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Abs t rac t .  We provide evidence that breaking low-exponent RSA cannot 
be equivalent to factoring integers. We show that an algebraic reduction 
from factoring to breaking low-exponent RSA can be converted into an 
efficient factoring algorithm. Thus, in effect an oracle for breaking RSA 
does not help in factoring integers. Our result suggests an explanation for 
the lack of progress in proving that breaking Rsn is equivalent to factor- 
ing. We emphasize that our results do not expose any specific weakness 
in the RSA system. 
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1 I n t r o d u c t i o n  

Two longstanding open problems in cryptography are to prove or disprove that  
breaking the RSA system [10] is as hard as factoring integers and that  breaking 
the Diffie-Hellman protocol [3] is as hard as computing discrete log. Although 
some recent progress has been made on the second problem [8, 9, 1] very lit- 
tle progress has been made on the first. A harder version of the first problem 
asks whether breaking low exponent RSA (LE-RSA) is as hard as factoring. Such 
reductions are desirable since they prove that  the security of the RSA system 
follows from the intractability of factoring integers. In this paper we take a step 
towards disproving the equivalence of factoring and breaking low exponent RSA. 

One way of disproving the equivalence is to present an algorithm for breaking 
LE-RSA that  does not seem to provide a factoring algorithm. This is not our 
approach. Instead, we wish to show that  if one could give an efficient reduction 
from factoring to breaking LE-RSA then the reduction can be converted into 
an actual efficient factoring algorithm. This proves that  unless factoring is easy, 
the two problems cannot be equivalent. We make progress towards achieving 
this goal by showing that  any efficient algebraic reduction from factoring to 
breaking LE-RSA can be converted into an efficient factoring algorithm. Thus, 
breaking LE-RSA cannot be equivalent to factoring under algebraic reductions 
(unless factoring is easy). Essentially, algebraic reductions are restricted to only 
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perform arithmetic operations. They are not allowed to aggressively manipulate 
bits, e.g. given x, y E ZN they cannot compute x ~ y. A precise definition of this 
notion is presented in Section 3. 

To give a more concrete description of our results we consider the problem 
of breaking RSA when the public exponent is e = 3. In the body of the paper we 
allow any low public exponent (i.e. less than some fixed constant). Let N = pq  

be a product  of two large primes with gcd(~(N) ,3)  = 1. The encryption of a 
plain-text x E ZN is x 3 mod N.  Breaking the system amounts to computing cube 
roots modulo N. To prove that  breaking this system is equivalent to factoring 
one has to present a polynomial time oracle algorithm .A that  given N =- pq  and 
a cube root oracle modulo N,  factors N. We show that  any such a lgebra ic  oracle 
algorithm .A, that  does not make too many oracle calls, can be converted into 
a non-oracle algorithm B that  factors the same set of integers as A. In other 
words, if one can prove that  taking cube roots modulo N is as hard as factoring 
N then the proof will provide a "real" factoring algorithm (that  does not make 
use of an oracle). Hence, under these conditions a cube root oracle does not help 
in factoring N.  We note that  when gcd(~(N),  3) ~ 1 it is well known that  taking 
cube roots is as hard as factoring. However, in this case 3 cannot be used as an 
RSA encryption exponent. For this reason, throughout  the paper we only concern 
ourselves with the case where gcd(qz(N), e) = 1. 

Our results apply to large e as well - they apply whenever e is a smooth 
integer. We discuss this extension at the end of the paper. 

U n d e r s t a n d i n g  our  resu l t  

We emphasize that  our result does not point to any weakness of the RSA system. 
Instead, it provides some evidence that  breaking LE-RSA may be easier than 
factoring. Even if breaking LE-RSA is indeed easier than factoring, nothing in 
this work contests that  it is likely to be intractable. 

The class of algebraic reductions is not overly restrictive. For example, it 
encompasses some number theoretic and factoring algorithms. These are often 
simply polynomials evaluated modulo N at various inputs. A factorization is 
obtained once the polynomial evaluates to a non-zero non-invertible element 
modulo N (if 0 ~ x E ZN is not invertible then gcd(N, x) gives a non-trivial 
factor of N).  Both Pollard's p - 1 factoring [6] and Elliptic curve factoring [7] 
can be viewed as such (one evaluates the polynomial x B - 1 for some smooth 
integer B, the other evaluates the B ' th  division polynomial of a random elliptic 
curve at a random point). It is natural  to ask whether an oracle for breaking low 
exponent RSA can aid this type of factoring algorithms? Our results show that  
the answer is no as long as the algorithm does not make too many oracle calls. 

Our methods leave it open that  reductions using bit manipulations (i.e. non- 
algebraic operations as described in Section 3) on the outputs  of an RSA oracle 
may reduce factoring to breaking RSA. However, we note that  current attacks on 
low public exponent RSA [4, 2] decrypt  a message without factoring the modulus. 
Our results suggest that  this is no accident, since breaking LE--RSA may be easier 
than factoring. 
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2 S t r a i g h t  l i n e  p r o g r a m s  

Our results make use of straight line programs for polynomials. In this section 
we define this notion and prove some properties of it. Throughout  the section 
we let R be a ring with a cyclic additive group. The reader should think of R as 
the field ]Fp or  the ring Z g for an RSA composite N = pq. 

D e f i n i t i o n  2.1. A straight line program (SLP) for  a polynomial f E R [ x l , . . . ,  xk] 
is a sequence o] polynomials fo, f l ,  f 2 , . . . ,  f,n E R [ X l , . . . ,  xk] such that f m =  f 
and for all i = 1 , . . . ,  m the polynomial f ,  is either the constant 1, a variable xj  
or gi = gk o gt where k,1 < i and o E { + , - , * } .  

Examples of polynomials with low straight line complexity are univariate 
sparse polynomials (i.e. polynomials whose degree is much larger than the num- 
ber of their terms). An SLP of length L for a polynomial f defines a method for 
evaluating f using exactly L arithmetic operations. An SLP is represented as a 
sequence of triplets (i, o , j )  where o E { + , - ,  *}. The k ' th  such triplet implies 
that  fk,  the k ' th polynomial in the program, is equal to fi  o f j .  An SLP can com- 
pute more than one polynomial: we say that  an SLP computes the polynomials 
g l , . . . ,  gr if these polynomials appear in the last r steps of the SLP. 

We note that  one may view SLP'S as algebraic circuits (circuits whose gates 
compute + , - ,  . ) .  The difference between the two notions is that  the complexity 
of an SLP is measured by its size. An algebraic circuit is measured by both its size 
and depth. Since in this paper we ignore circuit depth we restrict our attention 
to SLP'S. 

2.1 Euc l id ' s  a l g o r i t h m  and SLP's 

We next prove some properties of straight line programs. The reader may skip 
to Section 3 and return to the following lemmas when referenced. 

Let f ,  g be two polynomials in Zg[x] where N = pq. Let dp be the degree 
of gcd(f ,  g) when f and g are reduced modulo p and let dq be the degree of 
the gcd when they are reduced modulo q. Suppose dq ~ dp. Then when one 
tries to apply Euclid's algorithm to f and g in ZN the factorization of N is 
leaked since at some point Euclid's algorithm must generate a polynomial whose 
leading coefficient is not invertibte modulo N.  This coefficient must have a non- 
trivial gcd with N,  thus leaking the factorization. Note that  since ZN is not 
an integral domain Euclid's algorithm is not well defined in ZN[X]. In fact, the 
notation f mod g is not well defined. When the leading coefficient of g is in 
Z~v we define the polynomial f mod g as the output  of the standard polynomial 
division algorithm. Otherwise we say that  f rood g is undefined. When f mod g 
is undefined, the leading coefficient of g reveals the factorization of N. 

Now, suppose f and g are given as SLP's in the variables x, Z l , . . . ,  Zk. We 
view both f and g as polynomials in x whose coefficients are polynomials in 
the zi's. We ask whether it is still possible to carry out Euclid's algorithm and 
obtain an analogous result to the one discussed above. The next lemma provides 
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a positive answer to this question provided the degree of g in x is small. We 
use the following notation: given a polynomial f E ZN[x] we denote by fp the 
polynomial f reduced modulo p where p is a prime factor of N. 

L e m m a  2.2. Let N = pq and f E ZN[X, Zl,... , Zk] be a polynomial given as an 
SLP of length L. Let g(x, z l , . . . ,  zk) = x m - h ( z l , . . . ,  zk) where h is given as an 
SLP of length L. Both polynomials f and g are regarded as polynomials in x with 
coefficients in ZN[Zl , . . . ,  zk]. Then there exists a polynomial time algorithm (in 
L and 2 m) that given f ,  g outputs 2 m SLP's in z l , . . . ,  Zk satisfying the following: 

1. The length of each SLP is bounded by 2m~L + m 3. 
2. For any ~ = ( c l , . . .  ,ck) ~ ZkN satisfying 

deg(  gcd ( fp(x ,5) ,  gp(x ,~) ) )  5 deg( gcd (fq(X,C), gq(X,C))) 

at least one of the 2 m programs on input c l , . . . ,  Ck produces a non-zero non- 
invertible element of Z N. 

The proof of the lemma is a bit tedious. Essentially we apply Euclid's algo- 
r i thm to the polynomials f and g. The 2 m programs generated in the lemma 
correspond to coefficients of polynomials generated during the execution of Eu- 
clid's algorithm. Note that  all these coefficients are polynomials in z l , . . . , z k .  
When evaluated at appropriate values c l , . . . ,  Ck (namely the ones satisfying 
condition two of the lemma) one of these coefficients must evaluate to a non- 
zero and non-invertible element in ZN. The first step is to build the polynomial 
f* = ] mod g. The following lemma shows how to build an s a P  that  computes 
the coefficients of f '  (each of these coefficients is a polynomial in Z l , . . . ,  Zk). The 
lemma is quite easy. For completeness we sketch its proof in the appendix. 

L e m m a  2.3. Let f and g be polynomials as in Lemma 2.2. Then there exists a 
polynomial time algorithm (in L and m )  that outputs an s a P  of length at most 
2m2 L in which the last m steps are the coefficients of f mod g. 

We can now complete the proof of Lemma 2.2. 
P r o o f  o f  L e m m a  2.2 Having built an SLP for the coefficients of f '  -- f mod g 
we need to continue Euclid's algorithm and compute g mod f ' .  Since each of 
the m coefficients of f '  is itself a polynomial in Zl , . .  �9 Zk we cannot determine 
the exact degree of ]' (for different settings of Z l , . . . ,  zk the polynomial f '  will 
have different degrees). We cannot build an SLP for the coefficients of g mod f~ 
without knowing the degree of f ' .  To solve this problem we build an SLP for each 
of the possible m values for the degree of f ' .  Thus, for each r -- 0 , . . . ,  m - 1 
we obtain a program that  computes the coefficients of g mod f '  assuming the 
degree of f '  is r. By allowing the programs to generate an invertible constant 
multiple of g mod f '  we can avoid the use of division. We iterate this process 
until the Euclidean algorithm is completed. At each stage of the algorithm, when 
computing f ( j -1)  mod f(J) all possible values for the degree of f(J) are explored. 
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Recall tha t  our objective is to create an SLP for the leading coefficient of all 
polynomials generated by Euclid's algorithm during the computat ion of gcd(f ,  9). 
Normally there would only be m such polynomials. However, since we t ry  all pos- 
sible degree values for intermediate polynomials we end up with at most  2 m SLP's 
for leading coefficients. We prove tha t  at  most  2 m SLP's are generated by induc- 
tion on m. For m = 1 (i.e. g linear in x) the claim is trivial. If  the claim holds for 
all r < m - 1 then the number  of programs generated when 9 has degree m in x 

m-1 2r 2 m (each of the m values r is at m o s t  Er----1 < ~ 0 , . . . ,  m - 1 for the degree 
of f t  generates at most  2 r programs) .  Hence, Euclid's algorithm with symbolic 
coefficients generates at most  2 m programs.  Each program has length at  most  
2m2L + m 3 as required. [] 

2.2 E l i m i n a t i n g  d i v i s i o n  f r o m  s t r a i g h t  l ine  p r o g r a m s  

Our definition of straight line programs does not allow for division. The reason 
is tha t  division can be avoided altogether. Division turns out to be problematic 
for what  we have in mind; the ability to avoid it is very helpful. We say tha t  the 
evaluation of a division-SLP at  a point ~ E ~ completes successfully if there are 
no divisions by zero along the way. 

L e m m a  2.4. Let f E F v [ x l , . . . ,  xk] be a polynomial given as a division-SLP of 
length L. Then in linear t ime in L one can generate two SLP's g and h each of 
length 4L such that f = g /h .  Furthermore, let Y~ E ~pp be an input for which the 
evaluation of f completes successfully. Then ~ is a root of f i f  and only if it is 
a root of g. 

We include a proof  of the l emma in the final version of the paper.  The lemma 
shows tha t  we can always convert a division-sLe into a division free SLP while 
maintaining the same roots. Hence, if a division-sLe can be used to factor, it can 
be converted into a division free SLP tha t  can also be used to factor. 

3 M a i n  r e s u l t s  

Our method of t ransforming a "factoring to RSA" reduction into a real factoring 
algorithm applies whenever the reduction algori thm belongs to a certain "nat- 
ural" class of algorithms. In this section we precisely define our notion of "nat- 
ural" and prove our results. We begin by showing how to t ransform a straight 
line reduction into a factoring algori thm and then in Section 3.2 describe our 
full result. 

Since we are most ly  interested in factoring numbers tha t  are a product  of 
two large primes we define the following set: 

Z(2)(n) = { N  I N < 2 n ,  N = pq , p > q > 2 n/4 , p ,qpr ime}  

We say tha t  an algorithm .4 factors a non-negligible fractions of the integers in 
Z(2)(n) if there exists a constant e such tha t  infinitely often ,4 factors 1In c of 
the integers in Z(~)(n). 
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3.1 Removing  an RSA oracle from straight line programs 

Factoring algorithms are often simply straight line programs evaluated modulo 
N at various inputs. A factorization is obtained once the straight line program 
outputs  a non-zero non-invertible element modulo N.  Both Pollard's p - 1 fac- 
toring [6] and Elliptic curve factoring [7] can be viewed as straight line factoring 
algorithms. In this section we show that  an oracle for breaking low exponent RSA 
cannot aid straight line factoring algorithms as long as the algorithm doesn't  
make too many oracle calls. The following definition captures the notion of an 
SLP combined with an oracle for breaking LE-RSA. We denote the maximum 
allowable encryption exponent by w and regard it as an absolute constant. 

Definit ion 3.1. Let w be a fixed constant. 

- A straight line RSA program (RSA-SLP) P is a sequence of algebraic expres- 
sions 1 , c l , c2 , . . .  ,Cm such that for all i = 1 , . . .  , m  the expression ci is either 
ci = ck o ct ]or some k, l < i and o E { + , - , * }  or ci = ~ for some k < i 
and e < aJ. 

- The program can be successfully evaluated modulo N if  all steps of the form 
ci = ~ with k < i satisfy gcd(~(N),  e) = 1. We refer to these steps of the 
program as radical steps. 

An RSA-SLP is an algebraic circuit in which gates perform arithmetic oper- 
ations as well as take e ' th roots (for small e). Next, we define the notion of a 
straight line reduction from factoring to breaking LE-RSA. Essentially, the reduc- 
tion must factor elements of Z(2)(n) only using RSA-SLP'S. 

D e f i n i t i o n  3.2. 

- An  RSA-SLP P is said to ]actor N if  it can be successfully evaluated modulo 
N and it evaluates to a non-zero non-invertible element. A set of RSA-SLP's 
is said to factor N if  one of the programs in the set factors N .  

- A straight line reduction is a randomized algorithm .4 that on input n outputs 
a set of RSA-SLP 'S { P 1 , . . . ,  Pk}. Denote the output set by .4(n). For a non- 
negligible fraction of the N E Z(2)(n) the set A(n)  must  ]actor N (with 

1 probability at least ~ over the random bits of ,4). 

An expected polynomial time straight line reduction .A would prove that  
breaking low exponent ash  is as hard as factoring. The main result of this 
section shows that  such a reduction can be converted into a real polynomial 
time factoring algorithm. Hence, an RSA breaking oracle does not help a straight 
line factoring algorithm. Alternatively, factoring is not reducible to breaking 
LE-RSA using straight line reductions, unless factoring is easy. 

T h e o r e m  3.3. Suppose there exists a straight line reduction .4 whose running 
t ime is T(n) .  Further suppose that each of the RSA-SLP ~S generated by .4 on 
input N E Z(2)(n) contains at most  O( logT(n) )  radical steps. Then there is 

a real factoring algorithm B whose running t ime is T (n )  0(1) and ]actors all 
N E Z(2)(n) that ,4 does. 
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The main tool used in the proof of Theorem 3.3 is presented in the next 
lemma. The statement of the lemma requires that  we precisely define the degree 
of a polynomial g(x)  d = )-'~=0 a~x* E Fp [x]. The polynomial has degree d if d > 0 
and aa ~t 0. A non-zero constant polynomial is said to have degree 0. The zero 
polynomial is said to have degree - 1 .  

L e m m a  3.4.  Let f E Fp[X] be some polynomial  and m a positive integer sat- 
isfying gcd(m,p - 1) = 1. Then for  any constant  0 # c E Fp the polynomial  
gcd(f(x) ,  x m - c TM) has odd degree if and only i f  x is a root of  f ( x ) .  

P r o o f .  We know(see [5]) that  when c # O: 

xm - c m  = H c~(a) 4ia(x) (mod p) 

dim 

where q~d(X) is the d ' th cyclotomic polynomial. It 's degree is ~(d) and it is 
irreducible over Fp. Observe that  ~(d) is even for all odd integers d > 1. Since m 
is odd all its divisors are odd and hence all irreducible factors of x m - c m except 
x - c have even degree. It follows that  if c is not a root of f (x )  then x - c does 
not divide the gcd implying that  the gcd must have even degree. Conversely, if 
c is a root of f ( x )  then x - c does divide the gcd and hence its degree must be 
odd. [] 

C o r o l l a r y  3.5. Let  m E Z be a positive integer and let N E Z(2)(n) satisfy 
gcd(~(N),  m) = 1. Let  f E Zg[x] be a polynomial  and let fp, fq be the reduction 
of  f modulo p and q respectively where N = pq. Then for  any constant  c E 
Z~v U {0} i f  f ( c )  is a non-zero non-invertible e lement  of  Z N  then 

deg (gcd(fp,  X rn - -  c m ) )  ~ deg (gcd(fq,  X m --  c r n ) )  

P r o o f .  Since f ( c )  is non-zero non-invertible we know that  c is a root of f modulo 
exactly one of the primes p, q. When c = 0 the corollary is trivial. When c E Z~v 
the previous lemma implies that  one gcd has odd degree while the other has 
even degree. [] 

The above corollary shows that  if f E ZN[X] is a polynomial such that  f ( c )  
is non-zero non-invertible element of ZN then gcd(f ,  x m - c m) behaves modulo 
p differently than it does modulo q. The difference in behavior enables one to 
factor N (simply apply Euclid's algorithm in ZN to f and x m - cm). Thus, the 
corollary shows that  if f ( c )  reveals the factorization of N then one can factor N 
given only c m mod N (and f ) .  
P r o o f  o f  T h e o r e m  3.3 Given an integer N E Z(2)(n) algorithm B factors it 
by first running algorithm A to produce k RSA--SLP'S P 1 , - . . ,  P k .  We know that  
when evaluated modulo N (using the RSA breaking oracle) one of these programs 
produces a non-zero non-invertible element of ZN. Call this program P.  We show 
how algorithm B can use the program P to generate a non-zero non-invertible 
element without using an RSA breaking oracle. Note that  since B does not know 
which of the k programs is the right one, it tries them all. 
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0/1 

0/2 

O/3 

To emphasize the steps in which P uses the RSA breaking oracle we write P 
as follows: 

0/1 = ~/1o(1) 

0 / 2 ~  e ~  

a3 = ~//f2 (a2, a l )  

0/r  = 

O~r+l : fr  (0/r,- �9 �9 , a l )  

where for all i, ~i E ZN and a~+l is non-zero non-invertible. The polynomials 
f 0 , - . . ,  f~ all have straight line complexity smaller than  the length of P.  Note 
tha t  the polynomial  f~ may only depend on some of the 0/j, j < i. Every line in 
the above list corresponds to one application of the RSA oracle. Recall that  by 
assumption all the ei are less than  some absolute constant w. Also, by assumption 

e~ is a non-zero r < O ( l o g T ( n ) ) .  We may assume ar ~ ZNU{0} since otherwise a~ 
non-invertible element of ZN and the program may as well end there. 

Consider the polynomial f~ as a polynomial in the variables x and z l , . . . ,  Z~-l. 
Setting x = a~ and zi = 0/i for i = 1, . . . ,  r -  1 causes f~ to evaluate to a non-zero 
non-invertible element of ZN. Let g(x)  = f~(x,  0/~-1 , . . . ,  a i )  E Zg[x].  Then by 
Lemma 3.5, the degree of gcd(g, x e, - a~ ") modulo p is different from its de- 
gree modulo q. We intend to apply Euclid's algorithm to g(x)  and x e" - 0/re" to 
reveal the factorization of N.  The point is tha t  are ~ can now be expressed as a 
polynomial  in O i l , . . . ,  0/r--1. 

Unfortunately at  this point the values a l , . . . ,  o/r-1 are still unknown. So, we 
t reat  them as indeterminates z l , . .  �9 Zr-x. Working symbolically, we must  apply 
Euclid's algorithm (with respect to x) to the polynomials f~ and x ~" - f , - 1 -  
We do so using Lemma  2.2. The lemma produces 2 m SLP'S over z l , . . . , z , . - 1  
whose length is at most  len(P)e  3. The  lemma guarantees tha t  when evaluated 
a t  Zl : 0 / 1 , . . . , Z r - 1  ---- 0/r-1 a t  least one of these programs must  evaluate to 
a non-zero non-invertible element of ZN. Let pr  be this program. Algorithm B 
does not know which is the right one and so it tries them all. Let h ( z ~ , . . . ,  z r - i )  
be the polynomial  computed by P ' .  Then the following RSA-SLP f a c t o r s  N: 

= ~ . . . , ) 

= a i )  

We obtained an RSA-SLP making one less oracle call than  the original program. 
The total  length of the R S A - S L P  went up by at most  0:3 and it is one of k2 ~ 
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RSA-SLP'S tha t  algorithm B must  evaluate. We can i terate this process of re- 
moving oracle calls until finally we obtain a collection of RSA--SLP's tha t  never 
use radicals; they can all be evaluated without  the use of an oracle. One of 
them yields the factorization of N.  The total  number  of these SLP'S is at most  
k(2~) r and the length of each one is at most  len(P)(0fl) r. Since w is a constant,  
r < O(logT(n))  and len(P) < T(n)  the total  running t ime of algorithm B is 
bounded by T(n)  ~ It  factors all integers tha t  algorithm A factors and makes 
no use of an oracle breaking LE-RSA. [] 

The  result we just  proved is a bit stronger than  stated in the theorem. All the 
steps of the program P up until the first use of the RSA breaking oracle can be 
arbitrary.  Tha t  is, our conversion process works even if fo(1) is computed using 
non-algebraic operations. This is an impor tan t  observation since some factoring 
algorithms based on sieving fall into this category. 

3.2 R e m o v i n g  a n  R S A  o r a c l e  f r o m  a n  a l g e b r a i c  r e d u c t i o n  

In this section we show how to convert a "factoring to RSA" reduction to a real 
factoring algorithm for a more general class of reductions. We refer to these as 
algebraic reductions. Unlike the straight line reductions of the previous section, 
algebraic reductions may include branches (decisions) based on values returned 
by the RSA oracle. Hence, algebraic reductions appear  to be more general. 

D e f i n i t i o n  3.6. An algebraic reduction .4 ]actors an element N E Z(2)(n) with 
the help of a special oracle O. From time to time A stops and presents an RSA- 
SLP tO O. The oracle then says "yes" or "no" according on whether the RSA--SLP 
evaluates to zero in ZN. Eventually .4 stops and outputs a set of RSA-SLP 'S 
{ Pt , - . . , Pk ) one of which factors N with probability at least �89 (over the random 
bits of A) .  

If a polynomial t ime algebraic reduction exists then breaking low exponent 
RSA is as hard as factoring. As in the previous section we suggest tha t  this is 
unlikely since an algebraic reduction (with a bounded number  of oracle calls) 
can be converted into a real factoring algorithm. 

T h e o r e m  3.7. Suppose there exists an algebraic factoring algorithm A whose 
running time is T(n) .  Further suppose that each of the RSA-SLP ~S generated by 
.4 on input N E Z(2)(n) contains at most O( logT(n) )  radical steps. Then there 

is a real factoring algorithm B whose running time is T (n)  ~ and ]actors all 
N E Z(2)(n) that A does. 

The difficulty here is in answering .A's queries to the oracle O. We show how 
given an RSA-SLP P it is possible to test  if P evaluates to zero in ZN without the 
help of an RSA breaking oracle. In the following lemma we use the same notion of 
gcd in Zn[x] as the one discussed in the beginning of Section 2.1. The following 
lemma shows tha t  to determine if c E ZN is a root of f E ZN[X] it suffices to 
observe the degree of gcd(f ,  x m - cm). 
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L e m m a  3.8. Let m E Z be a positive integer and let N E Z(2)(n) satisfy 
gcd(~(N) ,m)  = 1. Let f ~ EN[X] be a polynomial. Let c E $N  be a value 
/or which h(x) = gcd(f (x) ,  x m - c m) is well defined. Then c # 0 is a root of 
f ( x )  if and only if h(x) has odd degree, c = 0 is a root of f ( x )  if and only if the 
degree of h(x) is greater than O. 

P r o o f .  When c -- 0 the lemma is trivial. Assume c # 0. Let N = pq with p, q 
prime. Let fp be the polynomial f reduced modulo p and fq the polynomial 
reduced modulo q. If c is a root of f (in EN) then it must also be a root of fp 
and fq. Hence, by Lemma 3.4, assuming h E ZN[X] is well defined, its degree 
must be odd. 

Conversely, suppose the degree of h(x) is odd. Then, assuming the leading 
coefficient of h is invertible in ZN, the degree of h(x) when reduced modulo p 
must be odd and the same holds modulo q. Hence, by Lemma 3.4, c must be a 
root of both fp and fq. It follows that  c is a root of f in Z g .  [] 

P r o o f  o f  T h e o r e m  3.7 On input N E Z(2)(n) algorithm E runs algorithm .4. 
If B could answer .A's oracle queries correctly then eventually ,4 will generate 
a set of RSA-SLP's {P1,..-,Pk} that  factor N.  Algorithm B could then use the 
result of Theorem 3.3 to convert these RSA-SLP'S into a real factoring algorithm 
(that makes no oracle calls). Hence, we must only show how B can answer A's 
oracle queries to 60. 

At some point during the execution of .A it outputs an RSA-SLP P and then 
stops and waits for an answer to whether P evaluates to zero in ZN. As before 
we write the program P in a way that  emphasizes the oracle calls: 

O/1 = ~ ~/~f~0(1) 

Ol 2 = e~/F~O~l)  

oL3 = "~/f2 (a2, Oil ) 

O/r = " ~ / f r - - l ( O l r - - l , - . - , O q )  

O~r+l = f r ( O / r , . - . , ~ l )  

P evaluates to a r+l  in ZN. We show how to test if a r+ l  = 0 in ZN without the 
use of an oracle for breaking LE-RSA. Let g(x) = f ~ ( x , ( ~ - l , . . .  ,c~1) E ZN[X]. 
By Lemma 3.8 we know that  if gcd(g, x e~ - ~ )  is well defined, its degree (in 
x) will tell us if g(c~) = 0. If the gcd is not well defined then Euclid's algorithm 
must have encountered a polynomial whose leading coefficient is not invertible 
in ZN and hence the factorization of N is already revealed. 

Since a~- l ,  �9 �9 �9 cq are unknown at this point we treat  them as indeterminates 
z l , . . .  ,z r -1 .  The computation of gcd(g, x e~ - a ~ r )  reduces to computing the 
degree (in x) of 

gcd (f~(x, zr_l,...,zi), xer--  fr- - l (Zr-- i , . . . ,Z1))  
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Let go = x e~ - I t -1 .  We construct a recursive algorithm for this problem as 
follows: 

1. By Lemma 2.3 we can build an S L P  for the coefficients of gl = f r  mod go. 
These coefficients are polynomials in the z's. Let P o , - . . ,  Pm be the SLP's for 
these coefficients. 

2. To determine the degree of gl we must determine the largest i for which 
P ~ ( ( ~ - I , . . - , a l )  is non-zero in ZN. This is a zero-testing problem like the 
one we are trying to solve except that  the program Pi contains only r - 1 
oracle calls. Hence, we can recursively solve this question and determine the 
degree of gl. Note that  the length of the program P~ is at most w 3 times the 
length of P.  

3. To ensure that  the gcd is well defined we must check that  the leading co- 
efficient of gl is invertible in ZN. To do this we apply Theorem 3.3 to the 
leading coefficient of gl, namely to Pi ((~-  1 , . - . ,  a 1)- If the leading coefficient 
is not invertible, the factorization of N is found and algorithm B terminates. 

4. Next we compute an S L P  for the coefficients of g2 ---- go mod gl. To avoid 
using division we actually compute g2 multiplied by an invertible constant. 
We apply the same steps as before to determine the degree of g2 and to 
ensure that  its leading coefficient is invertible in ZN. 

5. We iterate this procedure until Euclid's algorithm terminates. At which time 
6 r  we find the degree of x in gcd(g(x), x e" - ( ~ ) .  By Lemma 3.8 the degree 

determines whether g((~) - 0 in ZN. 

The recursion depth is bounded by r, the number of oracle calls made by the 
R S A - S L P  P.  Hence, the total  running time is O(len(P)(w3) ~) = T(n) ~ since 
r = O(logT(n))  and len(P) < T(n).  [] 

As in the case of Theorem 3.3 the theorem is slightly stronger than stated. 
In fact, we can allow all the RSA-SLP's produced by algorithm .4 to perform 
arbi t rary operations (including aggressive bit manipulations) up until the first 
time the RSA oracle is invoked. Once the RSA oracle is used the programs must 
only use algebraic operations in ZN. The reason for this extra freedom is that  
it makes no difference how f0(1) is calculated. All tha t  matters  is that  it is an 
element of Z N which algorithm B can construct. 

4 C o n c l u s i o n s  a n d  o p e n  p r o b l e m s  

Our main objective is to study the relationship between breaking low exponent 
R S A  and factoring integers. We show that  under certain types of reductions 
(straight line reductions and algebraic reductions with bounded oracle queries) 
the two problems cannot be equivalent, unless factoring integers is easy. 

Since our results may suggest that  breaking L E - - R S A  is not as hard as factoring 
it is interesting to note that  attacks on low public exponent RSA due to Hastad [4] 
and Coppersmith [2] break the RSA system (i.e. decrypt messages without the 
private key) but  do not factor the modulus. In conjunction with our results this 
suggests further evidence that  breaking L E - - R S A  is easier than factoring. It is 
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impor tant  to keep in mind tha t  even though it may be easier than  factoring, 
breaking low exponent RSA is still most likely to be intractable.  

We note tha t  bo th  our main results, Theorems 3.3 and 3.7, are a bit stronger 
than stated.  In both  cases the RSA-SLP'S produced by the reductions are allowed 
to perform arbi t rary  operations (including aggressive bit manipulations) up until 
the first t ime the RSA oracle is invoked. Once the RSA oracle is used the programs 
must  only use algebraic operations in ZN. Hence, for instance, before invoking 
the RSA oracle the reduction may perform arb i t ra ry  sieving. Our results are 
strong enough to convert such reductions into real factoring algorithms. 

There are still several open problems tha t  remain to be solved until we have 
a complete proof  tha t  RSA cannot be equivalent to factoring (unless factoring is 
easy). The first is to remove the restriction that  the reduction must  be algebraic. 
Tha t  is, given a factoring algorithm presented as a boolean circuit using RSA 
gates (i.e. gates breaking LE--RSA) convert  it into a real factoring algorithm. 
This may be possible by first converting the boolean circuit into an ari thmetic 
circuit (one using only ari thmetic gates) using s tandard  techniques and then 
applying our method to the resulting ari thmetic circuit. 

The second open problem is to strengthen our results regarding algebraic 
reductions. Currently our conversion process works only when the given RSA- 
SLP makes at most  O(logT(n)) RSA oracle queries, where T(n) is the running 
t ime of the reduction algorithm 1. If we assume factoring cannot be done in t ime 
L~ (n) for some e > 0 then the reduction may take t ime L~ (n) and consequently 
the RSA-SLP'S it outputs  may make n ~ oracle queries. It  is an interesting open 
question to strengthen our results and allow the algebraic reduction to make 
unrestricted oracle calls. 

As a final note we point out tha t  our results apply to smooth public exponents 
in some limited sense. When e is smooth,  an oracle for taking e ' th  roots can 
be simulated using log e LE-RSA oracle calls. Hence, as long as e is smooth 
and e < n ~ our conversion process can be applied. Consequently, any algebraic 
reduction using a costant number  of e ' th  root oracle calls can be converted into a 
real factoring algorithm. In this restricted sense, our results apply to more than 
just low exponent RSA. 
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Appendix 

P r o o f  o f  L e m m a  2.3 First, observe that  since g is monic (as a polynomial in 
x) the gcd is well defined in ZN. L e t / 9 / b e  the SLP for f .  We prove the lemma by 
induction on L, the length of Pf .  When L -- 1 the claim is trivial. We assume the 
claim for L - 1 and prove for a program of length L. Suppose the last step of f 
applies one of {§ - ,  .} to the i ' th  and j ' t h  steps. By induction, there exist SLP's 
P~ and P j  for the m coefficients of f i  mod g and f3 mod g respectively (the last 
m steps of the program Pi are the coefficients of f~ mod g and a similar condition 
holds for Pj) .  If the last step of Py  takes the sum (or difference) of f~ and f3 
then P)  (the program for the coefficient of f mod g) includes the programs for 
P~ and Pj and adds m more steps adding (or subtracting) the m last steps of Pi 
to those of Fj. By induction, the length of the combined programs for Pi and P j  

is at most 2 m 2 ( L -  1). Hence, the total  length for P)  is 2 m 2 ( L  - 1) + m  < 2 m 2 L .  

If the last step takes the product  of fi  and fj  then as before the program P)  
includes Pi and Pj and adds a number of steps to that.  First P)  computes all 2m 
coefficients of the product  of fi  mod g and f3 mod g. Then using the simplest 
division algorithm it reduces the product  modulo g = x m - h.  Since x m - h is 
monic this step does not require any divisions. The last m steps of the reduction 
contain the desired m coefficients of f mod g. This procedure adds at most 2m 2 
steps. The total length is now less than 2 r n 2 ( L  - 1) + 2 m  2 = 2 m 2 L  as required. 

[] 


