
Breaking RSA May Not Be
Factoring

(Ex tended Abs t rac t)

Equivalent to

Dan B o n e h 1

dabo@cs.stanford.edu
R a m a r a t h n a m V e n k a t e s a n 2

v e n k i e @ m i c r o s o f t . c o m

1 Computer Science Dept., Stanford University.
2 Microsoft Research.

Abs t rac t . We provide evidence that breaking low-exponent RSA cannot
be equivalent to factoring integers. We show that an algebraic reduction
from factoring to breaking low-exponent RSA can be converted into an
efficient factoring algorithm. Thus, in effect an oracle for breaking RSA
does not help in factoring integers. Our result suggests an explanation for
the lack of progress in proving that breaking Rsn is equivalent to factor-
ing. We emphasize that our results do not expose any specific weakness
in the RSA system.

K e y w o r d s " RSA, Factoring, Straight line programs, Algebraic circuits.

1 I n t r o d u c t i o n

Two longstanding open problems in cryptography are to prove or disprove that
breaking the RSA system [10] is as hard as factoring integers and that breaking
the Diffie-Hellman protocol [3] is as hard as computing discrete log. Although
some recent progress has been made on the second problem [8, 9, 1] very lit-
tle progress has been made on the first. A harder version of the first problem
asks whether breaking low exponent RSA (LE-RSA) is as hard as factoring. Such
reductions are desirable since they prove that the security of the RSA system
follows from the intractability of factoring integers. In this paper we take a step
towards disproving the equivalence of factoring and breaking low exponent RSA.

One way of disproving the equivalence is to present an algorithm for breaking
LE-RSA that does not seem to provide a factoring algorithm. This is not our
approach. Instead, we wish to show that if one could give an efficient reduction
from factoring to breaking LE-RSA then the reduction can be converted into
an actual efficient factoring algorithm. This proves that unless factoring is easy,
the two problems cannot be equivalent. We make progress towards achieving
this goal by showing that any efficient algebraic reduction from factoring to
breaking LE-RSA can be converted into an efficient factoring algorithm. Thus,
breaking LE-RSA cannot be equivalent to factoring under algebraic reductions
(unless factoring is easy). Essentially, algebraic reductions are restricted to only

60

perform arithmetic operations. They are not allowed to aggressively manipulate
bits, e.g. given x, y E ZN they cannot compute x ~ y. A precise definition of this
notion is presented in Section 3.

To give a more concrete description of our results we consider the problem
of breaking RSA when the public exponent is e = 3. In the body of the paper we
allow any low public exponent (i.e. less than some fixed constant). Let N = pq

be a product of two large primes with gcd(~(N) ,3) = 1. The encryption of a
plain-text x E ZN is x 3 mod N. Breaking the system amounts to computing cube
roots modulo N. To prove that breaking this system is equivalent to factoring
one has to present a polynomial time oracle algorithm .A that given N =- pq and
a cube root oracle modulo N, factors N. We show that any such a lgebra ic oracle
algorithm .A, that does not make too many oracle calls, can be converted into
a non-oracle algorithm B that factors the same set of integers as A. In other
words, if one can prove that taking cube roots modulo N is as hard as factoring
N then the proof will provide a "real" factoring algorithm (that does not make
use of an oracle). Hence, under these conditions a cube root oracle does not help
in factoring N. We note that when gcd(~(N), 3) ~ 1 it is well known that taking
cube roots is as hard as factoring. However, in this case 3 cannot be used as an
RSA encryption exponent. For this reason, throughout the paper we only concern
ourselves with the case where gcd(qz(N), e) = 1.

Our results apply to large e as well - they apply whenever e is a smooth
integer. We discuss this extension at the end of the paper.

U n d e r s t a n d i n g our resu l t

We emphasize that our result does not point to any weakness of the RSA system.
Instead, it provides some evidence that breaking LE-RSA may be easier than
factoring. Even if breaking LE-RSA is indeed easier than factoring, nothing in
this work contests that it is likely to be intractable.

The class of algebraic reductions is not overly restrictive. For example, it
encompasses some number theoretic and factoring algorithms. These are often
simply polynomials evaluated modulo N at various inputs. A factorization is
obtained once the polynomial evaluates to a non-zero non-invertible element
modulo N (if 0 ~ x E ZN is not invertible then gcd(N, x) gives a non-trivial
factor of N). Both Pollard's p - 1 factoring [6] and Elliptic curve factoring [7]
can be viewed as such (one evaluates the polynomial x B - 1 for some smooth
integer B, the other evaluates the B ' th division polynomial of a random elliptic
curve at a random point). It is natural to ask whether an oracle for breaking low
exponent RSA can aid this type of factoring algorithms? Our results show that
the answer is no as long as the algorithm does not make too many oracle calls.

Our methods leave it open that reductions using bit manipulations (i.e. non-
algebraic operations as described in Section 3) on the outputs of an RSA oracle
may reduce factoring to breaking RSA. However, we note that current attacks on
low public exponent RSA [4, 2] decrypt a message without factoring the modulus.
Our results suggest that this is no accident, since breaking LE--RSA may be easier
than factoring.

61

2 S t r a i g h t l i n e p r o g r a m s

Our results make use of straight line programs for polynomials. In this section
we define this notion and prove some properties of it. Throughout the section
we let R be a ring with a cyclic additive group. The reader should think of R as
the field]Fp or the ring Z g for an RSA composite N = pq.

D e f i n i t i o n 2.1. A straight line program (SLP) for a polynomial f E R [x l , . . . , xk]
is a sequence o] polynomials fo, f l , f 2 , . . . , f,n E R [X l , . . . , xk] such that f m = f
and for all i = 1 , . . . , m the polynomial f , is either the constant 1, a variable xj
or gi = gk o gt where k,1 < i and o E { + , - , * } .

Examples of polynomials with low straight line complexity are univariate
sparse polynomials (i.e. polynomials whose degree is much larger than the num-
ber of their terms). An SLP of length L for a polynomial f defines a method for
evaluating f using exactly L arithmetic operations. An SLP is represented as a
sequence of triplets (i, o , j) where o E { + , - , *}. The k ' th such triplet implies
that fk, the k ' th polynomial in the program, is equal to fi o f j . An SLP can com-
pute more than one polynomial: we say that an SLP computes the polynomials
g l , . . . , gr if these polynomials appear in the last r steps of the SLP.

We note that one may view SLP'S as algebraic circuits (circuits whose gates
compute + , - , .) . The difference between the two notions is that the complexity
of an SLP is measured by its size. An algebraic circuit is measured by both its size
and depth. Since in this paper we ignore circuit depth we restrict our attention
to SLP'S.

2.1 Euc l id ' s a l g o r i t h m and SLP's

We next prove some properties of straight line programs. The reader may skip
to Section 3 and return to the following lemmas when referenced.

Let f , g be two polynomials in Zg[x] where N = pq. Let dp be the degree
of gcd(f , g) when f and g are reduced modulo p and let dq be the degree of
the gcd when they are reduced modulo q. Suppose dq ~ dp. Then when one
tries to apply Euclid's algorithm to f and g in ZN the factorization of N is
leaked since at some point Euclid's algorithm must generate a polynomial whose
leading coefficient is not invertibte modulo N. This coefficient must have a non-
trivial gcd with N, thus leaking the factorization. Note that since ZN is not
an integral domain Euclid's algorithm is not well defined in ZN[X]. In fact, the
notation f mod g is not well defined. When the leading coefficient of g is in
Z~v we define the polynomial f mod g as the output of the standard polynomial
division algorithm. Otherwise we say that f rood g is undefined. When f mod g
is undefined, the leading coefficient of g reveals the factorization of N.

Now, suppose f and g are given as SLP's in the variables x, Z l , . . . , Zk. We
view both f and g as polynomials in x whose coefficients are polynomials in
the zi's. We ask whether it is still possible to carry out Euclid's algorithm and
obtain an analogous result to the one discussed above. The next lemma provides

62

a positive answer to this question provided the degree of g in x is small. We
use the following notation: given a polynomial f E ZN[x] we denote by fp the
polynomial f reduced modulo p where p is a prime factor of N.

L e m m a 2.2. Let N = pq and f E ZN[X, Zl,... , Zk] be a polynomial given as an
SLP of length L. Let g(x, z l , . . . , zk) = x m - h (z l , . . . , zk) where h is given as an
SLP of length L. Both polynomials f and g are regarded as polynomials in x with
coefficients in ZN[Zl , . . . , zk]. Then there exists a polynomial time algorithm (in
L and 2 m) that given f , g outputs 2 m SLP's in z l , . . . , Zk satisfying the following:

1. The length of each SLP is bounded by 2m~L + m 3.
2. For any ~ = (c l , . . . ,ck) ~ ZkN satisfying

deg(gcd (fp(x ,5) , gp(x ,~))) 5 deg(gcd (fq(X,C), gq(X,C)))

at least one of the 2 m programs on input c l , . . . , Ck produces a non-zero non-
invertible element of Z N.

The proof of the lemma is a bit tedious. Essentially we apply Euclid's algo-
r i thm to the polynomials f and g. The 2 m programs generated in the lemma
correspond to coefficients of polynomials generated during the execution of Eu-
clid's algorithm. Note that all these coefficients are polynomials in z l , . . . , z k .
When evaluated at appropriate values c l , . . . , Ck (namely the ones satisfying
condition two of the lemma) one of these coefficients must evaluate to a non-
zero and non-invertible element in ZN. The first step is to build the polynomial
f* =] mod g. The following lemma shows how to build an s a P that computes
the coefficients of f ' (each of these coefficients is a polynomial in Z l , . . . , Zk). The
lemma is quite easy. For completeness we sketch its proof in the appendix.

L e m m a 2.3. Let f and g be polynomials as in Lemma 2.2. Then there exists a
polynomial time algorithm (in L and m) that outputs an s a P of length at most
2m2 L in which the last m steps are the coefficients of f mod g.

We can now complete the proof of Lemma 2.2.
P r o o f o f L e m m a 2.2 Having built an SLP for the coefficients of f ' -- f mod g
we need to continue Euclid's algorithm and compute g mod f ' . Since each of
the m coefficients of f ' is itself a polynomial in Zl , . . �9 Zk we cannot determine
the exact degree of]' (for different settings of Z l , . . . , zk the polynomial f ' will
have different degrees). We cannot build an SLP for the coefficients of g mod f~
without knowing the degree of f ' . To solve this problem we build an SLP for each
of the possible m values for the degree of f ' . Thus, for each r -- 0 , . . . , m - 1
we obtain a program that computes the coefficients of g mod f ' assuming the
degree of f ' is r. By allowing the programs to generate an invertible constant
multiple of g mod f ' we can avoid the use of division. We iterate this process
until the Euclidean algorithm is completed. At each stage of the algorithm, when
computing f (j -1) mod f(J) all possible values for the degree of f(J) are explored.

63

Recall tha t our objective is to create an SLP for the leading coefficient of all
polynomials generated by Euclid's algorithm during the computat ion of gcd(f , 9).
Normally there would only be m such polynomials. However, since we t ry all pos-
sible degree values for intermediate polynomials we end up with at most 2 m SLP's
for leading coefficients. We prove tha t at most 2 m SLP's are generated by induc-
tion on m. For m = 1 (i.e. g linear in x) the claim is trivial. If the claim holds for
all r < m - 1 then the number of programs generated when 9 has degree m in x

m-1 2r 2 m (each of the m values r is at m o s t Er----1 < ~ 0 , . . . , m - 1 for the degree
of f t generates at most 2 r programs) . Hence, Euclid's algorithm with symbolic
coefficients generates at most 2 m programs. Each program has length at most
2m2L + m 3 as required. []

2.2 E l i m i n a t i n g d i v i s i o n f r o m s t r a i g h t l ine p r o g r a m s

Our definition of straight line programs does not allow for division. The reason
is tha t division can be avoided altogether. Division turns out to be problematic
for what we have in mind; the ability to avoid it is very helpful. We say tha t the
evaluation of a division-SLP at a point ~ E ~ completes successfully if there are
no divisions by zero along the way.

L e m m a 2.4. Let f E F v [x l , . . . , xk] be a polynomial given as a division-SLP of
length L. Then in linear t ime in L one can generate two SLP's g and h each of
length 4L such that f = g /h . Furthermore, let Y~ E ~pp be an input for which the
evaluation of f completes successfully. Then ~ is a root of f i f and only if it is
a root of g.

We include a proof of the l emma in the final version of the paper. The lemma
shows tha t we can always convert a division-sLe into a division free SLP while
maintaining the same roots. Hence, if a division-sLe can be used to factor, it can
be converted into a division free SLP tha t can also be used to factor.

3 M a i n r e s u l t s

Our method of t ransforming a "factoring to RSA" reduction into a real factoring
algorithm applies whenever the reduction algori thm belongs to a certain "nat-
ural" class of algorithms. In this section we precisely define our notion of "nat-
ural" and prove our results. We begin by showing how to t ransform a straight
line reduction into a factoring algori thm and then in Section 3.2 describe our
full result.

Since we are most ly interested in factoring numbers tha t are a product of
two large primes we define the following set:

Z(2)(n) = { N I N < 2 n , N = pq , p > q > 2 n/4 , p ,qpr ime}

We say tha t an algorithm .4 factors a non-negligible fractions of the integers in
Z(2)(n) if there exists a constant e such tha t infinitely often ,4 factors 1In c of
the integers in Z(~)(n).

64

3.1 Removing an RSA oracle from straight line programs

Factoring algorithms are often simply straight line programs evaluated modulo
N at various inputs. A factorization is obtained once the straight line program
outputs a non-zero non-invertible element modulo N. Both Pollard's p - 1 fac-
toring [6] and Elliptic curve factoring [7] can be viewed as straight line factoring
algorithms. In this section we show that an oracle for breaking low exponent RSA
cannot aid straight line factoring algorithms as long as the algorithm doesn't
make too many oracle calls. The following definition captures the notion of an
SLP combined with an oracle for breaking LE-RSA. We denote the maximum
allowable encryption exponent by w and regard it as an absolute constant.

Definit ion 3.1. Let w be a fixed constant.

- A straight line RSA program (RSA-SLP) P is a sequence of algebraic expres-
sions 1 , c l , c2 , . . . ,Cm such that for all i = 1 , . . . , m the expression ci is either
ci = ck o ct]or some k, l < i and o E { + , - , * } or ci = ~ for some k < i
and e < aJ.

- The program can be successfully evaluated modulo N if all steps of the form
ci = ~ with k < i satisfy gcd(~(N), e) = 1. We refer to these steps of the
program as radical steps.

An RSA-SLP is an algebraic circuit in which gates perform arithmetic oper-
ations as well as take e ' th roots (for small e). Next, we define the notion of a
straight line reduction from factoring to breaking LE-RSA. Essentially, the reduc-
tion must factor elements of Z(2)(n) only using RSA-SLP'S.

D e f i n i t i o n 3.2.

- An RSA-SLP P is said to]actor N if it can be successfully evaluated modulo
N and it evaluates to a non-zero non-invertible element. A set of RSA-SLP's
is said to factor N if one of the programs in the set factors N .

- A straight line reduction is a randomized algorithm .4 that on input n outputs
a set of RSA-SLP 'S { P 1 , . . . , Pk}. Denote the output set by .4(n). For a non-
negligible fraction of the N E Z(2)(n) the set A(n) must]actor N (with

1 probability at least ~ over the random bits of ,4).

An expected polynomial time straight line reduction .A would prove that
breaking low exponent ash is as hard as factoring. The main result of this
section shows that such a reduction can be converted into a real polynomial
time factoring algorithm. Hence, an RSA breaking oracle does not help a straight
line factoring algorithm. Alternatively, factoring is not reducible to breaking
LE-RSA using straight line reductions, unless factoring is easy.

T h e o r e m 3.3. Suppose there exists a straight line reduction .4 whose running
t ime is T(n) . Further suppose that each of the RSA-SLP ~S generated by .4 on
input N E Z(2)(n) contains at most O(logT(n)) radical steps. Then there is

a real factoring algorithm B whose running t ime is T (n) 0(1) and]actors all
N E Z(2)(n) that ,4 does.

65

The main tool used in the proof of Theorem 3.3 is presented in the next
lemma. The statement of the lemma requires that we precisely define the degree
of a polynomial g(x) d =)-'~=0 a~x* E Fp [x]. The polynomial has degree d if d > 0
and aa ~t 0. A non-zero constant polynomial is said to have degree 0. The zero
polynomial is said to have degree - 1 .

L e m m a 3.4. Let f E Fp[X] be some polynomial and m a positive integer sat-
isfying gcd(m,p - 1) = 1. Then for any constant 0 # c E Fp the polynomial
gcd(f(x) , x m - c TM) has odd degree if and only i f x is a root of f (x) .

P r o o f . We know(see [5]) that when c # O:

xm - c m = H c~(a) 4ia(x) (mod p)

dim

where q~d(X) is the d ' th cyclotomic polynomial. It 's degree is ~(d) and it is
irreducible over Fp. Observe that ~(d) is even for all odd integers d > 1. Since m
is odd all its divisors are odd and hence all irreducible factors of x m - c m except
x - c have even degree. It follows that if c is not a root of f (x) then x - c does
not divide the gcd implying that the gcd must have even degree. Conversely, if
c is a root of f (x) then x - c does divide the gcd and hence its degree must be
odd. []

C o r o l l a r y 3.5. Let m E Z be a positive integer and let N E Z(2)(n) satisfy
gcd(~(N), m) = 1. Let f E Zg[x] be a polynomial and let fp, fq be the reduction
of f modulo p and q respectively where N = pq. Then for any constant c E
Z~v U {0} i f f (c) is a non-zero non-invertible e lement of Z N then

deg (gcd(fp, X rn - - c m)) ~ deg (gcd(fq, X m -- c r n))

P r o o f . Since f (c) is non-zero non-invertible we know that c is a root of f modulo
exactly one of the primes p, q. When c = 0 the corollary is trivial. When c E Z~v
the previous lemma implies that one gcd has odd degree while the other has
even degree. []

The above corollary shows that if f E ZN[X] is a polynomial such that f (c)
is non-zero non-invertible element of ZN then gcd(f , x m - c m) behaves modulo
p differently than it does modulo q. The difference in behavior enables one to
factor N (simply apply Euclid's algorithm in ZN to f and x m - cm). Thus, the
corollary shows that if f (c) reveals the factorization of N then one can factor N
given only c m mod N (and f) .
P r o o f o f T h e o r e m 3.3 Given an integer N E Z(2)(n) algorithm B factors it
by first running algorithm A to produce k RSA--SLP'S P 1 , - . . , P k . We know that
when evaluated modulo N (using the RSA breaking oracle) one of these programs
produces a non-zero non-invertible element of ZN. Call this program P. We show
how algorithm B can use the program P to generate a non-zero non-invertible
element without using an RSA breaking oracle. Note that since B does not know
which of the k programs is the right one, it tries them all.

66

0/1

0/2

O/3

To emphasize the steps in which P uses the RSA breaking oracle we write P
as follows:

0/1 = ~/1o(1)

0 / 2 ~ e ~

a3 = ~//f2 (a2, a l)

0/r =

O~r+l : fr (0/r,- �9 �9 , a l)

where for all i, ~i E ZN and a~+l is non-zero non-invertible. The polynomials
f 0 , - . . , f~ all have straight line complexity smaller than the length of P. Note
tha t the polynomial f~ may only depend on some of the 0/j, j < i. Every line in
the above list corresponds to one application of the RSA oracle. Recall that by
assumption all the ei are less than some absolute constant w. Also, by assumption

e~ is a non-zero r < O (l o g T (n)) . We may assume ar ~ ZNU{0} since otherwise a~
non-invertible element of ZN and the program may as well end there.

Consider the polynomial f~ as a polynomial in the variables x and z l , . . . , Z~-l.
Setting x = a~ and zi = 0/i for i = 1, . . . , r - 1 causes f~ to evaluate to a non-zero
non-invertible element of ZN. Let g(x) = f~(x, 0/~-1 , . . . , a i) E Zg[x]. Then by
Lemma 3.5, the degree of gcd(g, x e, - a~ ") modulo p is different from its de-
gree modulo q. We intend to apply Euclid's algorithm to g(x) and x e" - 0/re" to
reveal the factorization of N. The point is tha t are ~ can now be expressed as a
polynomial in O i l , . . . , 0/r--1.

Unfortunately at this point the values a l , . . . , o/r-1 are still unknown. So, we
t reat them as indeterminates z l , . . �9 Zr-x. Working symbolically, we must apply
Euclid's algorithm (with respect to x) to the polynomials f~ and x ~" - f , - 1 -
We do so using Lemma 2.2. The lemma produces 2 m SLP'S over z l , . . . , z , . - 1
whose length is at most len(P)e 3. The lemma guarantees tha t when evaluated
a t Zl : 0 / 1 , . . . , Z r - 1 ---- 0/r-1 a t least one of these programs must evaluate to
a non-zero non-invertible element of ZN. Let pr be this program. Algorithm B
does not know which is the right one and so it tries them all. Let h (z ~ , . . . , z r - i)
be the polynomial computed by P ' . Then the following RSA-SLP f a c t o r s N:

= ~ . . . ,)

= a i)

We obtained an RSA-SLP making one less oracle call than the original program.
The total length of the R S A - S L P went up by at most 0:3 and it is one of k2 ~

67

RSA-SLP'S tha t algorithm B must evaluate. We can i terate this process of re-
moving oracle calls until finally we obtain a collection of RSA--SLP's tha t never
use radicals; they can all be evaluated without the use of an oracle. One of
them yields the factorization of N. The total number of these SLP'S is at most
k(2~) r and the length of each one is at most len(P)(0fl) r. Since w is a constant,
r < O(logT(n)) and len(P) < T(n) the total running t ime of algorithm B is
bounded by T(n) ~ It factors all integers tha t algorithm A factors and makes
no use of an oracle breaking LE-RSA. []

The result we just proved is a bit stronger than stated in the theorem. All the
steps of the program P up until the first use of the RSA breaking oracle can be
arbitrary. Tha t is, our conversion process works even if fo(1) is computed using
non-algebraic operations. This is an impor tan t observation since some factoring
algorithms based on sieving fall into this category.

3.2 R e m o v i n g a n R S A o r a c l e f r o m a n a l g e b r a i c r e d u c t i o n

In this section we show how to convert a "factoring to RSA" reduction to a real
factoring algorithm for a more general class of reductions. We refer to these as
algebraic reductions. Unlike the straight line reductions of the previous section,
algebraic reductions may include branches (decisions) based on values returned
by the RSA oracle. Hence, algebraic reductions appear to be more general.

D e f i n i t i o n 3.6. An algebraic reduction .4]actors an element N E Z(2)(n) with
the help of a special oracle O. From time to time A stops and presents an RSA-
SLP tO O. The oracle then says "yes" or "no" according on whether the RSA--SLP
evaluates to zero in ZN. Eventually .4 stops and outputs a set of RSA-SLP 'S
{ Pt , - . . , Pk) one of which factors N with probability at least �89 (over the random
bits of A) .

If a polynomial t ime algebraic reduction exists then breaking low exponent
RSA is as hard as factoring. As in the previous section we suggest tha t this is
unlikely since an algebraic reduction (with a bounded number of oracle calls)
can be converted into a real factoring algorithm.

T h e o r e m 3.7. Suppose there exists an algebraic factoring algorithm A whose
running time is T(n) . Further suppose that each of the RSA-SLP ~S generated by
.4 on input N E Z(2)(n) contains at most O(logT(n)) radical steps. Then there

is a real factoring algorithm B whose running time is T (n) ~ and]actors all
N E Z(2)(n) that A does.

The difficulty here is in answering .A's queries to the oracle O. We show how
given an RSA-SLP P it is possible to test if P evaluates to zero in ZN without the
help of an RSA breaking oracle. In the following lemma we use the same notion of
gcd in Zn[x] as the one discussed in the beginning of Section 2.1. The following
lemma shows tha t to determine if c E ZN is a root of f E ZN[X] it suffices to
observe the degree of gcd(f , x m - cm).

68

L e m m a 3.8. Let m E Z be a positive integer and let N E Z(2)(n) satisfy
gcd(~(N) ,m) = 1. Let f ~ EN[X] be a polynomial. Let c E $N be a value
/or which h(x) = gcd(f (x) , x m - c m) is well defined. Then c # 0 is a root of
f (x) if and only if h(x) has odd degree, c = 0 is a root of f (x) if and only if the
degree of h(x) is greater than O.

P r o o f . When c -- 0 the lemma is trivial. Assume c # 0. Let N = pq with p, q
prime. Let fp be the polynomial f reduced modulo p and fq the polynomial
reduced modulo q. If c is a root of f (in EN) then it must also be a root of fp
and fq. Hence, by Lemma 3.4, assuming h E ZN[X] is well defined, its degree
must be odd.

Conversely, suppose the degree of h(x) is odd. Then, assuming the leading
coefficient of h is invertible in ZN, the degree of h(x) when reduced modulo p
must be odd and the same holds modulo q. Hence, by Lemma 3.4, c must be a
root of both fp and fq. It follows that c is a root of f in Z g . []

P r o o f o f T h e o r e m 3.7 On input N E Z(2)(n) algorithm E runs algorithm .4.
If B could answer .A's oracle queries correctly then eventually ,4 will generate
a set of RSA-SLP's {P1,..-,Pk} that factor N. Algorithm B could then use the
result of Theorem 3.3 to convert these RSA-SLP'S into a real factoring algorithm
(that makes no oracle calls). Hence, we must only show how B can answer A's
oracle queries to 60.

At some point during the execution of .A it outputs an RSA-SLP P and then
stops and waits for an answer to whether P evaluates to zero in ZN. As before
we write the program P in a way that emphasizes the oracle calls:

O/1 = ~ ~/~f~0(1)

Ol 2 = e~/F~O~l)

oL3 = "~/f2 (a2, Oil)

O/r = " ~ / f r - - l (O l r - - l , - . - , O q)

O~r+l = f r (O / r , . - . , ~ l)

P evaluates to a r+l in ZN. We show how to test if a r+ l = 0 in ZN without the
use of an oracle for breaking LE-RSA. Let g(x) = f ~ (x , (~ - l , . . . ,c~1) E ZN[X].
By Lemma 3.8 we know that if gcd(g, x e~ - ~) is well defined, its degree (in
x) will tell us if g(c~) = 0. If the gcd is not well defined then Euclid's algorithm
must have encountered a polynomial whose leading coefficient is not invertible
in ZN and hence the factorization of N is already revealed.

Since a~- l , �9 �9 �9 cq are unknown at this point we treat them as indeterminates
z l , . . . ,z r -1 . The computation of gcd(g, x e~ - a ~ r) reduces to computing the
degree (in x) of

gcd (f~(x, zr_l,...,zi), xer-- fr- - l (Zr-- i , . . . ,Z1))

69

Let go = x e~ - I t -1 . We construct a recursive algorithm for this problem as
follows:

1. By Lemma 2.3 we can build an S L P for the coefficients of gl = f r mod go.
These coefficients are polynomials in the z's. Let P o , - . . , Pm be the SLP's for
these coefficients.

2. To determine the degree of gl we must determine the largest i for which
P ~ ((~ - I , . . - , a l) is non-zero in ZN. This is a zero-testing problem like the
one we are trying to solve except that the program Pi contains only r - 1
oracle calls. Hence, we can recursively solve this question and determine the
degree of gl. Note that the length of the program P~ is at most w 3 times the
length of P.

3. To ensure that the gcd is well defined we must check that the leading co-
efficient of gl is invertible in ZN. To do this we apply Theorem 3.3 to the
leading coefficient of gl, namely to Pi ((~- 1 , . - . , a 1)- If the leading coefficient
is not invertible, the factorization of N is found and algorithm B terminates.

4. Next we compute an S L P for the coefficients of g2 ---- go mod gl. To avoid
using division we actually compute g2 multiplied by an invertible constant.
We apply the same steps as before to determine the degree of g2 and to
ensure that its leading coefficient is invertible in ZN.

5. We iterate this procedure until Euclid's algorithm terminates. At which time
6 r we find the degree of x in gcd(g(x), x e" - (~) . By Lemma 3.8 the degree

determines whether g((~) - 0 in ZN.

The recursion depth is bounded by r, the number of oracle calls made by the
R S A - S L P P. Hence, the total running time is O(len(P)(w3) ~) = T(n) ~ since
r = O(logT(n)) and len(P) < T(n). []

As in the case of Theorem 3.3 the theorem is slightly stronger than stated.
In fact, we can allow all the RSA-SLP's produced by algorithm .4 to perform
arbi t rary operations (including aggressive bit manipulations) up until the first
time the RSA oracle is invoked. Once the RSA oracle is used the programs must
only use algebraic operations in ZN. The reason for this extra freedom is that
it makes no difference how f0(1) is calculated. All tha t matters is that it is an
element of Z N which algorithm B can construct.

4 C o n c l u s i o n s a n d o p e n p r o b l e m s

Our main objective is to study the relationship between breaking low exponent
R S A and factoring integers. We show that under certain types of reductions
(straight line reductions and algebraic reductions with bounded oracle queries)
the two problems cannot be equivalent, unless factoring integers is easy.

Since our results may suggest that breaking L E - - R S A is not as hard as factoring
it is interesting to note that attacks on low public exponent RSA due to Hastad [4]
and Coppersmith [2] break the RSA system (i.e. decrypt messages without the
private key) but do not factor the modulus. In conjunction with our results this
suggests further evidence that breaking L E - - R S A is easier than factoring. It is

70

impor tant to keep in mind tha t even though it may be easier than factoring,
breaking low exponent RSA is still most likely to be intractable.

We note tha t bo th our main results, Theorems 3.3 and 3.7, are a bit stronger
than stated. In both cases the RSA-SLP'S produced by the reductions are allowed
to perform arbi t rary operations (including aggressive bit manipulations) up until
the first t ime the RSA oracle is invoked. Once the RSA oracle is used the programs
must only use algebraic operations in ZN. Hence, for instance, before invoking
the RSA oracle the reduction may perform arb i t ra ry sieving. Our results are
strong enough to convert such reductions into real factoring algorithms.

There are still several open problems tha t remain to be solved until we have
a complete proof tha t RSA cannot be equivalent to factoring (unless factoring is
easy). The first is to remove the restriction that the reduction must be algebraic.
Tha t is, given a factoring algorithm presented as a boolean circuit using RSA
gates (i.e. gates breaking LE--RSA) convert it into a real factoring algorithm.
This may be possible by first converting the boolean circuit into an ari thmetic
circuit (one using only ari thmetic gates) using s tandard techniques and then
applying our method to the resulting ari thmetic circuit.

The second open problem is to strengthen our results regarding algebraic
reductions. Currently our conversion process works only when the given RSA-
SLP makes at most O(logT(n)) RSA oracle queries, where T(n) is the running
t ime of the reduction algorithm 1. If we assume factoring cannot be done in t ime
L~ (n) for some e > 0 then the reduction may take t ime L~ (n) and consequently
the RSA-SLP'S it outputs may make n ~ oracle queries. It is an interesting open
question to strengthen our results and allow the algebraic reduction to make
unrestricted oracle calls.

As a final note we point out tha t our results apply to smooth public exponents
in some limited sense. When e is smooth, an oracle for taking e ' th roots can
be simulated using log e LE-RSA oracle calls. Hence, as long as e is smooth
and e < n ~ our conversion process can be applied. Consequently, any algebraic
reduction using a costant number of e ' th root oracle calls can be converted into a
real factoring algorithm. In this restricted sense, our results apply to more than
just low exponent RSA.

R e f e r e n c e s

1. D. Boneh, R. Lipton, "Black box fields and their application to cryptography",
Proc. of Crypto '96, pp. 283-297.

2. D. Coppersmith, "Finding a small root of a univariate modular equation",
Proc. of Eurocrypt '96, pp. 155-165.

3. W. Diffie, M. Hellman, "New directions in cryptography", IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

4. J. Hastad, "Solving simultaneous modular equations of low degree", SIAM
Journal of Computing, vol. 17, pp 336-341, 1988.

1 Since the reduction algorithm outputs a number of RSA--SLP's, the total number of
oracle queries is unbounded. The only restriction is that each RSA--SLP make at most
O(log T(n)) queries.

71

5. S. Lang, "Algebra", Addison-Wesley, 1993.
6. A. Lenstra, H.W. Lenstra, "Algorithms in Number Theory", Handbook of The-

oretical Computer Science (Volume A: Algorithms and Complexity), Elsevier
and MIT Press, Ch. 12, pp. 673-715, 1990.

7. H. W. Lenstra, "Factoring integers with elliptic curves", Annals of Math., Vol.
126, pp. 649-673, 1987.

8. U. Maurer, "Towards proving the equivalence of breaking the Diffie-Hellman
protocol and computing discrete logarithms", Proc. of Crypto '94, pp. 271-281.

9. U. Maurer, S. Wolf, "Diffie-Hellman oracles", Proc. of Crypto '96, pp. 268-282.
10. R. Rivest, A. Shamir, L. Adleman, "A method for obtaining digital signatures

and public-key cryptosystems", Communications of the ACM, vol. 21, pp.
120-126, 1978.

Appendix

P r o o f o f L e m m a 2.3 First, observe that since g is monic (as a polynomial in
x) the gcd is well defined in ZN. L e t / 9 / b e the SLP for f . We prove the lemma by
induction on L, the length of Pf . When L -- 1 the claim is trivial. We assume the
claim for L - 1 and prove for a program of length L. Suppose the last step of f
applies one of {§ - , .} to the i ' th and j ' t h steps. By induction, there exist SLP's
P~ and P j for the m coefficients of f i mod g and f3 mod g respectively (the last
m steps of the program Pi are the coefficients of f~ mod g and a similar condition
holds for Pj) . If the last step of Py takes the sum (or difference) of f~ and f3
then P) (the program for the coefficient of f mod g) includes the programs for
P~ and Pj and adds m more steps adding (or subtracting) the m last steps of Pi
to those of Fj. By induction, the length of the combined programs for Pi and P j

is at most 2 m 2 (L - 1). Hence, the total length for P) is 2 m 2 (L - 1) + m < 2 m 2 L .

If the last step takes the product of fi and fj then as before the program P)
includes Pi and Pj and adds a number of steps to that. First P) computes all 2m
coefficients of the product of fi mod g and f3 mod g. Then using the simplest
division algorithm it reduces the product modulo g = x m - h. Since x m - h is
monic this step does not require any divisions. The last m steps of the reduction
contain the desired m coefficients of f mod g. This procedure adds at most 2m 2
steps. The total length is now less than 2 r n 2 (L - 1) + 2 m 2 = 2 m 2 L as required.

[]

