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Abs t r ac t .  RC5 is a fast block cipher designed by Ron Rivest in 1994. 
Since then several attempts of cryptanalysis of this cipher were published. 
The best previously known attack requires 254 chosen plalntexts in order 
to derive the full set of 25 subkeys for the 12 round RC5 with 32 bit 
words. In this paper we show a drastic improvement of these results due 
to a novel partial differential approach. Our attack requires 244 chosen 
plaintexts. We show that the 64 bit word version of RC5 is also much 
weaker than it was expected. 
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1 Introduction 

RC5 is a fast block cipher designed by Ron Rivest in 1994 [8]. RC5 has an at- 
tractively simple and easy to analyze structure. It  is also very flexible to changes 
of parameters.  RC5 has adaptable word size w in order to suit processors of 
different word-lengths, a changeable number of rounds r and a variable-length b 
cryptographic key (so tha t  the user can choose the level of security appropriate  
for his application). 

The "nominal"  choice of the parameters  proposed in [8] is: 32 bit words, 12 
rounds and a 16 byte key. This version of RC5 is referred to as: RC5-32/12/16.  
Another version with 64 bit words and 16 rounds was suggested for future 64 bit 
architectures (RC5-64/16/16).  The main feature of the cipher is intensive use of 
data  dependent rotations. 

Kaliski and Yin [3] evaluated the strength of the RC5 algorithm with respect 
to differential [1] and linear [6] attacks. They found a linear at tack on RC5 with 
6 rounds tha t  uses 257 known plaintexts and whose plaintext requirement is 
impractical  after 6 rounds 1. Their differential a t tack on RC5-32/12/16 uses 263 
chosen plaintexts. An improvement  of this a t tack by a factor of up to 512 was 
given by Knudsen and Meier [4]. Their idea was to find plaintexts so tha t  there 
are no rotations in the first few half-rounds. Once these plaintexts have been 
identified the differential at tack of Kaliski and Yin [3] can be performed with 
differentials of higher probability. The at tack in [4] uses 254 chosen plaintexts 

1 As of today no known-plaintext attack on RC5, even with reduced number of rounds 
exists due to recent result [9] which found gaps in the hnear attack on RC5 described 
in [3] 
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on RC5-32/12/16. A survey of the current state of knowledge on RC5 appears 
in [10]. 

In this paper we demonstrate the effectiveness of partial approach to differ- 
ential cryptanalysis on an example of RC5. We study more complex differentials 
than in previous works and define a more general notion of a "good pair" with 
respect to data dependent rotations. Our differentials are partial in the sense, 
that  only lg w least significant bits of the output difference are relevant to our 
analysis (see also truncated differentials in [5]). Thus we analyze all pairs that  
escape differences in rotation amounts, and not only pairs that  follow specific, 
easy to analyze, patterns as in previous attacks. We introduce a new notion 
- -  "space oracle", which helps to show that  data complexity of cryptanalysis of 
RC5 is bounded by the probability of a good pair and by our capability to detect 
them. We also develop very efficient filtering techniques, in order to detect good 
pairs. 

RC5 is heavily based on data dependent rotations. We show that  the prob- 
ability of a pair to escape differences in rotations amounts is much higher than 
it was expected by the designers of RC5. This causes weak avalanche properties 
and high key dependence of the cipher's output. We start by analyzing a simpler 
version of RC5, where all additions are replaced by XORs, as a first order ap- 
proximation to original RC5 (we denote this version as RC5@). We successfully 
attack RC5~-32/12/16 with only 22s chosen plaintexts. Based on this result we 
show an attack which is capable of breaking the standard RC5-32/12/16 with 
244 chosen plaintexts. The complexity of the data analysis phase of this attack is 
negligible and takes less than a minute on a workstation. We successfully attack 
RC5 up to 10 rounds and experimental results confirm our estimates. We suspect 
that  it may be possible to attack RC5-32/12/16 with only 238 chosen plaintexts 
by using a tradeoff between data requirements and complexity of analysis. Fi- 
nally we show that  RC5-64/16/16 is also weaker than it was expected. 

We conclude that  RC5 is not secure against chosen plaintext attacks. Though 
RC5 has already 12 rounds (24 half-rounds) we suggest to increase this number to 
at least 16 rounds in order to increase security against differential cryptanalysis. 

2 D i f f e r e n t i a l  C r y p t a n a l y s i s  

We use a description of RC5 as a so-called Feistel cipher from [3]. Let us de- 
note by (L0, R0) the left and right halves of the plaintext, and let Si be the 
ith subkey from the expanded key table S generated before encryption. The 
particular expansion algorithm has no influence on our cryptanalysis. As in all 
previous attacks, we assume that  the subkeys produced by the key schedule are 
uniformly random. This is a reasonable assumption which helps us concentrate 
on the properties of the encryption engine itself (it also simplifies the analysis of 
probabilities). Let w denote the word size which is 32 for RC5-32/12/16. Then 
the ciphertext (L2r+l, R2r+l) is calculated by the following equations: 
L1 = Lo + So 
R1 = Ro + $1 
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f o r  i = 2  to  2 r + l  do 

Li = R / - 1  

Ri = ((Li-1 �9 Ri-1) <<< R4-1) -4- Si, 
where r - is the number  of rounds, A <<< B denotes the rotat ion of word A 
by (B mod w) positions to the left (if w = 32, rotation amount  is contained in 
five least significant bits of B), + denotes addition (mod 2~), and @ denotes 
bitwise XOR. The two equations in the body of the loop we call half-round. Note 
tha t  two consecutive half-rounds correspond to one original round of RC5. The 
two initial equations are called the zeroth half-round. 

The idea of differential cryptanalysis is to analyze pairs of plaintexts instead 
of single plaintexts. An attacker chooses the difference between plaintext pairs 
and studies propagat ion (avalanche) of the changes during the encryption. 

D e f i n i t i o n  1 The difference between two bit-strings X and X* of equal length 
is defined as X ~ X* = Z~X, where @ is a bitwise XOR operation. 

D e f i n i t i o n  2 We call a pair of plaintezts (P, P*) a good pair  if  P and P* have 
equal data-dependent rotations zn all rounds 2. 

D e f i n i t i o n  3 We call noise  all pairs that are suspected to be good pairs (i.e. 
pass all our criteria for good pairs (filters which are described in the section 3.1)), 
but which have different rotation amounts ,n some intermediate rounds of en- 
cryption. 

The rotat ion operation is linear (if individual bits are viewed as variables), and 
if there is no difference in the rotation amounts  we have: 

(A <<< s) | (B <<< s) = (A @ B) <<< s. 

The + operation is very "close" to linear operation: a difference in one bit remains 
unchanged with probabil i ty 1/2 after the addition and with probabil i ty 1/4 turns 
into a difference in two adjacent bits (if a difference is in the most  significant 
bit, it remains unchanged with probabil i ty 1). 

Due to a regular iterative structure of RC5 we use the notion of a differ- 
ence pattern (which corresponds to the notion of a characteristics in [1]), for a 
sequence of round differences, caused by a particular input difference. Each pat-  
tern is associated with its probabil i ty to appear  in the encryption of a plaintext 
pair. Two difference patterns can be concatenated into a longer pat tern if the 
output  difference of the first is equal to the input difference of the second. A pat- 
tern is iterative, if it can be concatenated with itself into a longer pattern.  We 
denote by ei a w-bit vector with one at position i and zeroes at other positions. 

2 We studied only pairs that totally avoid differences in rotations amounts. Note that 
some periodic patterns, like 0101... 01 being rotated by different rotation amounts 
can preserve the difference as well. Of course S, on each round spoils the propagation 
of such patterns, but it might be that some statistical properties still can be observed. 
We leave the question of whether such patterns can be used to a future research. 
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Throughout  this paper all numbers corresponding to plaintexts or their differ- 
ences will be hexadecimal, so ew = 80 00 00 00. The ability to contain many 
patterns with the same input /output  differences is captured by the notion of 
differential, defined in [2]. 

D e f i n i t i o n  4 An r-round di f ferent ia l  is a pair (AP,  ACt) ,  where A P  = p @ 
P* ~s the pla~ntext difference and/kCr is the output difference at the r-th round. 
The probability of an r-round differential zs the conditional probability that gzven 
an input difference ~ P  at the first round, the output difference at the r-th round 
will be/kCr, when the plaintext P and the subkeys S~ are ~ndependent and uni- 
formly random. 

Note that  tile probability of a differential may be much higher than the probabil- 
ity of a particular pattern with the same input and output  differences (in the case 
when there are many other patterns, with the same input /ou tput  differences). 
In Appendix B we provide an example of differential behavior of RC5-32/8/16. 
For a more detailed description of differential cryptanalysis we refer the reader 
to [1]. 

3 O u r  D i f f e r e n t i a l  C r y p t a n a l y s i s  o f  R C 5  

In this section we develop our differential attack on RC5. We use a novel approach 
towards differential cryptanalysis, since RC5 defeats standard approaches. We 
look at differences where the five least significant bits (corresponding to rotation 
amount) are equal to zero. Behavior of the other 27 bits of the difference is not 
restricted. We consider all differentials that  lead to good pairs. The probability 
of these differentials is much higher than that  of the one-bit differentials studied 
in [3, 4] (their differentials are based on propagation of one-bit differences). Our 
differentials are harder to analyze but a much faster attack can be performed 
with their help. In order to study the behavior of these complex differentials we 
start  with the "XOR" version of RC5, where all -t- are changed for @'s. 

As in the previous works [3, 4] we find the subkey of the last round S2r+l 
and then perform an attack on RC5 which is shorter by one half-round using 
the same pool of already collected encryptions. 

3.1 R C 5  w i t h  X O R  I n s t e a d  o f  A D D  

The XOR version of RC5 was shown in [4] to be weak because the parity bit 
of the plaintext exclusive-or'ed with the parity bit of all subkeys equals the 
parity bit of the ciphertext. So one plaintext-ciphertext pair provides one bit of 
information about the subkeys. Still this cipher is a good model, since it shares 
several main properties with the original RC5 (in particular data dependent 
rotations). The carry propagation due to q- is very slow. We will show, that  
good pair probabilities of RC5~ and RC5 differ approximately by a factor of 
22(711 . 
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S p a c e  Orac l e s  In this section we define a new notion that  we call a "space 
oracle". We show that  a good pair can be used as a space oracle into the cipher's 
behavior under specific key. The idea in [4] can be interpreted as using such 
an oracle. In this paper we construct more efficient oracles for RC5@ (being 
slightly modified they work for original RC5). 

Consider a partit ion of the space of all possible plaintext pairs into n subsets 
M1, M 2 , . . . ,  Mn, and suppose we know that  one subset Mj is k * n times more 
probable for a good pair than any other subset Mi. We can easily gain a factor of 
k in data if we check a fraction of 1 data from each subset. Even if one subset 
is "only" n times better  than the others, a good pair from this subset will be a 
"space oracle", which helps to reduce the plaintext space to a subset Mj, where 
the probability of a good pair is n times higher. More formally3: 

D e f i n i t i o n  5 Let M ( n )  = { M 1 , M 2 , . . . , M n }  be a partition of the space of all 
plazntext pairs into n disjoint subsets, let Pi be a probabzlity for Mi to contain 
a good pair (Pi = Prob(g is a good pair I g �9 Mi)) ,  and let 1 < j < n. Then a 
triple (M(n) ,  j, G) zs a differential space oracle for partition M ( n )  with gain 
G > I ,  i f V i #  j, l < i < n :  Pj > G . P I .  

We will also call a good pair that  belongs to a particular subset - -  a space oracle 
for that  subset. 

Q u e s t i o n  1 Knowing the structure of an oracle, what is the most eJfic~ent way 
to use it? In other words: Good pairs are distributed very non-uniformly in the 
space of all possible pairs, so how to locate the high density spot with the smallest 
number of steps? 

Knudsen and Meier [4] noticed, that  knowledge of proper (key dependent) 
five least significant bits of both halves of the plaintext in effect peels off one 
full round of RC5 and thus increases the probability of finding differentials for 
Kaliski and Yin's attack [3]. If we start  with a 64-bit plaintext (L0, R0), such 
that  R0 = $1 (mod 32) and L0 - So @ $2 (mod 32), then we gain first round 
of RC5 for free, since there is no rotation in the first two half-rounds. Being 
translated into our oracle terminology: there exists a parti t ion M of the space 
of all plaintext pairs, such that: 

M(i,j) = {(L, R), (L*, R*) e {0, 1} 64 [ L = L* (rood 32) = i, R - R* (rood 32) = j}.  

The partition subset used in [4] for differential attack has index (i, j )  with i = 
S 0 ~ $ 2  (mod32)  and j = S1 (mod32) .  The gain G i s  between 23 and 25 
depending on the input difference being used. 

Let us describe two oracles of a more complex structure. For example if we 
start  with input difference (ew, ew), then we can gain five half-rounds (2.5 full 
rounds) by the following 10-bit oracle (actually it is a 32+5+10 bit oracle but 
37 bits are under our control). Denote z - R0 (mod 32), then the result of the 

3 We define oracles for differentiaJ chosen plaJntext attacks, but it is possible to define 
oracles for known pl~intext attacks as well. 



90 

first half-round will be R2 = ((L0 6) R0 6) So 6) $1) <<< (x 6) $1 )) 6) $2. Denote 
y = - R 2  (mod 32). If we fix x and L06) R0, t hen R2  and thus y is fixed too. If 
we set now five bits of R0 at location w - y to be equal to the five lsb bits of 
$3 6) ((R2 @ $1) <<< y), we cause no rotation in the third half-round. Thus we 
gain five half-rounds (plus the zeroth hMf-round) with probability of ( _ ~ ) 2  
(again, this can be formulated in our oracle terminology). 

The second oracle requires input difference (0, e~) and helps us to gain three 
full rounds of RC56). We require no rotation on the first and fourth half-rounds, 
so that  R0 = Sa (mod 32). Then R2 = Lo@Ro6)So6)S1 6)$2. Denote by a ~ R2 
(mod 32), then R3 = ((Lo6)So6)$2) <<< a)@S3. Denote by b --- R3 (mod 32), 
then in order to have no rotation at the fourth round (R2 6) R3) <<< b ~ $4 
(mod 32) must hold. If we require that/~0 ~ L0 (mod 32) then a is constant. If 
we require that  L0 is fixed we get that  all Rz is fixed, and so is b. Thus knowledge 
of location b in R0 at which five constant bits should be placed provides us with 
six half-rounds with probability (~_=~)2  This is a 15-bit oracle with 32+5 bits 

x ~ / )  J " 

under control. 
We estimate that  the probability to find one good pair bounds the data 

complexity of differential attack on RCh. This means that  the amount of data 
required in order to detect one good pair, is much larger than the amount  of 
data required to find 10 or even 100 good pairs, after one good pair has been 
identified. Note that  oracles discussed above work for RC5-w/r /b  for any value 
of w. 

If one wants to see examples of a space oracles in other block-ciphers, he does 
not need to go far. "Enhanced eharacteristie's probability" for DES [7] was noted 
in [1]. It is shown, that  one can gain a factor of four in probability of a pattern 
and in S/N ratio, knowing three bits of the key. This can be reformulated as a 
three-bit oracle with gain four in our terminology. In the case of DES, however~ 
oracles are not as helpful as in our case, since differential cryptanalysis of DES 
uses only one good pair. 

P r o b a b i l i t y  o f  a G o o d  P a i r  In this section we develop a method to deter- 
mine a theoretical estimate for good pairs probability for RC56), based on the 
properties of the underlying Feistel structure. 

In [4] it was noticed that  Hamming weights of the differences in half-rounds 
propagate roughly like a Fibonaeci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...4. 
We noticed that  in a good pair Hamming weights of the differences behave 
more like: 0, 1, 1 ,0 ,1 ,1 ,2 ,  3, 5, 8, 13 , . . .  or 0, 1, 1,2, 1,3, 4, 1,5, 6, 11,. . . .  Which is 
a "corrected" Fibonacci sequence with one or two "corrections" respectively. 
Therefore we define: 

D e f i n i t i o n  6 A sequence of numbers ~r(n) zs called a corrected Fibonacci  
sequence with k corrections , f  add,tion ~(1) = :P(l - 1) + .T(l - 2) ,s exchanged 
for subtraction F(l )  =1 5v( l - 1) - 9~(l - 2) I exactly k times. 

4 These numbers correspond to the weights of R,. The l~ t  two are impossible as 
differences since they are bigger than 32, they are present to compare speeds of 
growth. 
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Since difference weight sequence in RC5 constitutes a Fibonacci sequence 
with corrections a question tha t  one may ask is: "Given n and k how many  
corrected Fibonacci sequences with .T'(i) < W, i = 1 , . . . ,  n exist 5. Correction 
in the Fibonacci weight sequence occurs at location j if rotat ion bits of half- 
round j - 1 are zero (corresponding to no rotation),  thus each correction costs 
us a factor of 2 -5 in probabil i ty of a pat tern (under assumption that  all round 
subkeys are uniformly and independently chosen). If a difference with weight 

C a 
h is rotated, then with probabil i ty ,~-ls~ c5 there will be no difference in the 

lgw crucial rotating bits after the rotation. It turns out tha t  in some cases it 
is worth to pay the price of another correction, instead of pushing forward too 
heavy differences. 

We generated all possible Fibonacci sequences for all "reasonable" numbers 
of corrections, and calculated the probabilities of patterns,  corresponding to 
such sequences (see Appendix A). We assumed tha t  the start ing difference is 
(e~, e~). As a result Table 1 gives the upper bounds for the probabil i ty of a good 
pair for RC5| (with 32 and 64-bit words), which were calculated as a sum of 
probabilities of all possible corrected Fibonacci sequences of length n = 2r (the 
last (2r + 1)st half-round is not relevant to probabil i ty calculations). This table 

Rounds 5 6 7 8 9 10 11 12 13 14 15 16 
32-bit 2-7.1 2-10.5 2-13.9 2-1T.2 2-~o.7 2-24.1 2-27 4 2-;3o.9 2-~4.3 2-~7 v 2-41.2 2-44.6 
64-bit 2-6.2 2-8 9 2-13.9 2-I~.0 2-22.0 2-26.1 2-30.2 2-34,2 2-3t~.2 2-42.3 2-46,3 2-50.4 

Table  1. Theoretical estimate of good pair probability for RC50 . 

gives a rather low upper bound which may  be lowered further. 
From experiments with the program shown in Appendix A we observed that  

the structure of the sequences changes with increasing number of rounds. For less 
than eight rounds most of the sequences are non-iterative, and are based only 
on bit cancelations and randomly placed corrections (1-2 for 6 rounds, 2-3-4 for 
eight rounds). For a bigger number of rounds such as 10 or 12 the structure of se- 
quences looks as concatenation of four iterative sequences (0,1,1,0,1,1,0,1,1,0,1,1 
is a Fibonacci sequence with corrections on every third round) with a more cor- 
rupted Fibonacci sequence. We use this feature in Section 3.1 in order to build a 
very efficient filter of good pairs for RC5@. Though the pat tern  corresponding to 
the iterative sequence has the highest probability, the fact that  corrections may  
be randomly located and not fixed to every third half-round as in an iterative 
pat tern increases the total  probabil i ty of such Fibonacci sequences considerably. 

Another issue tha t  we noticed while studying RC5@ is a strong key de- 
pendence of differentials. For example: the probabil i ty of a good pair after 10 

s If 5r(i) is greater than w - lg w, where w is the word size of the cipher, the sequence 
cannot produce a good pair. 
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full rounds of RC5@ is about 2 -24 according to the Table 1, but in reality it 
ranges from 2 -2~ to 2 -24 for different keys. Thus RC5 key can be weak in many 
unpredictable ways. Consider the following example of weak keys for RC5: Non- 
negligible fraction of all keys produce subkeys S~ with S'i = 0 (mod w) for some 
values of i (among 26 subkeys five or six "zero" subkeys is not a rare event). 
This fact increases probability of some differentials (for example with rotation 
patterns x, x, 0, x, where the last x is gained for free if Si corresponding to zero 
rotation amount is zero modulo 32. Then the probability of this pattern is the 
same as for two concatenated iterative patterns (the corresponding Hamming 
weights look like 1,1,2,1,1,0 instead of 1,1,0,1,1,0). In any ease if zero rotation 
corresponds to zero subkey modulo 32, the rotation in the next round is preserved 
which reduces the difference after that  round. 

T h e  A t t a c k  o n  R C 5 ~ - 3 2 / 1 2 / 1 6  In this section we present a very efficient 
differential attack on I~C5@-32/12/16 which uses only 228 chosen plaintexts. 

The optimal input difference in our case is (e~0, e~o), since it peels off one 
round of RC5 with probability ~-1r This beginning is four times better  than 

w 

(ew, 0) and about 25 times better than (0, ew) for most of the Keys 6. 

The probability p of a good pair of type (e~, e~) for 12 rounds is about 
2 -3~ (see Table 1). Thus for a straightforward approach we will need a pool of 
l / p  = 230.9 chosen pairs with input differences (ew, ew). Then the probability to 
find at least one good pair in such a pool will be about 0.63 ,~ 1 - ~. In order 
to reach probability of 0.86 we will need twice as much data. 

Since pairs with input differences (ei, el), i = 5 , . . . ,  31 will be as good as 
(e~0, e~o) in case of RC5~ , we will use the following idea of packing pairs into 
structures suggested in [1]. Suppose our attack can use successfully several lin- 
early independent input differences 6i, i = 1 , . . . ,  k, then for some plaintext A 
we will require the ciphertexts of A, A G 61, A ~ 62, A @ 5z , . . . ,  A ~ 51 @ 52, A 
51 @ 53, A ~ 32 ~ 53 , . . . ,  A ~ 51 @ 52 ~ 53, �9 Then a pool of 2 k such ciphertexts 
contains k .  2 k-1 pairs with differences from the set {51, . . . ,Tk}.  In our case 
using, the set of differences (ei, ei), i = 5 , . . . ,  31 we need the encryptions of only 
227 chosen plaintexts packed into structures described above. Then this pool of 
encryptions contains 27.226 -- 230.8 chosen plaintext pairs suitable for our attack 
and the probability to find at least one good pair in it is about 0.63. 

Once we have estimated the probabilities of good pairs the question is, how 
to detect them among all other pairs. As it was noticed in [4], in the good 
pair the five least significant bits of the ciphertext must agree L2~+1 --- L* 2 r + l  

(mod 32), since there should be no difference in rotation amounts. We noticed 
that  the same must hold for the right halves of the ciphertext at the location, 

6 Previous attacks [3, 4] studied only iterative differentials that end by three or five bit 
differences, the starting patterns were predetermined to be (e~, e~), (e~, 0) or (0, e~) 
depending on the 2r + 1 (mod 3). The key-detection algorithm used in [4] in order 
to define ten bits of the plaintext, corresponding to the gaining oracle subset, requires 
to start from the plaintext difference (0, e~,) and proceed to (e~, 0) difference. 
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defined by rotation bits of the last round s2r+l: 

R2r+l >>> s~+1 = R~r+l >>> s2~+1 (mod 32). 

These considerations help to filter 2 -1~ of all pairs as soon as they are generated. 

From our definition of a good pair, and the fact that  almost all good pairs 
still have one-bit differences after eight rounds we build a new very efficient 
filter. For each pair that  passed our first ten-bit filter, we check if the ciphertext 
difference of this pair can be a result of some low Hamming weight difference 
in the flow of four rounds of RC5~. We do this by trying all possible rotation 
amounts that  do not contradict the good pair assumption. Suppose, that  ALl6, 
/~/~16 (the left and the right halves of the difference after eight rounds) are one- 
bit and two-bit differences respectively (which is correct for most of the good 
pairs). In the case of a good pair the knowledge of the rotation amounts gives 
us the ability to calculate the differences back and forth. Thus starting with 
a particular difference after eight rounds we have to check all values for seven 
rotation amounts (35 bits), that  do not contradict the good pair assumption 
(which holds with probability 2-10 for this difference during four rounds of RC5). 
Thus we arrive at about 225 possible output  differences after 12 rounds of RC5. 
However 254 output  differences are possible, passing our ten-bit filter. Thus the 

2~ = 215 (here Signal/Noise ratio of our new "go up" filter is about: S / N  ~ 
a factor of 214 corresponds to the number of possible differences after eight 
rounds). Note that  most of the patterns among 235 coincide, and thus the ratio 
S/N should be even higher. This filter proved to be very efficient, exact and 
fast 7. The fraction of random pairs that  pass it is negligible and probability that  
it will reject a good pair can be made arbitrarily small. Implementation of this 
filter is given in Appendix C. 

When a few good pairs are successfully detected we run a key-derivation 
algorithm. As in previous attacks, given a good pair it is possible to predict the 
value of the rotation amount at the 2r-th round (several variants of this value in 
our case) and using this information to derive several key bits of the last subkey 
$2r+1. We need between 30 and 60 good pairs in order to derive most of the bits 
of the subkey with high success probability. We defer the details of our modified 
key-derivation algorithm to the final version, since we consider it to be a less 
significant contribution of ours (and due to some similarity to previous results). 

In our experiments we used Alpha Server 8400 Model 5/300. On this 64-bit 
machine with 300 MHz processor, the attack on RC5~ with 12 rounds uses 
about 228 chosen plaintexts (which provide us with 232 pairs) and takes 10-15 
minutes (most of the time spent on encrypting the data, since we use the non- 
optimized reference implementation from [8]). The success rate of this attack is 
86%. 

7 We use Fibonacci sequence to cut the search-tree, otherwise the search is exponential 
and may take hours for each pair. This hint does not degrade qualities of the filter. 
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3 . 2  T h e  A t t a c k  on  R C 5 - 3 2 / 1 2 / 1 6  

In this section we use methods that  were developed in the previous attack, 
against the standard RC5-32/12/16 version. As for RC5q~ we encrypt a pool 
of plaintext pairs with the difference (ew, ew). The idea to use structures as in 
Section 3.1 also works, but we get a factor of 7 in chosen pairs instead of 27 
since addition of the subkey in the first round may corrupt the differences (this 
happens with probability 1/4) 8 . The filtering procedure is more complicated due 
to subkey addition. If we suppose that  a good pair has relatively small Hamming 
weight we can combine previous filter with Hamming weight filter. Probability 
of noise, i.e. for a random pair to have weight h, when particular ten bits of the 

difference are required to be zero, is expressed by: ~ ,  see Table 2. The ratio of 

Probability of Noise (Prob = csh4/2 s4) 

1 2 3 4 5 6 7 8 9 10 
2-s8.2 2-s3.s 2-49 4 2-4s.v 2-42 4 2-39 4 2-3s s 2-34.0 2-31.v 2-29 5 

11 12 13 14 15 16 17 18 19 20 
2-27.5 2-25.7 2-24.0 2-22.4 2-21 o 2-19.7 2-18 6 2-17.5 2-16.6 2-15.8 

Table 2. Hamming weight filter for RC5-32/r/b. 

the number of good pairs to the number of non-good pairs that  may pass our 
filters (signal to noise ratio) for big numbers of rounds can be increased if we get 
several candidate pairs and compare to which space oracle they belong. Good 
pairs will have many consecutive bits in particular locations of the plaintext in 
common. The guess about a good pair can be tested with a small number of 
pairs, using the oracle suggested by this pair. Several successfully detected good 
pairs, help to detect another 30-60 good pairs which are required by our key 
derivation algorithm. 

We performed experiments in order to determine the probability of a good 
pair. This probability for six rounds of RC5 is about 2 -12 6 for eight rounds 
- 2 -~~ for ten rounds - 2 -3~ We estimate that  for 12 rounds this number 
is 2 -38. Although the probability of iterative three-round pattern for RC5 is 
four times smaller than for RC5~ (because of carry after subkey addition), the 
results of our experiments show that  the probability of a good pair for RC5 
is only about 2(r-1) times smaller than probability of a good pair for 1~C5~. 3 
This factor can be used to extrapolate our results to RC5-32/r/16 with r > 12. 
We performed successful attacks on RC5 with four, six, eight and ten rounds. 
Our calculations show that  our attack on RC5-32/12/16 will require 244 chosen 

s Input differences, containing two or even three bits of the difference for each half of 
the plaintext may be worth studying, since ~ pool of structures contains them for 
free.  



95 

plaintexts (probably overestimate).  In Table 3 we compare complexities of our 
at tack with Knudsen-Meier results [4]. 

We suspect tha t  as in the case of RCS~ one or two good pairs may  suffice 
to s tar t  an at tack and thus the data  complexity will decrease to about  23s at 
the cost of more thorough and t ime-consuming filtration of good pairs. 

r Our attack Knudsen-Meier 
4 27 2 a7 
6 216 224 
8 228 238 

I0 236 246 
12 244 254 

Table  3. Number of chosen plaintexts for differential attacks on RC5-32/r/16. 

3.3 S o m e  C o n s i d e r a t i o n s  o n  R C 5 - 6 4 / 1 6 / 1 6  

The RC5-64/16/16 version was suggested in [8] to be used with new generation 
of 64 bit computers.  The  best previously known at tack is [4]. Their  a t tack uses 
283 chosen plaintexts. 

We suggest to study more complex differentials in the case of RC5-64/16/16,  
as we did for the case of RC5-32/12/16.  Our hypothesis is tha t  64-bit version is 
much weaker than it was expected. The main reasons for weaknesses are: 

- The ratio of the number of good pairs to the number of random pairs tha t  

may  pass our filters is higher. It  is c_~  for Hamming  weight the difference 21ss 

h. Thus differences with much higher weights can be used (42 for 6 rounds, 
35 for 8 rounds). 

- Patterns similar to those tha t  worked for 32 bit version work for 64 bit 
version as well with addition of a factor 1/2 for each three half-rounds (3- 
round iterative pattern).  This factor is probably reduced due to extended 
locality properties. 

- The fraction w-Zg(w) is bigger for bigger w. 
~ )  

- We expect tha t  non-uniformity that  we noticed in RC5-32/12/16 is even 
more influential in 64-bit version, since there is more space for strange "or- 
acle" constructions. 

The complete analysis of RC5-64/16/16 is yet to come, but based on the Table 1 
our est imate is that  this at tack will require less than 263 chosen plaintexts. This 
number  though highly impractical  is still by a factor of 220 better  than previous 
results. 
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4 S u m m a r y  

In this paper we present an improved differential cryptanalysis of the RC5 block 
cipher. We study more complex differentials than in previous works and define 
a general notion of a "good pair" with respect to data dependent rotations. We 
analyze all pairs that  escape differences in rotation amounts, and not only pairs 
that  follow specific, easy to analyze, patterns as in previous attacks. We show 
that  only one or two successfully detected good pairs suffice to start an attack on 
RC5 with high success probability. Thus the data complexity of cryptanalysis 
of RC5 is bounded by the probability of a good pair and our capability to 
detect good pairs. RC5 is heavily based on data dependent rotations. We show 
that  probability for a pair to escape differences in rotations amounts is much 
higher than it was expected by the designers of RC5. This causes weak avalanche 
properties, and high key dependence of the cipher's properties. 

We start by analyzing a simplified version of RC5, with all additions changed 
by XORs. We successfully attack this RC5@-32/12/16 version with only 22s cho- 
sen plaintexts. We show that  XOR version serves as a good approximation to 
original RC5. Finally we present an attack, capable of breaking RC5-32/12/16 
with 244 chosen plaintexts. This is 1024 times less than the best previous attack. 
The complexity of the data analysis phase in our attack is negligible compared 
to the data collection complexity. We suspect that  it may be possible to at- 
tack RC5-32/12/16 with only 238 chosen plaintexts, using more efficient filtering 
and subkey detection algorithms (trading data requirements for complexity of 
analysis). We also estimate that  RC5-64/16/16 is 22o times weaker than it was 
expected. 

We conclude that  RC5-32/12/16 is not secure against chosen plaintext at- 
tacks. Though RC5 has already 12 rounds (24 half-rounds) we suggest to increase 
this number to at least 16 rounds in order to increase security against differential 
cryptanalysis. We estimate that  RC5-32/r/16 reaches the level of theoretical se- 
curity against partial differential attacks at 18-20 rounds (probability of a good 
pair is estimated to be lower than 2-64). 
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A Probabilities of Differentials for RC5@ 

In this appendix we present a program which calculates probabilities of good 
pair differentials for RC5•-r/w/b with plaintext difference (e~, ew). It generates 
all Fibonacci sequences with corrections and calculates their total probability. 
Output  of the program corresponds to one entry of Table 1. Note, that  weights 
loaded in F[0] and F I l l  correspond to symmetric differences (like 80000000 
80000000), F[• being the weight of P~+I. Last round does not influence prob- 
ability calculations, since its result cannot corrupt the good pair property. 

/* Differentials for RC5-XOR (Corrected Fibonacci Sequences) */ 
#include <stdlib.h> 
#include <math.h> 

#define mc 20 /* Max number of corrections */ 
#define w 32 /* word size in bits */ 
#define igw 5 /* ig w */ 

#define R 24 /* number of half-rounds,R=2*r */ 
#define BND w-lgw /* w-lg(w) weight boundary */ 

long int F[R] = {R*O}; 
int cp[R] = {R*O}; 

double P = 0.; 
double ace ffi 0.; 

double Cm[BND+I]; 

void construct (int, int); 
double Com(int); 

/* Fibonacci sequence */ 
/* Corrections places */ 
/* Probability of a sequence */ 
/* Accumulated probability */ 

/* Log (C(BND,f) / C(w,f) ) 
double Com(f) 
int f; 

{ int j; 
double L=O.; 

*/ 

for(j=O; j < f; j++) 
L=L+(log((float)BND-j)-log((float)w-j))/M_LN2; 

return(L); 
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/* Construct all Fibonacci sequences with up to mc corrections 
void construct(i,c) 
int i,c; 
{ double tmp; 

*/ 

if(c > 0){ 
F[i]=abs( F[i-l] - F[i-2]); 
cp[i]=l; tmp=P; P-=igw; P=P+Cm[F[i]]-Cm[F[i-1]]; 
if(i+l < R) construct(i+l,c-l);/* Recursive call 
else acc+=pow(2. ,P) ; /* Accumulate probability 
cp [i] =0 ; P=tmp ; 
F[i]=F[i-l] + F[i-2]; /* Regular Fibonacci behavior 
if(F[i] > BND) return; P+=Cm[F[i]]; 
if(i+l < ~) construct(i+l,c); 
else acc+=pow(2.,P); 

/* Corrected Fibonacci  behavior  */ 

*/ 
*/ 

*/ 

} 

else { while(i < R){ /* No more corrections */ 
F[i] = F[i-l] + F[i-2]; 
if(F[i] > BND) return; P+=Cm[F[i]]; 
i++; 

} 

acc+=pow(2.,P); /* Accumulate probability */ 

main(){ 
i n t  i ;  

for(i=0; i<=BND; i++) Cm[i]=Com(i);/* Precompute c o e f f i c i e n t s  */ 
F[O]=I; F[1]=O; /* I n i t i a l  weights */ 
P+=Cm[F[I]]; 
construct(2,mc); /* Construct  Fibonacci sequences*/ 
printf("~f\n",log(acc)/M_LN2); /* Prob. of a differential */ 

B Example of Difference Propagation 

In this appendix we demonstrate an example of difference propagation in RC5 
in the case of RC5-32/8/16 (eight rounds). The first two columns display the 
encryption process of the first plaintext block (results after each full round of 
1%C5). The second two columns display the encryption process of the second 
plaintext. Rightmost columns provide Hamming weight (HW) of the halves of 
the difference. As one may see, the pattern in this case is not iterative, but the 
avalanche is slow. Our attack uses such ciphertext pairs in order to derive several 
bits of the last subkey. 
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P l a i n t e x t  1 P l a i n t e x t  2 Difference HW 

DOF51C51DOF51C51 50F51C51 50F51C51 80000000 80000000 1 1 

CC747COC 33C28840 CC747COC 33C28040 00000000 00000800 0 1 

229D964D 1CF3OF80 229D9E4D 1CF3OF80 00000800 00000000 1 0 

8820939F BEBDD31F 88208B9F BEBDC71F 00001800 00001400 2 2 

5DB4D400 093A8AO0 5 D B 4 D A O 0  093AAO00 O0000EO0 O0002AO0 3 3 

F3A47DDF 75D6EC04 F3A499DF 75D68D04 O000E400 00006100 4 3 

0CD84724 61C22EFC 0CD07724 61471EFC 00083000 00853000 3 5 

BF9D3541D46209FB BFA50541D56809FB 00383000 OIOAO000 5 3 

44EO87D4 31FDIO3D 44D6F654 49FD2404 00367180 78003439 9 I I  

C F i l t e r  f o r  R C 5 0  

In this appendix we present an efficient implementation of the filter described 
in Section 3.1. One must place ciphertext differences after ( 2 r -  1)th round (one 
half-round before the last half-round) into D[Level + 1] and D[Level] before 
calling the filter. These differences can be calculated (for RCS~) from the known 
ciphertext differences and the known rotation amount of the last round. A call 
to the filter function looks like: 6oUP(Level). 

typedef unsigned long int WORD; /* 32-bit for RCS-XOR-32/12/16 */ 
#define Level 7 /* Depth of search */ 
int Fib[Level+l] = {1,2,3,5,8,13,13,13}; /* Fib. cuts for a search tree */ 
NORD D[Level+l]; /* Array of differences */ 
int count = O; /* Number of variants */ 
unsigned int HAM(); /* Returns Hamming weight */ 
WORD ROTR(); /* Rotation to the right */ 
/* This function carries out filtration of good pairs for RCS-XOR by checking*/ 
/* the structure of the Fibonacci weight sequence of the particular pair. */ 
int GoUP(depth) /* Returns 1 if the pair is good*/ 
int depth; /* Depth of recursion */ 
{ int i,s, flag= O; 

if (HAM(D[depth]) > Fib[depth]) return(0); /* Cut the search tree */ 
if(depth!=0) 

for(s=0; s<32; s++) /* Try all rotations 0..31 */ 
if(((ROTR(D[depth+l],s)) &OxIF)==O){ 

D[depth-l] = ROTR(D[depth+l],s)'D[depth]; 
if(GoUP(depth-l)) /* Recursive call ,/ 

flag=l; /* For correct count of variants*/ 
} 

else { count++; /* Accumulate num. of variants */ 

return(1); 
} 

return(flag); 


