)}  > e / 2 }  thenPr= {xEY2}  > e / 2 .  

We now describe the parameters of the system. Let n, S, X and k be four 
integers and g be an element of Z* of order ,k(n). The relations between those 
parameters are analyzed in the next section. We let �9 := (k - 1)(S - 1). 

The private keys s are chosen in [0, S[ and the public keys v are computed 
by the relation v = g-S mod n. A round of identification consists for the prover 
in randomly choosing an integer x in [0, X[ and computing the commitment 
t = g= mod n. Then he sends t to the prover who answers a challenge c randomly 
chosen in [0, k[. The prover computes y = x + sc and sends it to the verifier who 
checks t = gYv c mod n. A complete identification consists in repeating ~ times 
the elementary round. 

Security Analysis 

In order to prove the security of this protocol against active adversaries, we follow 
the approach of Feige, Fiat and Shamir [5], proving completeness, soundness and 
the zero-knowledge property. Later on we consider that  the security parameter  
is Inl and that  S, X and ~ are functions of Inl. For technical reasons related to 
the proof of the zero-knowledge property, k is considered as a constant. In order 
to simplify the notations, we do not write the dependences on Inl but  when we 
say that  an expression f is negligible, this means that  f depends on Inl and that ,  
for any constant c and for large enough Inh f(In[) < 1/Inl c. 

T h e o r e m  2 ( C o m p l e t e n e s s ) .  The execution of the protocol between a prover 
who knows the secret key corresponding to his public key and a verifier is always 
successful. 

Proof. Just notice that  gYv c = g=+SCg-SC = gX = t mod n. 

The proof of soundness consists in proving that ,  if someone is correctly identi- 
fied then, with overwhelming probability, he must know the secret key associated 
with his public key. We need two lemmas. 

Lemma 3. Let n be any integer and L be any multiple of )t(n). Then there 
exists a PPTM(Inl) which, on input (n, n), output the factorization of n in time 
O(InlILI). 

Proof. This lemma is due to Miller and is proved in [15]. [] 
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L e m m a  4. Assume that some PPTM([nl) adversary P is accepted by honest ver- 
ifiers with probability > 1 /k  ! + c, c > O. Then there exists a probabilistic Turing 
machine which outputs the private key s from the public data with overwhelming 
probability in time O(Inlk~r/~ + ]n[~ where r is the average running time o] 
a round of identification. 

Proof. Assume tha t  some PPTM(Irt]) adversary/5(w),  running on random tape  w, 

is accepted with probabil i ty >_ 1/k  ~ + ~. We write A C C ( P ( w ) ,  o ,  ...ct) the result 

of the identification of/5(w) when the challenges cl,...ct are used. By assumption,  

the probabil i ty of success o f / 5  is Pr  {ACC(P(w) ,  cl, ...ct)} >_ 1/k  ~ + ~. 
OJ ~ r  y" �9 " C l  

Let f2 be the set of random tapes w such tha t  P r  { A C C ( P ( w ) ,  cl, ...c~)} > 
e l  ~ . . . C  t 

1/k  t + ~/2. Using l emma 1, we obtain tha t  P r  {w E $2} > e/2.  
~d 

We now explain how to u se /5  in order to obtain a machine which on input 
(n ,g ,v )  answers (c~,fl) such tha t  v ~ = g~ m o d n ,  with - k  < ~ < k, in t ime 
O([nlklT/~ ) where T is the average running t ime of a round of identification. 

We first choose a random tape  w. Then, let i vary from 1 to ~. For each / ,  we 
let /5(w) produce the i TM commitment  ti and note Si the s tate  reached by P(~a). 

We ask/5(w) the k possible challenges and, each time, we check the answer and 

we reset ]5(w) at s ta te  Si. After those k steps, three cases may  appear:  

- if P(w) has correctly answered two challenges c and d,  with y and y~, return 

- if 15(w) cannot answer any challenge, return F a i l .  

- if/5(w) answers exactly one challenge, keep on with the loop. If the end of 
the loop is reached, return F a i l .  

With probabil i ty > e/2,  w E $2 and therefore this machine returns (c~, fl) such 
tha t  v ~ = g0 rood n after at  m o s t  O(k~T) t ime units. If  we repeat  21nl/e t imes 
this procedure with other random tapes, (c~, 8) is obtained with overwhelming 
probabil i ty in t ime O(]nlk~T/C ). 

We first use the machine with the input (n, g, Vo), where v0 = g7 mod n for 
~/ chosen much greater  than  n. I t  returns (a, fl) such tha t  v0 a = gZ mod n so 
L = -yc~ - fl is a multiple of )~(n) and L ~ 0 with high probabil i ty because even 
if the machine is able to compute  discrete logarithms modulo n in base g, it only 
learns the value of ~/modulo A(n). Using the result of l emma 3, n is factored 
and accordingly ~,(n) is computed  in polynomial time. 

We then use the machine again with the public key v whose discrete logari thm 
is unknown; it answers (c, y) such tha t  v c - gY mod n and, solving the equation 
y + sc = 0 mod A(n), we obtain so = s mod Ao with )~o = )~(n)/gcd(c,) , (n)) .  
Since k is assumed to be a constant and - k  < c < k, we can test whether 
v = g-~O-i• for all the positive integers i less than  gcd(c,)~(n)) < k and 
obtain the secret s. D 

T h e o r e m  5 ( S o u n d n e s s ) .  Assume that some PPTM(Inl) adversary ~ is ac- 
cepted with non-negligible probability by honest verifiers and that log(]hi) = o( g) 
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and that g is polynomial in Inl. Then there exists a PPTM(Inl) which outputs s 
from public data with overwhelming probability. 

Proof. If ~r([nl) is the non-negligible probability of success of P,  there exists an 
integer d such that  7r([n[) > 1/[n[ d for infinitely many values Inf. Furthermore, for 
[n I large enough, 1/k e < 1/2[n[ d because log([n D = o(g). So, taking ~ = lr([n[)/2 
in lemma 4 we conclude that  it is possible to compute s in time O(InlkgT/r + 
InlO(X)). If we assume that  e is polynomial in Inl, then there exists a PPTM(tnl) 
which outputs s from public data  with overwhelming probability. [] 

T h e o r e m  6 (Ze ro -knowledge ) .  The protocol is statistically zero-knowledge if 
S T / X  is negligible, where T([n D is the maximal number of repetitions of the 
protocol with the same keys. 

Proof. We describe the polynomial time simulation of the communication be- 
tween a prover P and a dishonest verifier V. We assume that,  in order to try to 
obtain information about s, V does not  randomly choose the challenges. If we fo- 
cus on the i th round of identification, V has already obtained data, noted Datai, 
from previous interactions with P. Then the prover sends the commitment ti and 
V chooses, possibly using Datai and t,, the challenge ci(Datai, t,). 

Here is a simulation of the i TM round of identification: choose random values 
c~' E [0, k[ and Yi' E [~ ,X[= [(k - 1 ) ( S -  1),X[, compute ti' = gY"v c'' mod n. If 
ci(Di, ti') ~ ci' then try again with another pair (ci, Yi'), else return (ti', ci', Yi'). 

For any function Q from Zn to Zk, any integer A and any positive constant 
A, we define S ( Q , A , A )  as the number of pairs (c,y) in [O,k[x[A,A + Al[ such 
that  Q(gYv c) = c. Let us prove that  S verifies A - ~ _< S(Q,A,  A) < A + 
(remember ~ = (k - 1)(S - 1)). First notice that  gUvC = gu+d• mod n and 
that  if Q(gUv c) = c then Q(gU+d• = C ~ C + d. The inequalities follow 
from a partition of the pairs (c, y) into A - s(k - 1) subsets containing exactly 
one pair (c, y) such that  Q(gVvC) = c and 2s(k - 1) subsets that  have at most 
one such pair. 

Let us denote by pi(t, c, y) the probability to obtain the triplet (t, c,y) in 
the actual round and by pi'(t, c, y) the probability to obtain the same triplet 
during the simulation. Using the strategy ci(Data,, t) = Q(t) of V to choose the 
challenges, we first calculate p: 

p(a ,~ ,~ )  = 
gZ = a m o d  n 

Z Pr Q(g*) =t3 
o<,<x x + sQ(g ~) = "r 

= | 
X = g'~v ~ mod n ] 

If (a,/3,9,) are such that  ~ _< ~ < X, Q(a) = / 3  and a = g~v ~ mod n, we 
have p(a,/~, ~) = 1/X.  Consequently, the sum of the probabilities for a E [~, X[ 
and all/3 and "r is equal to S(Q, ~, X - ~ ) / X  by definition of S. 
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We can also calculate the conditional probability p', using the Bayes' law: 

P'(~, fl, 30 = Pr  { c = fl, y = % a = g~v ~ mod n I Q(c~) = fl} 
O<_c<k,r~<yKX 

= O<c<kPr { c = f l ,  y = ' y , Q ( a ) = f l , } / a  = g~v ~ mod n o<c<kPr {Q(g~vC)=c} 

�9 <y<x ~<y<x 

= & (~ <- 7 < X,  Q(a) = fl, c~ = g~v ~ mod n) / S(Q, ~, X - ~) 
k ( X  - / k ( X  - 

The inequalities X - 2~ < S(Q, ~, X - ~) < X lead to an upper bound of 
the sum of differences 20 = Y~'a,Z,'r IP/( ~  fl' "Y) - P / ' (a '  fl' "7)] because 

Eo= 
~r 

1 z Ix 
~_<7<X 

0_<~<k 
~ = g ~  v ~ m o d n  

X - S(Q, #, X - #) 
= X . S ( Q , ~ , X - ~ )  x ~ ,i(Q(a)=fl)+(1-S(Q'~'X-~))X 

~<_~<X 

O<3<k 

c~=g~ v~ modn 

Therefore Z0 = 2(1 - S(Q, ~, X - ~ ) /X )  and consequently E0 is bounded by 
4 r  < 4kS /X .  So the simulation of one round is statistically indistinguishable 
from the actual distribution if k S / X  is negligible. 

We then use recursively this reasoning to simulate all the T rounds of iden- 
tification between P and V and we obtain 

]Pr {(a/,fl,,3',) = (t,, c,, y,)} - Pr {((~/,fl,,%) = (t,',c~',y,')} < 4~T 
(~, ,B, ,'~,),,_<T 

This is rigorously proved in appendix A. Therefore the protocol is statistically 
zero-knowledge as soon as S T / X  is negligible. O 

3 S i g n a t u r e  S c h e m e  

We can turn the identification scheme into a signature scheme in a way initially 
proposed by Fiat and Shamir [6] and used by Schnorr [18] and others. In order to 
perform the transformation, the challenges c are no longer randomly chosen by 
a verifier but computed through a hash function h. The signature of a message 
m is computed by taking a random x in [0, X[ and computing t -- g= mod n, 
c = h(m,t)  and y = x + sc. This produces the signature ( t ,c ,y)  that  may be 
checked by anybody with the equations c = h(m, t) and t = gYv c rood n. 

We now note [0, k[ the output  range of h. Note that ,  in the identification 
scheme, k was a fixed constant but,  in the signature setting, we need to let k 
depend on the security parameter  Inl, like S, X and T. 
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Security Analysis 

In order to prove the security of this protocol, we show that ,  if someone is able to 
forge valid signatures after having obtained signatures of messages he chose, then 
we can use him to compute the secret s. The random oracle model [1] is used 
to model the behavior of the hash function h so the proofs validate the overall 
design. We first need a lemma, proving that  a PPTM([n[) can statistically simu- 
late actual signature generation. We also use a number theoretical result which 
is of independent interest and which allows a precise estimate of the greatest 
common divisor of two random numbers. 

Lemma 7. The outputs of the signature algorithm can be statistically simulated 
by a PPTM(Inl) if k S / X  is negligible. 

Proof. Valid triplets (t, c, y), i.e. verifying t = gYv c mod n, generated by the sig- 
nature algorithm in the random oracle model can be simulated with the follow- 
ing probabilistic algorithm: choose randomly c' E [0, k[ and y' E [r X[, compute 
t' = gY'v c' mod n and return (t', c', y') as a valid signature. 

If we note p(t, c, y) the probability to obtain (t, c, y) with the signature algo- 
r i thm and p'(t, c, y) with the simulator, we see that  

[ g*v ~ = a m o d  n ~ [' f v ~ = a  m o d n ~  
o< <k ] O< <k ) \  <7<x 

P(a ' f l ' 7 )  = k X  and p'(a,  fl, 7) = k ( X  - ~) 

Therefore the sum of all the differences [p(a, fl, 7) - p ' ( a ,  ~3, 7)[ can be bounded 
like in the proof of theorem 6 and is less than 2 k S / X .  [3 

Lemma 8. Let c be a fixed constant in [{3, k[. Given any positive integer B,  

2.7 
Pr {gcd(c - c', c - c") > B} < -~- 

O<c',c" <k 

Proof. appears in appendix B. [7 

An attacker who existentially forges the signature scheme can be modeled as 
a PPTM(Inl) .A(a)), running on random tape w, which is able, for infinitly many 
values of the security parameter  Inl and for a non-negligible fraction of the public 
keys, to find with probability ~(Inl) a message m and a valid signature (t, c, y). 

Two scenario of attacks are considered, the no-message attack during which 
A(w) can ask Q queries Q1...QQ to a random oracle f and the adaptively chosen 
message attack where A(~)  can also ask the signatures (ti, c~, Yi) of R messages 
ml. . .mR he chooses to a signature oracle. This oracle knows the private key 
associated with the public one, follows the signature algorithm and consequently 
uses f to compute the challenges. We note T the maximal number of messages 
signed with a fixed key and ~-~t the average running time of an attacker A. 
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T h e o r e m  9. If  an existential ]orgery of the signature scheme under a no-message 
attack has a probability o] success ~ > 8Q/k  then the discrete logarithm can be 
computed with probability > E4/(21~ • Qh) within time 3 x TA + 0(Q2/c2) .  

Proo]. The proof is based on a technique developed by Pointcheval and Stern 
[17] and known as the ]orking lemma. It consists in making the attacker run 
with different random oracles in order to obtain valid signatures (t, ci, y~) of a 
message m with the same commitment t and consequently equations of the form 
gU'v e' = gY, v cJ mod n. Then, like in the proof of soundness of the identification 
scheme, this leads to the computation of the discrete logarithm of the public key. 

We describe a PPTM(lnl) f14 which obtains the valid signatures. It is far from 
being the most efficient one but  it is the easiest to analyse. M first chooses an 
index ~ for which we assume that  the question QZ asked by the attacker to 
the random oracle will be (m, t). Then it chooses a random tape w and three 
random oracles which answer identiquely the ~ -  1 first queries. Finally ~4 makes 
the attacker .A(w) running with each oracle and we hope to obtain three valid 
signatures (t, c, y), (t, c ~, y~) and (t, c", y") of the same message m. The following 
analysis proves that  J~I succeeds with probability > c4/(21~ x Qh) and further 
tha t  0 < gcd(c - c t, c - c") <_ 173 x Q 2 / ~ .  

Then, in order to compute a discrete logarithm modulo n, we first use ~ l  
with a public key vo which discrete logarithm is known and this leads to the value 
of A(n), just like in the proof of soundness of the identification scheme. Then 
we use it again with the public key v which discrete logarithm ( - s )  is searched 
and we obtain So -- s mod )~ (n ) /gcd (c -  c', c -  c", )~(n)). This explains why we 
need three valid signatures instead of two in the original forking lemma: in the 
identification scheme, k was fixed so gcd(c - c ~, )~(n)) < k was always "small"; 
here, k depends on in I and is "very large" so we need a second "forking" to be 
sure, thanks to the result of the lemma 8, to obtain a "small" gcd whatever A(n) 
may be and therefore to be able to find s mod A(n) after an exhaustive search. 

We now analyse why Y~4 succeeds in finding valid signatures. First, we can 
assume that  .A(w) does not ask the random oracle twice the same query so the 
oracle can be replaced by a the list of its Q random answers Pl,...PQ. Then, 
because of the randomness of the random oracle, the probability to produce a 
valid signature (t, c,y) of m without asking (m, t) is less than 1/k. Since ~ > 
8Q/k  > 2/k,  A(~)  asks the query (m, t )  and forges a signature with probability 
> c/2.  Consequently, with probability _> 1/Q, M guesses an index 13 such that  
the attacker succeds with Q~ -- (m, t) with probability > ~/2Q. Using lemma 

1 with X -- {0, 1)* x ([0...k[) z-1 and Y -- ([0...kD Q-z+1, we distinguish the 
subset 12 of tuples (co, pl, ...pz-1) such that  the probability of success only taken 
over (pZ,-.-Pn) is > c/4Q. ~vI chooses w and (Pl,- . .P~-I) that  belong to 12 with 
probability _> c/4Q. Then, with probability > ~/4Q the last answers of the first 
oracle leads .A(~) to output  a valid signature. 

The probability of success with the two other random oracles is > (~/4Q) 2. 
Furthermore gcd(p~ ' - p~) -= 0 iif p~ ' = p~ - P~' P~ = PZ so the probability to have 

gcd(pz - p~, p~ - p~) = 0 is 1/k s and it is smaller than 1/4 x (a/4Q):. Lemma 8 
proves that  the probability to have gcd(pz - p~, PZ - P~) > B is less than 2.7/B 
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so, with B -- 173 x Q2/e2, this probability is also smaller than 1/4 x (e/4Q) 2. In 
conclusion, A4 succeeds with probability _> 1/ Q • e / 4Q x e / 4Q x 1/ 4(e / 4Q ) ~ and 
(c,c',c") = (p~,p'~,p'~) are such that  0 < gcd(c-  c',c - c') < 173 x Q2/e2. [] 

T h e o r e m  10. Assume that k S T / X  and 1/k are negligible. If  an existential 
forgery of the signature scheme under adaptatively chosen message attack has a 
non-negligible probability of success then the discrete logarithm can be computed 
in time polynomial in Inl. 

Proof. First, the signature oracle can be replaced by the PPTM(Inl) S ( J )  of 
lemma 7 which simulates valid signatures if k S T / X  is negligible. This modifies 
only negligibly the probability of succes of the attacker because overwise it would 
be able to distinguish between actual and simulated signatures and this would 
contradict lemma 7. Then, we can assume that  .A(w) does not ask the oracle a 
query whose answer is already known, i.e. already asked by A(w) or generated 
by the simulator. On the other hand S(w') can simulate twice the answer to 
the same query or one already asked by .A(w). The probability to have such a 
"collision" is the probability to have (m~,t,) = Q3 or (mi,ti) = (mj, t j ) .  But 
if x is fixed in I0, X[ and x' randomly chosen in the same set, the probability 
to have g~ = g~ mod n is [X/)~(n)]/Z < 1/,k(n) + 1IX.  So the probability of 
collision is less than (RQ + R(R - 1)) x (1/)~(n) + l / X ) .  We can further assume 
that  1/A(n) and 1IX  are negligible because overwise it would be possible to 
find the secret key by an exhaustive search (eventually using a known signature) 
in polynomial time. Consequently the probability is negligible since Q and R 
are polynomials in Inl and for large enough values of the security parameter  it 
becomes less than e/2.  

If no query is asked twice, the random oracle can be considered as an or- 
acle who just answers random values chosen in [0, k[. With probability _> e/2,  
the attacker succeds in forging a signature in this context. Furthermore, 1/k is 
assumed to be negligible so, for large enough values Int, e /2  > 8Q/k. We can 
now use exactly the same proof as for the previous theorem to prove that  we 
can make a PPTM(Irtl) able to compute discrete logarithms modulo n with non- 
negligible probability. O 

4 A p p l i c a t i o n s  

4.1 C h o i c e  o f  t h e  P a r a m e t e r s  

Let us first focus on n. In the theoretical analysis, we have not restricted the 
possible values and we have reduced the security to the difficulty of computing 
discrete logarithms modulo n. Notice that ,  if we know the factorization 1-[i P~' of 
n, the Chinese remainder technique enables to reduce this problem to computing 
discrete logarithms modulo each factor p~'. So, in order to prevent n from being 
factored, we must choose Inl greater than 512 bits and Inl -- 1024 should be 
more appropriate for secure applications (see [4]). Moreover, the prime factors 
of n must have approximately the same size and must not be too numerous. In 



432 

conclusion, n may be a prime integer, like p in the Schnorr scheme, or the product  
of a few distinct prime numbers in order to use identity-based public-keys (4.2). 

The size of S is conditioned by the complexity of discrete logarithms algo- 
rithms such as the Pollard lambda method which enables to compute s in O(x/~) 
operations. Furthermore, van Oorschot and Wiener have shown that  this method 
can still be improved; we refer the reader to [23] for a precise analysis. We just 
notice tha t  we should take ISI greater than 140 bits and preferably tSI ~ 180. 

The choice of the size of k is related to the probability of success of an 
adversary. The expected security depends on the application and Ikl = 20 (~ = 1) 
would probably be large enough for many identification systems. A larger value 
such as lkl = 80 would of course be preferred for signature schemes. 

When the parameters S and k are chosen, since X / k S  must be large enough 
to guarantee the statistical zero-knowledge property and to the security of the 
signature; we can for example take IXt > ISt + Ikl + 60 for identification and 
IXI _> ISI + Ikl + 80 for signature schemes. 

4.2 Identity Based Public Keys 

Following ideas of Maurer and Yacobi [14], the public keys can be turned into 
identity-based keys. Assume that  an authori ty knows the factorization of the 
publicly-known modulus n and that  it is able to compute discrete logarithms 
modulo each prime factor and consequently modulo n. Then, the authori ty com- 
putes secret keys associated with public keys closely related to the identity of 
users. Note that  since Z~ is not cyclic, we have to add a small offset to the 
identity in order to obtain public keys which discrete logarithm exists. 

We now recall a realistic scenario developped in [14]: an authori ty chooses 
four 200 bits prime integers Pl,-..Pc such that ,  for all i, (Pi - 1)/2 is also prime. 
Then it searches generators gi of all the cyclic groups Z~, ((p~ - 3)/2 elements 
of Z* generate the group). Using the Chinese remainder theorem, it obtains g 

P~ 
such that  g -- gi rood p, for all i; g is an element of maximal order of Z p .  It 
publishes n = Y I p i  and g. Then  it computes the secret keys of each user, i.e. 
the discrete logarithm of a coding of each identity merged with a small offset 
to guarantee the existence of the logarithm. The subexponential-time index- 
calculus algorithm [13] is the most powerful known method to solve this problem. 
During an initial processing stage it computes once and once only a database 
that  contains the discrete logarithms of a few elements and then any discrete 
logarithm computation reuses this database. 

4.3 Optimization of  the Data  Size 

In order to decrease the number of communication bits, Fiat and Shamir [6] have 
suggested not to send the all commitment in the first step of the identification 
but  only a hash value. This trick can of course be used with our scheme. Let 
h' be a hash function and Ih~l be the size of its output.  The modifications are 
very simple: the commitment t is replaced in the protocol by t '  = h~(t) and the 
verification equation becomes t ~ = h ' (gYv  c mod n). 
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Using the notion of r-collision-free hash functions, i.e. functions such that  it 
is not possible to find r pairwise distinct values with the same image, Girault 
and Stern [9] have analyzed precisely the consequences of such a modification on 
the security of identification schemes. We just recall the results of their s tudy on 
the minimal value of [h'[: if we note m the maximal number of queries to h' (for 
example m -- 264) in a reasonable time, then [h' I must be greater than 128 x m 

and than (2mr~r ! )  1 /r -1 .  Furthermore, k must be increased to k' = k x (r - 1) 
in order to keep the same level of security (1/kt).  All the details can be found 
in [9] and the tables below presents numerical results. 

m = 2 6 4  r 2 3  4 8 > 9  m = 2 S ~  r 2 3 4 1 5 1 9 1 > 1 o  ] 
h'J 128 96 85 72 -71 h' 160 120 106 99 88 -87 

Furthermore, we have already observed that  the commitments can be com- 
puted off-line, by the individual device or by an authority. In fact, we just have 
to compute and to keep in memory pairs of the form (x,  h ' (g  ~ mod n)). This 
can still be improved if the random values x are generated by a pseudo-random 
generator. This leads just to memorize the seed of the generator and the com- 
mitments, i.e. about only 10 bytes per authentication ! 

Finally, the signature (t', c, y) of a message m that  one can verify using the 
equations c = h ( m ,  t ' )  and t '  = h ' (gYv  c mod n) can be reduced to (m, c, y) with 
the single verification equation c = h ( m ,  h ' (g~v  c mod n)). 

4 . 4  S m a r t  C a r d  A p p l i c a t i o n  

In order to show to what extent the computations are minimal and the trans- 
missions very short, we now present two applications that  we have implemented 
on low cost smart cards based on an Intel 6805 chip. The size of the program 
is very short, about 300 by te s .  We see in the following table that  the running 
time of the computation is very short and actually most of the time needed 
for an authentication is taken by the communication protocol between the card 
and the computer.  Notice that ,  for signature, we do not take into account the 
computation time of the hash function; this would probably be the bottleneck 
of many very fast applications. In conclusion, this demonstrates that  the scheme 
under study is really suitable for very fast "on the fly" applications. 

Application 

Parameters  

Size of a precomputation 
Number of precomp, in 4 KB 

Number of CPU cycles 
Running time at 3.57 MHz 
Amount of communication 

Running time at 19200 bauds 
T o t a l  r u n n i n g  t i m e  

Identification Signature 

In I = 768 IS1=144 lnl = 1024 IS1=176 
[k[=24 [X[=228 [kt=80 [X[=336 

72 bits 88 bits 
4 5 5  3 7 2  

4678 14934 
1 . 3  m s  4 . 2  m s  

327 bits 
17 ms 

1 8 . 3  m s  

419 bits 
21.8 ms 

26  m s  
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A C o m p l e m e n t  to  t h e  P r o o f  o f  T h e o r e m  6 

Using the notations of the theorem 6 and the ideas of [10], we prove that  

( a l , / ~ , , % ) , i < T  

Pr {(cq,fli,~/i) = (ti,ci,yi)} - Pr {(ai,/~i,Ti) (t ' c '  Yi')} 4kST ~ t i , i ,  < - - ' ~  

Proof. Let us note wi = (ti, ci,yi) the communication between P and V at the 
round i and w'i the simulated triplet. By induction, since we have already proved 
the case T = 1, assume that  the property is true for T - 1. 

The quantity ~ P r { w i = w i , i < _ T } - P r { w , ' = w i , i < _ T }  
co~ , i<T  

Pr {wi = w~, i < T} Pr  {wt = WT/Wi = wi, i < T} 
can be written E E 

- P r  < V }  P r  < T} I 
i 

w, , i<T  COT 

Using undergraduate calculus techniques we see that  this is bounded by 

Pr_pr{wt{Wt =~or/w~'=~,~,i<T}= ~ ' ' i < T }  + ~ P r { w ~ = ~ , , i < T }  
~or =,WT/Wi -- Pr  {wi' = wi,i < T} 

w , , i < T  

and using the induction assumption and the result for just one round, this ends 
the proof. [:3 

B P r o o f  o f  L e m m a  8 

Let c C [0, k[ be a fixed value and B any positive integer. The expression Pr  
O < c '  , c "  < k  

{gcd(c - c', c - c") > B} can also be written 

k-1 Pr  { dld''d]d'' and } c-k<d',~"<cPr {gcd(d', d") = d} = ~ ,  c-k<d',~"<c ged(d'/d, d"/d) = 1 
d>B -- d = B + l  

k - 1  2 

= Z ( Pr,  {did'}) P r  
d = B + l  \ c - - k < d  <_c (c--k) /d<e' ,e"<_c/d 

{gcd(e', e") = 1} 

First, it is straightforward to prove that  

Pr  {dld'} = (LfiJ + L ~ J  + 1 ) / k  < l / d +  1/k 
c - -k<d '<c  

Furthermore we have to evaluate the probability for e' and e" randomly chosen in 
[ ( c -  k + 1)/d, c/d] to be coprimes integers. We use the idea of a proof of Mertens 
to demonstrate a theorem of Dirichlet that  states Pr  {gcd(u, v) = 1} = 6/7r 2 [12, 

U~V 

pp 324,337,595]. Let c~ and fl be two integers such that  ~ < 0 and c~ + fi > 0 and 
q(c~, fl) be the number of pairs (u, v) such that  a < u, v < ~+f l  and gcd(u, v) -- 1. 
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-,- )' From the principle of inclusion and exclusion, since + [uF~ j 1 - 1 
is the number of pairs (u, v) # (0, O) such that ~ divides u and v, we infer 

[(L J [ J )' ] q ( a , / 7 ) = ( / 7 + l ) 2 - 1  - ~ + ~ + 1  - 1  
Pl prime 

~+~ -~ 
+ Z + + 1  - 1  

Pl <P2 primes 

where #(~) is the M6bius function defined by #(1) = 1, #(Pl,--.p,) = ( -1 )"  if 
Pl, ...Pr are distinct primes and else # ( 0  = 0. Let A = q(a,/7) _/72 ~!_>1 #(0/e2" 

If e >/7, 0 < ~ +/7 </7 < e and 0 < - ~  </7 < e so [~e+-~-J + [ -~J  = 0. 

: [ ( [ J  
g=l s 

Using the f o r m u l a x - 1  < kxJ s x, weget  f o r l  < / 7 : - 1  < [%~J+L:~J+l-~ < 

1 and ~ - 1  < [~+-~J + i=~J + 1  + -~ < ~ + 1. Consequently 

_2_~ -I < ([~-~-~J + [z~J + 1) 2 _ (~)2< ~ +I 
e 

- - _< + 2  

Furthermore, the second term ~ t > ~  ~(~)/~2 is easily estimated because 

Z.>~,(e)le2 < E,>~ lie2 < 1 ; -  dxlx 2 < 1//7. Consequently IAI < 2/7(Hr 

1) +/7 with H~ = ~tz=l I / L  Furthermore, ~>1/~(~) /~2 = 6/7r2 (see [12, p 337]) 
so q(a,/7) < 6/~r 2 x/72 + 2/7 x H~ + 3/7. We can apply this result and we obtain 

c--k+l q ( ~ ,  L~J + r--.--.~-]) Pr {gcd(e', e") = 1} < 
(.-k+i)l,t<_e,e'<.ld (L~J + r ~ ]  + 1) 2 

Since q(a,/7)/(/7 + 1) 2 < 1.604 for/7 > 0 and 
k--1 Ed:B-1 (lid + l / k )  2 < Zd>B (2/d) 2 < 41B, we obtain 

k - l (  )2 7 7  
Z Pr, {dld'} Pr  {gcd(e',e") = 1} < ~ ~ < 

\c--k<d <_c (c--k)ld<e',e"<cld d=B+l d>B 
k-1 Actually a more precise analysis of the sum ~ d = B - 1  (1/d + l / k )  2 shows that 

in fact it is less than 1.635/B; this proves 

2.7 
Pr {gcd(c - e', c - c") > B} < ~ 

O_<c',c" <k 


