
M O B Y / P L C - - A Design Tool
for Hierarchical Real-Time Automata*

Josef Tapken**

University of Oldenburg, Germany

Abs t rac t . MOBY/PLC is a graphical design tool for PLC-Automata, a
special class of hierarchical real-time automata suitable for the descrip-
tion of distributed real-time systems. Besides the modelling language
in use and some features of MOBY/PLC, like several validation methods
and code generation, the implementational basis which is built up by the
C++ class library MCL is sketched. MCL serves for a rapid development
of hierarchical editors for different graphical formalisms by providing a
modular hierarchical graph editor.

1 I n t r o d u c t i o n

MOBY/PLC is a graphical design tool for distributed real-time systems which is
based upon a formal description technique called PLC-Automata [3]. It is part
of the MoBy-workbench which provides severM methods to model and analyse
distributed systems, e.g. Petri-net based validation methods like simulation and
model-checking for SDL-specifications [4].

The kernel of the workbench called MCL (MoBY Class Library) is an ap-
plication independent C + + class library which comprises, among others, classes
for building Motif based hierarchical interactive graph editors [6].

PLC-Automata , a language developed in the UniForM-project [5] and applied
to a real-world case study of the industrial partner, are a class of hierarchical real-
t ime automata suitable (but not restricted) to the description of the behaviour
of Programmable Logic Controllers (PLC) that are often used to solve real-time
controlling problems. The automata are tailored to a structural compilation into
runnable PLC-code and they are provided with a formal semantics in Duration
Calculus (DC) [1] to allow formal reasoning about their properties.

This paper gives a survey of MOBY/PLC by introducing its modelling lan-
guage (PLC-Automata, Sec. 2), by describing its features (Sec. 3) and by making
some remarks about its implementational basis (MCL, Sec. 4).

2 P L C - A u t o m a t a

Programmable Logic Controllers (PLC) are cyclic real-time controllers that fre-
quently poll input values from sensors or other PLCs and compute output values

* This research was partially supported by the Leibniz Programme of the Deutsche
Forschungsgemeinschaft (DFG) under grant No. O1 98/1-1.

** e-mail: tapken@informatik.uai-oldenburg.de

327

for actuators (or other PLCs). To deal with real-time problems, PLCs are en-
riched by a convenient timer concept.

A PLC-Automaton describes the behaviour of a PLC by an extended finite
state machine with three categories of variables, namely input, local, and output
variables. A transition is labelled by a condition and by a list of assignments to
local and output variables. In every cycle a PLC-Automaton updates its input
variables from the environment and performs (exactly) one transition according
to the actual state and values of variables. The execution of a transition may
be prohibited by a state label which consists of a time value d (E IR,>_0) and a
Boolean expression over the input variables. A state can only be left if it is held
for longer than for d time units or the state expression evaluates to false.

In order to increase expressiveness as well as for the purpose of structuring
PLC-Automata are enhanced by a hierarchy concept which is based on state
refinement, i.e. a state can represent a set of substates and its label can also
restrict the outgoing transitions of the substates.

The whole system specification consists of a network of PLC-Automata which
communicate through channels with each other. Therefore, a channel links an
output variable of one automaton to an input variable of another, i.e. commu-
nication is performed implicitly by updating every cycle the input variables of a
PLC-Automaton with the current values of the corresponding output variables.
The system network may also be structured hierarchically.

Fig. 1. PLC-automata of the gasburner specification

Fig. 1 shows on the left a system diagram describing a network of two
au tomata (Environment and Control). On the right the Control-automaton is
shown in detail. The example is taken from a specification of a control unit
for a gasburner, which gets two Boolean inputs from the environment, namely
heat_request representing the state of a thermostat changed by the user and flame
indicating the status of a sensor monitoring the flame. The control unit delivers
one Boolean output valve controlling the gas valve.

328

3 T h e M O B Y / P L C - T o o l

This section gives an overview of the main components which are currently
implemented in MOBY/PLC (see Fig. 2).

The centrM part of the tool is an interactive graphicM editor for specifying
a real-time system (i). Since the architectural part as well as the behavioural
part of a specification may be structured hierarchically the editor comprises
several different subeditors, e.g. system editors to describe the network of PLC-
Automata or editors to specify automata and subautomata (see Fig. 1).

Analysis (iii)~_..~ Graphical (i)

Com iler ~ ' Visualisation ~ i | Visualisation
Ov) [Model ~Code-Generation (v)

[Checking[[ST-Code I
1-'"i;LC:C~

Fig, 2. Components of MOBY/PLC

In MOBY/PLC there are three ways to validate a given specification (ii, iii,
iv). A simulator (ii) is able to execute a single or a set of PLC-Automata and to
visualize its results directly in the graphical specification. The simulator is de-
signed to support the interactive simulation of small modules as well as extensive
tests of the whole specification in background mode [7].

Special analysis Mgorithms (iii) which are based on the DC-semantics of
PLC-Automata can be used to statically calculate certain properties of an au-
tomaton, e.g. its reaction time on a given combination of inputs. A compiler of
PLC-Automata into timed automata (iv) allows to use existing model checking
systems for timed automata, like Kronos [2].

Furthermore, a given specification can be translated automatically by a struc-
tural compilation into a special programming language for PLCs called ST
(Structured Text)(v). By the use of commercial compilers the ST-code can be
transformed into runnable source code for PLCs.

4 T h e MOBY C l a s s L i b r a r y

The MOBY Class Library (MCL) is a powerful (Motif based) C++ class library
for building graphical applications under the X Window System. MCL adopts
several classes and concepts of the SMALLTALK-80 programming environment,
e.g. many collection classes and the model view controller concept. Furthermore,
it provides runtime class information and dynamic object creation for a given
class object or class name.

329

MCL comprises an editor for hierarchical graphs which is tailored to build a
common basis for several implementations of graphical formal description tech-
niques (gFDT), like SDL, statecharts or PLC-Automata . Th is editor provides a
strong modular i ty by a loose coupling between different hierarchy levels and it
serves for a rapid development of editors for gFDTs by a generic description of
hierarchy. This description, which is e.g. used for dynamic menu creation, pre-
vents the p rogrammer to reimplement the hierarchy control structure for each
gFDT. The p rogrammer only has to define classes of graphs and vertices and to
describe what kind of vertices could be inserted into a certain graph and what
kind of graphs could serve for a refinement of a certain vertex.

5 C o n c l u s i o n

In this paper the modelling language, the features and the implementat ional
basis of the design tool MOBY/PLC have been sketched.

Although MOBY/PLC is already usable there are severM extensions we are
planning to implement. E.g. we want to evaluate and visualize the results of
background runs of the simulator. We have to enhance the prototypical imple-
mention of the compiler of PLC-Automa ta into t imed au tomata . Furthermore, it
seems to be promising to expand the static analysis by further algorithms which
calculate interesting properties based on the structure of a PLC-automaton .

Currently a graphical editor for Object-Z specifications is developed based on
the hierarchical graphs of MCL. This editor should be integrated into MOBY/PLC
in order to use Object-Z for the description of da ta aspects in PLC-Automata .

A c k n o w l e d g e m e n t s . The author thanks H. Fleischhack, H. Dierks, E.-R. O1-
derog, and the other members of the "semantics group" in Oldenburg for fruitful
discussions on the subject of this paper.

R e f e r e n c e s

1. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. In]orm.
Proc. Letters, 40/5:269-276, 1991.

2. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Systems
III, volume 1066 of LNCS, pages 208-219. Springer Verlag, 1996.

3. Henning Dierks. PLC-Automata: A New Class of Implementable Real-Time Au-
tomata. In ARTS'97, LNCS. Springer Verlag, May 1997.

4. Hans Fleischhack and Josef Tapken. An M-Net Semantics for a Real-Time Extension
of pSDL. In FME'97: Industrial Application8 and Strengthened Foundations o]
Formal Methods, volume 1313 of LNCS, pages 162-181. Springer Verlag, 1997.

5. B. Krieg-Briickner, J. Peleska, E.-R. Olderog, et al. UniForM - - Universal Formal
Methods Workbench. In Statusseminar des BMBF Softwaretechnologie, pages 357-
378. BMBF, Berlin, 1996.

6. Josef Tapken. Implementing Hierarchical Graph-Structures. Technical report, Uni-
versity of Oldenburg, 1997.

7. Josef Tapken. Interactive and Compilative Simulation of PLC-Automata. In
W. Hahn and A. Lehmann, editors, Simulation in Industry, ESS'97, pages 552 -
556. SCS, 1997.

