
Luby-Rackoff Backwards: Increasing Security by 
Making Block Ciphers Non-invertible 

Mihir Bellare I , Ted Krovetz 2, and Phillip Rogaway 2 

1 Dept. of Computer Science & Engineering, University of California at San Diego, 
9500 Gilman Drive, La Jolla, California 92093, USA. E-Maih mihir@cs.ucsd.edu 

UPS: h t t p : / / ~ - r  .ucsd. edu/users /n~hir  

2 Dept. of Computer Science, University of California at Davis, 
Engineering II Bldg., One Shields Ave., Davis, CA 95616, USA 

E-mail: {krovetz,  rogaway}@cs .ucdavis.  edu 
URL: http ://~. cs. ucdavis, edu/{'krovetz, -rogavay} 

Abs t rac t .  We argue that the invertibility of a block cipher can reduce 
the security of schemes that use it, and a better starting point for scheme 
design is the non-invertible analog of a block cipher, that is, a pseudoran- 
dora function (PRF). Since a block cipher may be viewed as a pseudo- 
random permutation, we are led to investigate the reverse of the problem 
studied by Luby and Rackoff, and ask: "how can one transform a PRP 
into a PRF in as security-preserving a way as possible?" The solution we 
propose is data-dependent re-keying. As an illustrative special case, let 
E : {0,1}" x {0,1}" --~ {0,1}" be the block cipher. Then we can con- 
struct the PRF F from the PRP E by setting F(k, x) = E(E(k, x), x). 
We generalize this to allow for arbitrary block and key lengths, and to 
improve efficiency. We prove strong quantitative bounds on the value of 
data-dependent re-keying in the Shannon model of an ideal cipher, and 
take some initial steps towards an analysis in the standard model. 

1 I n t r o d u c t i o n  

This paper  describes a t ransformation - -  turning a "pseudorandom permuta-  
tion" (PRP)  into a "pseudorandom function" (PRF) using "data-dependent  re- 
keying." I t  can be applied to a block cipher to increase the block cipher 's  secu- 
ri ty in certain ways, and, in particular,  the method leads to block cipher based 
message encryption and authentication techniques which are approximately  as 
efficient as ones in current use, bu t  have bet ter  security. 

In Section 2 we explain our (at first paradoxical sounding) thesis: tha t  in- 
vertibility of a block cipher can be a liability, not an asset, when it comes to 
the security of schemes that  use the cipher. We will then explain what  are PRFs  
and PRPs,  how the former are a bet ter  s tar t ing point for constructions but  the 
lat ter  a be t ter  model for block ciphers, and how all this leads us to consider the 
problem of transforming P R P s  into PRFs  in a security-preserving way. 

In Section 3 we describe our way to do the P R P  to P R F  transformation.  
We call our t ransform Fn d, where d is a pa ramete r  on which the construction 
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depends. (The impatient reader can jump to Section 3 to see how Fn d works. It 
is very simple.) 

Our main result is an analysis 1 in the Shannon model which shows that  if 
the block cipher is ideal then its transform under Fn d is close to an ideal random 
function. The provided bounds are strong, showing the transform is close to 
security preserving. 

The interpretation of the above is that  the Fn d transform gives good security 
against "generic" attacks. To guage its strength against cryptanalytic attacks we 
also analyze it in the standard complexity theoretic or "reductionist" framework. 
We do succeed in providing a reduction, but the quality of the bounds is not as 
good as in the Shannon model, and thus we view these results as preliminary, 
hopefully to be improved. 

The results are presented, discussed, and displayed graphically in Section 5. 
Just before that,  in Section 4, we provide the precise definitions of the security 
notions, but these can be skipped at first reading, or skipped entirely by an 
expert. In this truncated version of the paper we do not have space to include 
proofs of theorems. The reader interested in these is referred to the full version 
of this paper [7] which is available on the web. 

2 T h e  P r o b l e m  

We begin with a simple example, then relate these issues to PRFs and PRPs, 
then describe the problem that  results, and conclude with a discussion of related 
work. 

2.1 I nve r t i b i l i t y  can  h u r t  w h e n  us ing  block ciphers: A n  e x a m p l e  

A block cipher is a function E: {0, 1} ~ x {0, 1} n ~ {0, 1} n which transforms an 
n-bit message block x into an n-bit string y under the control of a x-bit key k" 
y = E(k, x). The function is invertible in the sense that  for each key the map 
Ek~fE(k,  .) is a permutation of {0,1} n, and knowledge of k permits computation 
of E~ -1. Concrete examples are DES, triple-DES and RC5. 

Message encryption is done by using the block cipher in some mode of opera- 
tion, such as "CBC." Using even a very "good" block cipher (say triple-DES, or 
even an ideal cipher), CBC encryption becomes insecure once 2n/2 blocks have 
been encrypted, in the sense that  at this point partial information about the 
message begins to leak 2, due to birthday attacks. 3 Fhrthermore, this is true for 
many other common modes of operation, too. Thus direct use of a 64-bit block 

1 All analyses in this paper are concrete and quantitative, meaning providing explicit, 
non-asymptotic bounds on the success probabiilty of an adversary as a function of 
its resources. 

2 A good encryption scheme is much more than one that prevents key recovery from 
a ciphertext: it should have the property that even partial information about the 
plalntext is not revealed [10, 4]. 

a The attacks are well known. See [4] for an analysis of their effectiveness relative to 
formal notions of security for encryption. 
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size block cipher usually enables one to safely encrypt no more than 232 blocks, 
which is quite small. 

We stress that these attacks arise because the cipher is a permutation, and 
their cost depends only on the block length, not the key length or the security 
of the block cipher. So the attacks are just as effective for triple-DES, or even 
an ideal block cipher, as they are for DES. In summary, block cipher based 
schemes are often subject to birthday attacks arising from the very nature of 
block ciphers as permutations. 

So how can we safely encrypt more than 2 n/2 blocks? One answer is to use a 
slightly different type of primitive in an appropriate mode of operation: specif- 
ically, a "pseudorandom function" (PRF) in CTR (counter) mode, as discussed 
in [4, 12] and explained further below. This way to encrypt is easy and has no 
extra overhead if a PRF of cost comparable to the block cipher is available. 

The above is only one example of an issue that arises in many places: that 
the permutivity of a block cipher can hinder the security of schemes which use 
it. To effectively address this we need to explain what are PRFs and PRPs and 
how they relate to block ciphers. 

2.2 P R P s ,  PI~Fs,  and  the i r  re la t ion  to block ciphers 

Let us first back up and look at how the security of a block cipher is best 
captured. 

SECURITY OF A BLOCK CIPHER: PRPs.  It is natural to view a real block cipher 
as constructed to "approximate", as closely as possible, an ideal block cipher 
(that is, a random permutation) in the sense that if you don't know the key k 
and only see input/output examples of Ek then these should appear like in- 
put/output examples of a random permutation. The quality of a given block 
cipher E as a PRP (pseudorandom permutation) is thus captured by a func- 
tion SEcPrp(q, t) which returns the maximum "advantage" that one can obtain 
in distinguishing Ek from a random permutation if you see q input/output ex- 
amples and are allowed further computational resources bounded by t. (In the 
complexity-theoretic model, t will bound computing time; in the information- 
theoretic model, t will bound the number of known (k,x, Ek(x)) values. The 
advantage is a number between 0 and 1 given as the difference of two proba- 
bilities: the probability that the adversary outputs 1 given a random function 
Ek from E, and the probability that the adversary outputs 1 given a random 
permutation ~r. See Section 4 for more details.) 

Each specific cipher (eg. DES) will have such an associated security function, 
which depends on (and to a large extent comprises) its cryptanalytic strength. 
Of course we won't know for sure what is this function, but we can work with 
what we know from cryptanalytic results. For example, if the linear cryptanalysis 
of [14] is the best attack on DES, we might assume SEC~)r~s (q, t) stays small (close 
to 0) until q, t reaches around 243. From now on, "block cipher" and "PRP" are 
synonymous, from the security point of view. 

CIPHERS WITHOUT INVERTIBILITY: PRFs.  Like a block cipher, a pseudorandom 
function (PRF) is a map F: {0, 1} ~ x {0, 1} n -~ {0, 1} n, but now Fk~fF(k, .) is 



269 

not required to be invertible. The required security property is to approximate, 
as closely as possible{ a random function. The quality of a given function F 
is captured by SEC~ r (q, t) which returns the maximum "advantage" that one 
can obtain in distinguishing Fk from a random function if you see q input- 
output examples and are allowed computational resources t. (This advantage is 
the difference between probability that the adversary outputs 1 given a random 
function F~ from F and the probability that the adversary outputs 1 given a 
random function p. See Section 4 for more details.) 

THE EXAMPLE REVISITED. Counter mode encryption with a PRF F means that 
to encrypt an m-block plaintext M = Xl . . .  Xm, send 

( ctr, Fk((ctr + 1))~Xl [[ . . .  [[ Fk((ctr + m))~Xm ) 

where (i) is the binary encoding of i into n bits, " ][ " denotes concatenation, 
and where you increment ctr by m after doing each encryption. (Notice that 
to decrypt you need only apply Fk, so that you don't need this function to be 
invertible.) Counter-mode encryption with a good PRF is pretty much "ideal 
encryption": it is shown in [4] that an adversary's chance of obtaining partial 
information about some plaintext, after q blocks have been encrypted, is at 
most SECPrf(q,t), the strength of F as a PRF. In particular if we had a PRF F 
with the same numerical security as DES but as a PRF not a PRP, namely 
SEcPrr(q, t) ~, SEC~)r~s(q, t), then we could encrypt nearly 243 blocks, well above 
the birthday bound. 

In contrast, when we use a block cipher (PRP) directly in CBC (or CTR) 
mode, we are not able to recoup all of the cryptographic strength captured by 
its SEC~rP( ., .) value, because at q --- 2 n/2 (which is q = 232 for DES) birthday 
attacks kill the encryption scheme. 

The conclusion can be put like this: to get quantitatively good security, 
what is most useful and convenient about F is that SECPrf(q,t) be small, not 
SEC~rp(q,t). To make the former as low as possible the family F must not be a 
family of permutations, since no family of permutation will have a good value 
of SEC~rf(q, t) if q _> 2 n/2. This is because of birthday attacks: if F is a family 
of permutations then the adversary A(q) who guesses "random function" if and 
only if she sees a collision in the answers returned from q distinct but other- 
wise arbitrary queries already accrues advantage of about 1/e if q = 2 n/2. The 
adversary's advantage then goes quickly to 1 with q >> 2 n/2. 

2.3 Luby-Rackoff  backwards  

The above is part of an emerging view or understanding, emanating from works 
like [4-6, 21], that when it comes to designing higher-level primitives (like en- 
cryption schemes or MACs) a PRF is a better tool than a PRP, from two points 
of view: it permits easier and more effective analysis of the designed scheme, 
and the resulting schemes have a greater proven quantitative security. This leads 
us to suggest that for the purpose of protocol design, what we really want are 
PRFs, not block ciphers (PRPs). 

So the question is how to get PRF families of high security and low cost. One 
possibility is to make these directly, in the same way we make block ciphers now. 
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We suggest that  this indeed be kept in mind for the future, but  at the moment 
is not a very pragmatic view, for two reasons. First, we have lots of (good) block 
ciphers available, and we want to use them well. Second, permutivity may  be 
important  to the design process of block ciphers; for example, using the round 
structure of a Feistel-network gives rise to a permutation.  4 

We propose instead to transform PRPs  into PRFs. Tha t  is, starting with a 
good P R P  E (realized by a block cipher), convert it into a good P RF  F.  This is 
effectively the reverse of the problem considered by Luby and Rackoff [13], who 
wanted to turn PRFs into PRPs.  

A crucial issue is to make transformations that  axe as "security preserving" 
as possible. We want SEC~rf(q, t) to remain low even for q >> 2 n/2. Ideally, 
SEcPrf(q, t) would be close to SEcPrp(q, t). 

Let us now discuss some related work. Following that  we present our con- 
struction. 

2.4 History and related work 

Our construction is related to the cascade construction of [31 . 
The notion of a PRF  was first defined in the polynomial-time framework by 

Goldreich, Goldwasser and Micali [9]. A concrete security t reatment  of PRFs,  
together with the idea that  concretely defined P R F s / P R P s  can be used to model 
block ciphers, originates with [6]. Luby and Rackoff use the term P R P  to refer 
to a family of permutations that  is a PRF family in the sense of [9]. Our notion 
is different in that  we measure the advantage relative to random permutations,  
not functions. This makes no difference in the polynomial-time framework, but  
in the concrete-security framework the difference is crucial; indeed, if concrete 
security is ignored, the problem we axe considering does not exist. 

The ideal block cipher model we use for some of our results is tha t  of [20], 
used also in [8,11]. 

There are many natural  ways to try to do the PRP- to -PRF conversion. One 
of the first to come to mind is to define Fk (x) = x~BEir (x). This construction is 
of value in some contexts, but  not in ours. For if you are given an oracle for this 
Fk(.) you effectively have an oracle for Ek(.): for any query x you can compute 
Ek(x) as x$Fk(x). So Fk will resemble a random function no more than Eh 
does. 

There are many natural  alternatives to the Fn d transformation. For example, 
t runcate E~(x), defining Fk(x) to be some appropriate-length prefix of Ea(x). 
This scheme was partially analyzed by [2]. Another natural  method is Fkl k2 (x) = 
Ekl (x)$Ek2 (x). This has not been analyzed. 

Aiello and Venkatesau [1] give a general construction for turning a P RF  
E :  {0, 1} ~ x {0, 1} n --~ {0, 1} n into a PRF F :  {0, 1} 6~ x {0, 1} 2n --~ {0, 1} 2n. 
But this is a different problem. Although they too want to circumvent some 

4 Another possibility is to make sure that the block size n is large enough (n >_ 128) 
that attacks of complexity 2 ~/2 axe irrelevant. This too is a good idea, but the 
construction we give has merit which goes beyond the birthday attacks which we 
have been using to motivate this problem. 
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birthday attacks, their starting point is a random function (not permutation) 
and the problem is to double the number of bits the function can take as input. 
They are bound by the original security of the starting function as a PRF: 
birthday attacks are only prevented in the sense that  the construction does not 
induce such attacks itself. So if a block cipher is the starting point, it is viewed 
as a PRF,  meaning the security is only 2 n/2. There is no notion of modeling a 
cipher as a random permutation.  In contrast, we go above the original bir thday 
threshold, to a security close to 2 n. Our construction is also more efficient, and 
it yields a map of the same key size and block length as the original one. 

In constructing a Wegman-Carter message authentication code (MAC) [22] 
one needs to symmetrically encrypt the universal-hash of each message M. If 
a PR P  is in hand for doing the encryption, one could define MAEkl,k2(M) = 
(ctr, Ek2(ctr)$hkl  (M)),  but  the security would degrade by O(q22 -n)  compared 
to using a PRF. (Here q is the number of MACed messages.) Shoup [21] describes 
an alternative with bet ter  exact security. Our methods allow the simpler and 
more general (ctr, Fk2(ctr)~ghkl(M)), where F is the result of PRP- to -PRF 
conversion starting from E. 

As we explained, Luby and Rackoff consider the complementary problem of 
turning a PRF into a block cipher [13]. Luby and Rackoff spawned much fur- 
ther work, including [15-18, 23], and our work shares their emphasis on concrete 
bounds, efficiency, and tight reductions. 

3 T h e  F n  C o n s t r u c t i o n  

We have described in Section 2.4 some simple suggestions that  don' t  work and 
some related constructions. Now we present our solution. We let E: {0, 1} ~ x 
{0, 1} n --~ {0, 1} n be the given block cipher (PRP).  

The values n and ~ vary across real block ciphers; for example, for DES we 
have ~ = 56 and n = 64; for (two-key) triple DES we have ~ = 112 and n = 64. 
We want to handle all these cases. Accordingly, our construction depends on the 
relative values of ~ and n. It also depends on a parameter  d, where 0 ~ d < n. 

SIMPLE CASE. The simplest case of our construction is when the given P R P  has 
the property that  a = n, and we choose d = 0. One then defines F = Fn~ by 
F(k , x )  = E ( E ( k , x ) , x ) .  That  is, Fk(x) = Ek,(x), where k' = Ek(x).  We call 
this "data-dependent re-keying" since we are applying E to x, but  using the 
data-dependent "derived key" k ~ = E~(x). The cost of computing F is twice 
the cost of computing E,  in the sense that  there are two applications of E for 
each application of F.  The general construction includes a provision aimed at 
reducing this overhead. 

THE GENERAL CASE. Let 0 ~ d < n be given. If x ~ is an n-bit  string, let 
x~>>d denote x ~ shifted to the right by d positions, with 0-bits filling the vacated 
positions. If k ~ is any string of length at least i, let [k~]l..i be the string consisting 
of the first i bits of k ~. Set j = [~/n]. The function F = FndE takes a ~j bit 
key kl . . .  kj and an n-bit  input x to return an n-bit  output  y as follows: 
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function F ( k l " " k j ,  x) 
begin 

x' e- x>>d 
k' e-- E(kl ,x ')]l . . .  HE(kj,x') 
k ~ [k']l..~ 
y ~ E(k,x)  
return y 

end 

/ /Shift  away low d bits 
//Construct the "extended" derived key 
/ / W e  only need tr bits of derived key 
/ /Use derived key on the input 

We call x I the group selector and k the derived key. The j applications of Ek, are 
to deal with the possibility tha t  ~ > n, and the truncating of k e to ~ bits is to 
handle the possibility that  the key length ~ might not be a multiple of the block 
length n. (More strange is the discarding of bits from the x, namely the x>>d. 
This is for efficiency, as we will explain below.) As an example, if E = DES, 
so that  ~ = 56 and n = 64, we would have j = 1, so the key of F is just  a 
56-bit DES key kl, the derived key k e is the first 56 bits of DESk1 (xl), and the 
output  is DESk,(x). If E is TDES (two-key triple-DES), so that  ~ = 112 and 
n = 64, we would have j = 2, so the key for F is a pair klk2 of TDES keys, the 
derived key k ~ is the first 112 bits of TDESkl (x')TDESk2 (x~), and the output  is 
TDESk, (x). 

Notice that  for fixed kl .. �9 kj, if two n-bit strings determine the same group 
selector then they generate the same derived key, and this happens if the two 
strings agree in the first n - d bits. Accordingly, we cluster together all points 
that  have the same group selector into what we call a common key group. Thus 
there are a total of 2 n-a  common key groups. For any ~ E {0,1} n-d we define 
ckg a = { x : [X]l...n-d -- a } as the a - th  common key group. Identifying strings 
with integers in the natural way, the i-th common key group consists of the 
integers (i - 1)2 d, ..., i2 d - 1. 

EFFICIENCY. Recall that  the nominal way to encrypt using F = FndE involves 
applying F to a single key k and successive ctr-values. By dropping the least 
significant d bits of this counter, one needs to recompute k' only once every 
2 d invocations of F.  Of course an implementation would need to to record the 
last derived key and refrain from re-computing it. Doing this makes the amor- 
tized cost to compute F just (1 + j2 -d) times the cost of computing E. For 
many ciphers this is is an underestimate because of additional cost associated 
to changing the key. In fact, the cost of changing the key some block ciphers is 
high, which is why we don' t  want to do it very often. 

VARIATIONS. How exactly one drops bits of x is not so important.  For example, 
instead of shifting to the right one could zero-out the least significant d bits. 
This makes no difference in the analysis. 

We have constructed F = FndE to be a map F : {0, 1} j~ x {0, 1} n --~ {0, 1} n. 
If one prefers, define ki by Ek((i)) and then let Fk(x) = Ek, (x), where k ~ is the 
first ~ bits of Ekl (x>>d) I] "'" I] Ekj (x>>d). Now F uses a ~-bit key, just  like E. 

The analysis of F lifts to F with just  a tiny toss in quantitative security. 
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4 Definit ions 

Here we give the more precise definitions of security in the two models in which 
we will be analyzing our construction, namely the (standard) "complexity the- 
oretic" model and the Shannon model. 

Recall that  in Section 2 we discussed security of F and E via functions 
SEC~rf(q,t) and SEcPrp(q,t). Their meaning changes according to the model 
in a simple way: 

- In the complexity theoretic model they are CS EC~ rf (q, t) and CS EC~ rp (q, t), 
respectively, these quantities being defined in Section 4.1 below, and 

- In the ideal cipher model, they are ISEc~rf(q,t) and ISEcP~P(q,t), respec- 
tively, these quantities being defined in Section 4.2 below, where F refers to 
the transformation that  takes E into F. (In our case, F = Fnd). 

PRELIMINARIES. If S is a probability space then g <-- S denotes the operation 
of selecting g at random according to the distribution specified by S. If S is a 
set it is viewed as endowed with the uniform distribution, so that  g e- S means 
that  g is selected uniformly at random from set S. If y is not a set then g <-- y is 
a simple assignment statement, assigning g the value y. (It is thus equivalent to 
g ~-- {y}.) Let Permn denote the set of all permutations ~r : {0, 1} n -~ {0, 1} n. 
Let Randn denote the set of all functions p : {0, 1} n -+ {0, 1} n. Let BC~,n be 
the set of all maps E : {0, 1} ~ x {0, 1} n -~ {0, 1} n such that  E(k, .) E Permn for 
all k E {0, 1} ~. Let RF~,n be the set of all maps R : {0, 1} ~ x {0, 1} n --~ {0, 1} n. 

A family of functions with key length ~ and block length n is a map G : 
{0, 1} ~ x {0, 1} n -r {0, 1} n, that  is, G E RF~,n. Each to-bit key k specifies the 
map Gk~fG(k, .) E Randn. This map is not necessarily a permutation. If Gk is 
a permutation for each k E {0, 1} ~ (ie., G E BC~,n) then we call G a family of 
permutations, or a block cipher. We view G as a probability space over Randn 
given by choosing functions via a uniform choice of the underlying key; that  is, 
g ~ G is the same as k ~ {0, 1} ~ ; g r Gk. 

Given a block cipher E, the block cipher E -1 : {0, 1} ~ x {0, 1} n --r {0, 1} n 
is defined by E- l (k , y )  being the unique point x such that  E(k,x)  = y. We 
interchangeably write E~ -1 (y) and E - l (k ,  y). 

An adversary is an algorithm A with access to some number of oracles. Ora- 
cles are denoted as superscripts to A, as in A E,E-1,F. An oracle responds to its 
query in unit time. 

4.1 Complexity theoretic m o d e l  

We will have two measures of security: the strength of G as a PRF and the 
strength of G as a PRP. We follow [6] in the manner in which the basic notion 
of [9] is "concretized." 

First, we need the concept of advantage, which for emphasis we call the 
"computational advantage" and write CADV. Let D be an algorithm (a "dis- 
tinguisher") taking an oracle for a function g, and let G1, G2 be two families of 
functions with the same block length. We define 

CADVGI,G2(D) -~ P r i g  ~- G1 : D g ~ 1] - P r [ g  ~-- G2 : D 9 = 1] .  
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Now, suppose F is a family of functions, and E is a family of permutations. We 
let 

CADvPrf(D) = CADVF, Ra~d. (n )  CADvPrP(D) = CADVE,Perm. (n)  

SEc~rf(q,t) = maxD {CADvprf(D)} SE~Erp(q,t) ---- maxD {CADvprp(D)} 

Here the first quantity measures the advantage D has in distinguishing random 
members of F (resp. E) from truly random functions (resp. permutations) of the 
same block length. The second quantity is the maximum advantage attainable 
using some amount of resources, in this case the number q of oracle queries 
and the running time t. For simplicity, when we speak of an adversary's time 
we mean the adversary's actual running time plus the size of the encoding of 
the adversary (relative to some fixed encoding scheme), so we have a single 
parameter t to capture time plus description size. The maximum here is over 
all distinguishers D that  make up to q oracle queries and have running time 
bounded by t. 

4.2 Idea l  b lock  c ipher  m o d e l  

The Shannon model [20] treats E as a random block cipher. This means that  each 
Ek is taken to be random permutation on n-bit strings. Let FE be some operator 
on E which returns a new family of functions, and say the new family has key 
length ~* but the block length is still n. (For us, F = Fn d and a* = j a  where 
j = ra/n].) As modeled by [8], the adversary that  attacks F is given oracles 
for E(., .) and E - l (  ., .) - -  as well as an oracle f where either f( .)  = F(k*, .) 
for F = FE and k* a randomly chosen key in {0, 1} ~', or else f( . )  = p(.), for a 
random function p : {0, 1} n -+ {0, 1}". We investigate the adversary's advantage 
in determining what type of oracle ] is. This is defined as: 

,ADv r'(A) = Pr B C . , .  +- (0 , ' } '"  ; S : A = 1] 

The advantage .4 gains depends, in part, on the number of queries q she asks 
of f and the total number of queries t she asks of E and E -1 . We are interested 
in 

ISECPrf(q,t) = maXA{IADVSrf(A)}, 

the maximum being over all adversaries that  make up to q queries to the f oracle 
and up to t queries to the E and E-1 oracles. 

This is an information-theoretic setting: the adversary has unlimited compu- 
tational power. If we think of E as a concrete block cipher, and not an idealized 
one, then attacks in this model correspond to attacks in which the adversary 
exploits no characteristics specific to the block cipher, only "generic" features of 
the construction F we are analyzing. Thus, security guarantees from results in 
this model are weaker than those from results in the model above, yet they do 
have some meaning. We use the Shannon model when technical difficulties pre- 
vent us from getting bounds as good as we would like in the complexity theoretic 
model. 
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NOTE. The goal will be to upper bound ISEcPrf(q, t) as a function of t ,  q, ~;, n. As 
such we don't  really need any notion of ISECO~P(q, t), the security of the block 
cipher, because the latter is assumed ideal, but there are two reasons to define 
it anyway. First, to maintain a uniform security treatment across the models, 
and in particular be consistent with Section 2; second, because it is indeed the 
quantity with which we wish to compare ISEC~Frf(q, t). 

We define ISECPrp(q, t) as the maximum, over all adversaries A of the speci- 
fied resources, of the quantity 

P r [ E 4 - B C ~ , n ; k  4- { 0 , 1 } ~ ; f  4- Ek : A E ' E - ' ' I =  1] 

Notice that  this quantity is not zero. For q > 1 and large n we would expect it 
to be about t .  2 -~, corresponding to an exhaustive key search attack. 

5 S e c u r i t y  o f  t h e  F n  C o n s t r u c t i o n  

We summarize both proven security guarantees and attacks that  indicate the 
tightness of the bounds in them. 

5.1 Security in the complexity theoretic model 

Here we refer to the notions of security of Section 4.1. We assume E is a PRP 
family and show our construction is a PRF family, via a reduction. We do this 
only for the case where the key length, ~, is identical to the block length, n, and 
we drop no bits, namely d = 0. 

T h e o r e m  1. Let ~ = n be a positive integer and let E: {0, 1} ~ • {0, 1} n --~ 
{0, 1} n be a family of permutations whose security as a P R P  family is described 
by security function CSEc~rP(.,.). Let F: {0, 1} ~ • {0, 1} n ~ {0, 1} n be our 
construction for the case of no bit dropping, namely F = Fn~ Its security as 
a P R F  is described by function CSEC~rf(., .) which for any number of queries 
q < 2n/2 and time t can be bounded as follows: 

q2 
CSEcprf(q,t) < CSEcPrp(q,t ') + q" CSEc~P(3, t  ') + 22n 

where t' = t + O(q) �9 (~ + n + TimeE). 

Proof. See [7]. [] 

The bound here looks good at first glance. The first term, namely CSECprp(q, t~), 
is saying the security of F as a PRF is related to that  of E as a PRP for 
essentially the same resources: we can't ask better. The last term, namely q2/22n, 
is negligible. What  about the middle term, namely q. CSEcP~P(3, tl)? Intuitively, 
CSECprp(3, t I) is small: what can you do in three queries? This view is deceptive 
because one should not forget the time t'. One can spend it in exhaustive key 
search, and thus CSEc~rp(3, t ~) can be / ) ( t ' 2 -~ ) .  But (dropping constants) this 
is at least q2 - a  so the second term in our bound looks like q22-~. Since ~; = n 
this is q22-n. 
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Fig. 1. Righ t  curve- I//ustrating Theorem 2, our upper bound on the adversary's 
advantage in distinguishing F = FndE from a random function, assuming n = 64, ~ = 
128, and d = 8. Here E is a random permutation and the horizontal axis Q = max(q, t) 
is the maximum of the number of consecutive f-queries and the total number orE, E -1 
queries. Lef t  curve: The birthday bound for the same choice of parameters. 

So these bounds are not proof that  the security of F goes beyond the birthday 
bound. It would be nice to improve the above result. However, even the proof of 
the above is not exactly trivial, and this is one reason we include the result in 
this paper: we hope its ideas are food for thought towards an extension. 

As far as we can tell, the difficulties in extending the above result are techncial 
rather than arising from any weakness in the construction. (We could be wrong.) 
Is there any other way we can give some meaningful evidence of the strength of 
the construction? We do this by analyzing it in the Shannon model. 

5.2 S e c u r i t y  in  t h e  ideal  b lock  c ipher  m o d e l  

The theorem below looks at the most general version of the F = FndE construc- 
tion, when the number d of bits dropped is arbitrary and no restrictions are 
made on ~;,n, in the model of Section 4.2, where E is an ideal cipher. We obtain 
very strong results, showing security not only beyond the birthday bound, but 
nearly as good as one could hope for. 

As we noted in Section 2, an important mode of operation for our construc- 
tion will be when the values to which Fkl...~i are being applied are successive 
counter values. Indeed, the bit dropping is done precisely to have maximum effi- 
ciency in this mode: as explained in Section 3, in this case, the amortized cost of 
computing F is just (1 + j / 2  d) times that  of computing E, a negligible overhead. 
Accordingly, this is the case to which the following security analysis pertains. 
(Though some later analyses are more general.) 

T h e o r e m  2. Let n, t~ be positive integers and d, q, t, ~ be non-negative integers 
with 0 < d < n and let F = Fn d. Let A be an adversary with three oracles, 
E(., .), E - I ( . , . ) ,  and y(.),  who asks the numbers 0 , . . . , q  - 1 of its y-oracle (so 
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Fig. 2. Varying the parameters of Theorem 2 - -  our upper bound on the adversary's 
advantage in distinguishing F = Fn~ E from a random function, with the horizontal axis 
Q = max(q, t) as in the previous figure. Left: Varying key length ~. Right: Varying 
bits dropped d. For both pictures n = 64. 

that these refer to ~ = [q2-dl common key groups), and asks at most t total 
queries of its E-  and E -1-oracles, these referring to no more than t common 
key groups. Let j = [~/n]. Then IhDv~rt(A) _< 

@a + _ _ . ~ .  2 -4~ + (12 + 2j~ + t j  + t) .  2 -~  + ~22d-n+a + t~2 d-n-~+2 
120 

Proof. See [7]. [] 

Thus the advantage remains low until q ~ 24~/5, t ,~ 2 a~/5, q ~ 2 n, or t 
2 (n+~)/2. We speculate that  the first two of these conditions can be further im- 
proved to 2 (1-~)~ (and they are already very small in their current form), so a rea- 
sonable summary is to say that  the construction is good until q ~ rain{2 ~, 2 n-2d} 
or t ~ rain{2 ~, 2(d-n-a)~2}. 

In Fig. 1 we illustrate our bound for the case of a block cipher with param- 
eters n = 64, ~ = 128, and dropping d = 8 bits. The bound indicates that  
one must ask about  255 queries before one can hope to distinguish Fk from a 
random function with advantage 1/e. (This 1/e-convention is a convenient way 
to summarize security.) For comparison, if you let F = E you get the usual 
bir thday-at tack curve, which indicates that  it takes but  232 queries before an 
adversary can get like advantage at distinguishing Ek from a random function. 

In Fig. 2 we illustrate our bound by showing the effect on advantage of chang- 
ing either the key length (left-hand plot) or the value of d (right-hand plot). 
We assume a block size of n = 64 bits. The adversary's maximum advantage 
decreases with increasing key length, but  this effect soon saturates. The con- 
struction has worse demonstrated security for larger values of d, but  the effect 
is not tha t  dramatic, and there is little reason to select a very large value of d, 
anyway. 
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Fig. 3. With typical parameters our bounds are tight. Illustrating Propositions 1 and 
2 and Theorem 2 for n = 64, n = 64, d = 7. The horizontal axis Q is the same as in 
the previous agures. 

It is important to understand the difference between the results here and the 
result of Section 5.1. The "type" of security guarantee is better in the latter, since 
we are saying that  security in the sense of a PRP (using the standard notion of 
a PRP) translates into security in the sense of a PRF (using the standard notion 
of a PRF).  The results here are only about ideal ciphers, which only guarantees 
security against generic attacks. Yet, generic attacks are an important and easy 
to mount  class of attacks, and a proof of security against them, especially with 
such strong bounds, is certainly meaningful. Eventually we hope strong results 
will emerge in the other model (as well as for other PRP-to-PRF constructions). 

5.3 Attacks / Lower bounds 

In Propositions 1 and 2 we present the best attacks that  we know on our con- 
struction. These translate into lower bounds on the security of FndE. We present 
two adversaries: one which becomes successful when q ,~ 2 n-d,  and one which 
becomes successful when t ~ 2 ~. This is done in the Shannon model, but in 
this case (of attacks) this is not a restriction; if we can attack ideal ciphers 
we can certainly attack real ones. Thus, the results here should be viewed as 
complementing Theorem 2, telling us how close to tight is the analysis in the 
latter. 

P r o p o s i t i o n  1. Let n, ~; be positive integers and d, q non-negative integers with 
0 < d < n, and let F = Fn d. Then there is an adversary CS which asks at most q 
of an f oracle, no queries of the E or E -1 oracles, and achieves advantage 

IADv~rf(cs) ~ 1 -e - tq2 - ' J ' (2" - l ) ' 2 " - " - '  . 

Proof. See [7 I. [] 
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P r o p o s i t i o n  2. Let n, ~ be positive integers and t, d, c be non-negative integers 
with 0 < d < n, let F = Fn d, and let j = In~n]. Then there is an adversary 
KS  which asks c queries of her f oracle, t queries of her E oracle, and achieves 
advantage 

IADv  f(K ) = r a i n { l ,  t t / (c j  + c ) J .  2 - t2 - c "  

Proof. See [Z]. O 

The first lower bound is around 1 - e -q2~-"-1 , while the second one is around 
t2 - j~ .  These become significant when q ,~ 2 " -2  or t ,~ 2 j~. The point of giving 
these lower bounds is to see how tight is Theorem 2. As Fig. 3 illustrates, the 
bounds are quite close for realistic parameters .  On the same plot we graph our 
upper  and lower bound for s = 56, n = 64, and d = 7. The curves almost  
coincide. 
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