
Specifying and Analyzing Dynamic Software Architectures *

Robert Allen, Rdmi Douence, and David Garlan

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

rallen@cs, cmu. edu douenee@irisa, fr garlan@cs, cmu. edu

Abstract. A critical issue for complex component-based systems design is the
modeling and analysis of architecture. One of the complicating factors in devel-
oping architectural models is accounting for systems whose architecture chang-
es dynamically (during run time). This is because dynamic changes to
architectural stmctare may interact in subtle ways with on-going computations
of the system.

In this paper we argue that it is possible and valuable to provide a modeling
approach that accounts for the interactions between architectural reconfigura-
tion and non-reconfiguration system functionality, while maintaining a separa-
tion of concerns between these two aspects of a system. The key to the approach
is to use a uniform notation and semantic base for both reconfiguration and
steady-state behavior, while at the same time providing syntactic separation be-
tween the two. As we will show, this permits us to view the architecture in terms
of a set of possible architectural snapshots, each with its own steady-state be-
havior. Transitions between these snapshots are accounted for by special recon-
figuration-triggering events.

1 Introduction
Recently, there has been considerable progress on the development of architecture descrip-
tion languages (ADLs [12]) to support software architecture design and analysis. These
languages capture the key design properties of a system by exposing the architectural
structure as a composition of components interacting via connectors. Examples include
Wright [1], UniCon [14], Rapide [10], Darwin [11] and ACME [5].

There are many aspects of a software system that can be addressed in an architectural
description, including functional behavior, allocation of resources, performance, fault-tol-
erance, flexibility in the face of altered requirements, and so on. Each ADL tends to focus
on one or more of these aspects.

* Research sponsored by the INRIA, the Defense Advanced Research Projects Agency,
and Rome Laboratory, Air Force Materiel Command, USAF, under agreement number
F30602-97-2-0031, and by the National Science Foundation under Grant No. CCR-
9357792. The U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of INRIA, the Defense Advanced Research Projects Agency Rome Laboratory,
or the U.S. Government.

22

In this paper we address the problem of capturing dynamic architectures. By "dynam-
ic" we mean systems for which composition of interacting components changes during the
course of a single computation. We distinguish this aspect of dynamic behavior from the
steady-state behavior, by which we mean the computation performed by a system without
reconfiguration.

We argue that it is both possible and valuable to separate the dynamic re-configuration
behavior of an architecture from its non-reconfiguration functionality. While there exist
ADLs, such as Darwin, that capture reconfiguration behavior, and facilities such as object-
oriented languages that permit the combined description of both dynamic aspects and
steady-state behavior, we believe that, at the architectural level, it is important to provide a
notation that supports both aspects of design while maintaining a separation of concerns.
In this paper we illustrate a new technique by which these two aspects can be described in
a single formalism, while keeping them as separate "views". This facilitates the under-
standing of each aspect in isolation while still supporting analysis of the combined interac-
tion between the two.

By providing a notation that provides a precise interpretation of each of these aspects,
we permit the description to be analyzed for consistency and completeness, as well as for
whether the system has application-specific properties desired by the architect. For exam-
ple, we would like to guarantee that reconfigurations occur only at points in the computa-
tion permitted by the participating components and connectors. Also, whenever a new
connection is established, we would like to show that the participating components exist at
the moment of attachment. By considering interactions between the two forms of descrip-
tion, we can consider whether changing the participants at run time will result in inconsis-
tencies among participants' states.

In the remainder of this paper we present our technique using the Wright ADL as our
notational basis. We first review related works (Section 2). We introduce Wright (Section
3) and illustrate the problem of specifying dynamic architectures (Section 4). Then we
show how a language originally designed for steady-state architectures, such as Wright,
can be extended to handle dynamic aspects of architecture (Section 5). Next, we present
the semantic model on which the approach is based (Section 6). Then we illustrate the
kinds of analysis that such a formalism supports (Section 7). Finally, we discuss possible
extensions of our work (Section 8).

2 Related Works

Our work is most closely related to two general classes of research. The first is architecture
description languages. While there are a large number of such languages, only a few are
capable of modeling dynamic architectures. The most prominent among these are Rapide
and Darwin. In the case of Rapide, the notation takes an object-oriented view: new archi-
tectural components can be created much as one would create new objects in a object-ori-
ented programming language [10]. A consequence of this design is that it is in general
undecidable what topologies will be created during a Rapide execution. For this and other
reasons, Rapide focuses on simulation and analysis of sets of execution traces. In contrast,
Wright focuses on static checking.

In the case of Darwin, the language is solely concerned with the structural aspects of
an architecture [11]. Thus, the issue of how reconfigurations interact with on-going com-
putations does not arise. However, their use of the Pi-Calculus to give semantics to recon-

23

figuration is elegant and suggestive of the power of a more flexible "dynamic" process
algebras.

The second area of related work is general formalisms for reasoning about architectur-
al designs. Among these two are most closely related. The first is term rewriting systems.
For example, Inverardi and Wolf have shown how to model architectures using the CHAM
[7]. As a general term rewriting system, CHAM is can describe arbitrary reconfigurations
of architectures. While this approach has considerable power, the cost is that the descrip-
tion of systems and reconfigurations must be encoded in system rewriting rules, which
may be far removed from the intuitive descriptions used by system designers. In contrast,
Wright has tried to provide a notation that makes explicit the intentions of a designer for
handling reconfigurability.

Another general-purpose formalism applied to dynamic architectures is the use of
graph grammars to describe the allowable topologies of architectures [9]. Graph grammars
provide a nice notation for capturing patterns of transformation. However, thus far they
have not been used to relate the reconfiguration aspects of an architecture with its behav-
ior. Thus, as before, it is not possible to reason about when it is legal to carry out architec-
tural reconfiguration.

3 Motivating Example

Consider the simple client-server system shown in Figure 1. It consists of one client and
one server interacting via a link connector. Such a system is easy to describe in an ADL
such as Wright [1,2]. There are two essential aspects of a Wright description of a system
architecture: architectural structure, and architectural behavior. We illustrate both aspects
using the example, which is described in Wright in Figure 2.

Figure 1 Static Topology : Simple Client-Server System

3.1 Architectural Structure

Wright represents architectural structure as graph of components and connectors. Compo-
nents represent architecturally-relevant units of computation and data storage, while con-
nectors represent the interactions between components. In Wright components and
connectors are typed. Thus to define a system, one first declares a set of component and
connector types, termed as a Style. Then one declares a set of instances of these types and
the way in which they are assembled.

Figure 2 opens with a definition of the Client-Server style by declaring a Client and
Server component types, as well as a Link connector type. Components have interfaces,
which in Wright are called ports. Any component may have multiple ports, each port de-
fining a logically separable point of interaction with its environment. Here, both our client
and server component types have only one port p. Connectors also have interfaces, which

24

are termed roles. The roles of a connector identify the logical participants in the interaction
represented by the connector, and (as we will see shortly) specify the expected behavior of
each participant in the interaction. In Figure 2, the Link connector has a role c for the client
and one s for the server. Finally, the constraints define a set of predicates that every config-
urations conforming to that style must satisfy.

Style Client-Server
Component Client

Port p = request --~ reply --~ p q w
Computation = internalCompute --~ p.request --~ p.reply ~ Computation [q w

Component Server
Port p = request ~ reply ~ p [] w
Computation = p.request ~ internalCompute --~ p.reply --~ Computa t ion I] w

Connector Link
Role c = request ~ reply ~ c Iq w
Role s = request --~ reply ~ s [] w
Glue = c.request ~ s.request ~ Glue

[] s.reply ~ c.reply ~ Glue

0w

Constraints
q! s ~ Component, V c ~ Component : Server(s) ^ Client(c) ~ connected(c,s)

EndSty le

Configuration Simple
Style Client-Server
Instances C : Client ; L : Link ; S : Server
Attachments C.p as L.c ; S.p as L.s

EndConfiguration

Figure 2 Static Wright Specification : Simple Client.Server System

A small configuration is also shown in Figure 2. It uses the Client-Server style (mak-
ing the components and connector types available) to declare a single client-server connec-
tor. These part are then assembled. Specifically, the port p of the client C fills the role c of
the connector L, while the port p of the server S fills the role s of the connector.

3.2 Architectural Behavior

Wright focuses on architectural behavior characterized in terms of the significant events
that take place in the computations of a components, and the interactions between compo-
nents as described by the connectors. It allows the user to formally specify behavior such
as: "the client makes a request, which is received by the server, and the server provides a
response, that is communicated to the client; this sequence of actions can be repeated
many times". The notation for specifying event-based behavior is adapted from CSP [6].
Each CSP process defines an alphabet of events and the permitted patterns of events that
the process may exhibit. These processes synchronize on common events (i.e., interact)

25

when composed in parallel. Wright uses such process descriptions in computation, port,
role and glue specifications.

A computation defines a component's behavior: the way in which it accepts certain
events on certain ports and produces new events on those or other ports. As illustrated in
Figure 2, a Client iteratively makes a request (p.request) and waits a reply (p. reply) on port
p, or terminates successfully (w The use of internal choice (Iq) in the specification indi-
cates that it is the client that decides whether it makes a request or terminates. In contrast,
the use of external choice ([]) in the Server specification indicates that the server is expect-
ed to respond to any number of requests, and may not terminate prematurely. Moreover,
because we are interested in how different components control interactions, Wright distin-
guishes initiated events from observed events by an overbar. For example, the client ini-
tiates requests (e.g., p.request) while the server observes them (e.g., p.request).

A port process defines the local protocol with which the component interacts with its
environment through that port. This protocol is effectively the projection of the compo-
nent's computation onto the particular interface point. For example, the client single por tp
faithfully reproduces the client computation pattern, but hides the internal computation
modeled by the event internaICompute.

A role specifies the protocol that must be satisfied by any port that is attached to that
role. In general, a port need not have the same behavior as the role that it fills, but may
choose to use only a subset of the connector capabilities. In our simple case, the link role c
and the client port p for example are identical.

Finally, a glue specification describes how the roles of a connector interact with each
other. In the example, a client request (c.request) must be transmitted to the server (s.re-.
quest), and the server reply (s.reply) must be transmitted back to the client (c.reply). We
have described in [1,2] how these formal descriptions can be used to check the consistency
and completeness of architectural descriptions. We come back to this topic in section 7.

In this description, the server does not terminate until the client is ready. But, what of a
more realistic situation, where the server is running on an unreliable processor over a net-
work, and may crash unexpectedly? In this case, the architect must consider two aspects of
a robust architectural design. First is the simple view of the normal system behavior, in
which the client makes a request of the server, and receives a response. Second is the ar-
chitect's solution to the problem of server crashes (i.e., the way in which a server is restart-
ed or replaced so that there is always a service available for the client). In the next section
we look at one approach to unifying these two aspects of design.

4 Simulating Dynamism

Let us now consider one possible solution (see Figure 3) in which there are two servers: a
"primary" server, which is more desirable to use, but which may go down unexpectedly,
and a "secondary" server, which, while reliable, provides a lesser form of the service. One
way to use these is to alter the architecture such that both servers are present, and when the

* w is similar to the CSP process TICK, except that w represents a willingness to terminate
rather than a decision to terminate. So, w can occur at choice points (e.g., P [] w and P fl w
which is illegal in standard CSP. An alternative definition of the sequencing operator ";"
makes this kind of expression consistent. See [1] for details.

26

primary server goes down, the client uses the secondary server until such time as the pri-
mary server returns to service. (This kind of fault-tolerant architecture is actually used by
the Simplex System [13].) The topology of the system is shown in Figure 3.

A Wright description of a possible client is shown in Figure 4. In this solution the pri-
mary server communicates its status to the client with down and up events when it is about
to go down or come up (resp). (In practise, such events might be supplied by a time-out
service.) These events appear in the Client definition. The port Primary expresses the cli-
ent assumptions that the primary server can go down anytime, except in the middle of a re-
quest (i.e., not between request and reply), and once it goes down it provides no service
until it comes up. The secondary server is a safe one that is always ready to serve. It is not
concerned with down and up events (which do not occur on the port Secondary). The client
computation now has two states (UsePrimary and UseSecondary) encoding which is the
active server. The down and up events switch from one state to the other.

Figure 3 Static Topology : Fault-Tolerant Client-Server System

Component Client
Port Primary = w n ((request ---> reply ---> Primary) I] down ---> (w n up ---> Primary))
Port Secondary = w [q request ---> reply ---> Secondary
Computation = UsePrimary

where UsePrimary = internalCompute ---> (TryPrimary n w
TryPrimary = primary.request --> primary.reply ---> UsePrimary

[] primary.down ---> TrySecondary
UseSecondary = internalCompute ---> (TrySecondary n w
TrySecondary = secondary.request ---> secondary.reply ---> UseSecondary

[] primary.up ---> TryPrimary

Figure 4 Static Wright Specification : Client Component (Fault-Tolerant Client-Server)

While this accomplishes what we set out to do, the description of the new architecture
has several disadvantages:

�9 The simple client-server functional pattern and topology have been lost. In particular,
its specification is now muddied by the need to consider the effects of reconfiguration at
almost each step, and the client-server style constraint (see Figure 2: exactly one server
is connected to every clients) is no longer true.

27

�9 It has been necessary to significantly alter the original simple client in order to accom-
modate a change that arguably should occur on the server's side. We have had to dupli-
cate Client's Port, so this component now must keep state to know which port to use
(i.e., which is the active server). Ideally, the client should be able to continue to operate
as before, but have the system handle rerouting of requests to the new server.

�9 Distribution of the configuration state and re-configuration actions in the components
makes the modifications of this system difficult. For example, adding a third backup, or
permitting only the primary to go down once before abandoning it, requires extensive
changes to all parts of the system, thus reducing the reusability of the constituent ele-
ments.

Instead of rigid encoding of the dynamism in the steady state behavior of the compo-
nents, what we would like is to provide constructs to describe the dynamics of the system
explicitly. In this case, rather than using a fixed topology of two servers and hiding the
changes inside a client component' "choice" about which server to use, we could describe
the server's failures as triggers that change the topology during computation. In effect, in-
stead of the single configuration shown in Figure 3, we would have two configurations,
shown in Figure 5. These configurations, each simple in itself, alternate as the primary
server goes down and comes back up.

Primary

Secondary I

Primary

Secondary

Figure 5 Dynamic Topology : Alternating Configurations of a Fault-Tolerant Client-Server

In order to achieve this effect, we must introduce notations for characterizing changes
in the architecture during a computation. Such a characterization includes: (a) what events
in the computation trigger a re-configuration, and (b) how the system should be reconfig-
ured in response to a trigger.

5 O u r A p p r o a c h

Our solution consists of two parts. First, special "control" events are introduced into a
component's alphabet, and allowed to occur in port descriptions. In this way, the interface
of a component is extended to describe when reconfigurations are permitted in each proto-
col in which it participates. Second, these control events are used in a separate view of the
architecture, the configuration program, which describes how these events trigger recon-
figurations.

To illustrate, consider the fault-tolerant client-server style described in Figure 6. The
architectural types (Client, FlakyServer, SlowServer) are declared in the usual way, but
they also include events like down and up, now explicitly marked as "control" rather than
"communication" events. The FlakyServer indicates the states in which it may go down

28

(with control.down) and come up (with control.up). Specifically, it may go down at any-
time, except in the middle of a transaction (i.e., not between request and reply) and it may
come up anytime after a down. These events indicate the states in which the server accepts
a reconfiguration. In the same way, a SlowServer component can be turned on then offany-
time, except in the middle of a transaction. And a FTLink can be reconfigured (changeOk)
between request and reply transmissions.

Style Fault-Tolerant-Client-Server
Component FlakyServer

Por t p = w [] (request ---> reply --> p [q control.down --> (w [] control.up ---> p))
Computation = w [] (p.request ---> internalCompute ---> p.reply ---> Computation

I"1 control.down ---> (w [] control.up ---> Computation))

Component SlowServer
Por t p = w [] control.on ---> ~tLoop.(request ---> reply ---> Loop [] control.off ---> p I1 w
Computation = w [] control.on ---> ktLoop. (control.off---> Computation t] w

[I p.request ---> internalCompute ---> p.reply ---> Loop

Connector Fl 'Link
Role c = request --> reply ---> c [q w
Role s = (request ---> reply ---> s q control.changeOk ---> s)D w
Glue = c.request ---> s.request ---> Glue

[] s.reply ---> c.reply ---> Glue
flw
[] control.changeOk ---> Glue

Const ra in ts
q! s ~ Component, ~/c E Component : Server(s) ^ Client(c) ~ connected(c,s)

End Style

Figure 6 Dynamic Wright Specification : Fault-Tolerant Client-Server Style

This new style can be used to build different systems. For example, Figure 7 pictures
our version of the fanlt-tolerant client-server system. The Configuror is responsible for
achieving the changes to the architectural topology (triggered by up and down) using in-
stances of architecture types (e.g., Client, FlakyServer, SlowServer), and new, del, attach,
and detach actions, as illustrated in Figure 8.

In this reconfiguration program, unlike the previous solution, the Client component
type is identical to the original one in Figure 2. The initial sequence of actions (new and at-
tach) builds the original system. Then WaitForDown describes two situations: the system
can run and successfully terminate (w or a fault can occur. If the primary server goes
down, the secondary server is in state on and the link connector is reconfigurable, the pri-
mary server is detached from the link and is replaced by the secondary server. The new
configuration then resumes its execution until it terminates or the primary server comes up.
In this latter case, WaitForUp specifies that when the secondary server is off and the link
connector is reconfigurable (changeOk), the secondary server is detached from the link
and is replaced by the primary server.

29

Contiguror

Primary

Secondary

Primary

Secondary

Figure 7 Dynamic Topology : Alternating Configurations of Fault-Tolerant Client-Server

Configuror DynamicClient-Server
Style Fault-Tolerant-Client-Server

new.C:Client
--> new.Primary : FlakyServer
---> new.Secondary : SlowServer
---> new.L : FTLink
---> attach.C.p.to.L.c
---> attach.Primary.p.to.L.s --> WaitForDown

where
W a i ~ o ~ o w n =

W a i ~ o ~ p =

(Primary.control.down ---> Secondary.control.on --->
L.control.changeOk ---> Style Fault-Tolerant-Client-Server

detach.Primary.p.from.L.s
---> attach.Secondary.p.to.L.s

WaitForUp)
n w
(Primary.control.up ---> Secondary.control.off --->

L.control.changeOk ---> Style Fault-Tolerant-Client-Server
detach.Secondary.p.from.L.s
---> attach.Primary.p.to.L.s
---> WaitForDown)

f l w

Figure 8 Dynamic Wright Specification : Configuror (Fault-Tolerant Client-Server System)

Thus, this configuror describes three configurations (an initial one, and two alternating
configurations). In the configuror, a style annotation specifies the set of component and
connector types a configuration can use and the constraints it must satisfy. Here we use the
same style. In general, each configuration can use a different style. In this example, it is
easy to see that the Fault-Tolerant-Client-Server style constraint is verified in each of the
three possible configurations: in each configuration, the client is connected to one server.

6 S e m a n t i c s

Thus far we have relied on the reader's intuition and good faith that the notation outlined
above makes sense. In this section we present the formal basis for this.

30

The basic idea is to translate the notation into pure CSP [6]. The behavior of the sys-
tem is constructed from the process that defines the constituent components and connec-
tors. Specifically, the behavior of a system is the parallel composition of all the
computation, glue and configuror processes. In attempting to provide such a semantics, the
key difficulties are to account for the "dynamic" creation and deletion of processes, and to
arrange things so that the alphabets of the evolving topology leads to the intended interac-
tions. The problem, of course, is that CSP can only describe a static configuration of pro-
cesses. (That is, one can' t create new processes and communication channels "on the fly").
How then can one give meaning to such actions as new, delete, etc.?

Our approach is based on two key ideas. First we restrict systems to those for which
there are a finite (albeit potentially large) set of possible configurations (see section 8 for
further discussion of this issue). Second, in the translation to CSP we "tag" events with the
configuration in which that event occurs. (Because of our restriction to finite set of config-
urations, there is a finite number of possible tags.) The effect of a reconfiguration action is
to select the properly tagged version of CSP expressions so that the interactions occur as
defined by the new configuration. Thus an (untagged) e, in one configuration might end up
(after tagging) synchronizing with one process in one configuration, but with another in a
different configuration.

More formally, each event p.e of the component Cp* is relabelled as Cp.p.e.Cn.r when
the port p of Cp is attached to the role r of the connector Cn. For example, in our fault-tol-
erant client server system when the FTLink connector interacts with the Primary server,
the "reply" case of L (s.reply ---> c.reply --~ Glue) is translated to:

L.s.reply.Primary.p ~ L.c.reply.C.p ---> Glue

This indicates that a reply received by L on role s (from the Primary server port p) must be
transmitted (by L on the role c) to the client C on port p.

Our transformation also introduces the "plumbing" that allows selection of the proper
version: each version of a transformed component begins with a
Cp.go.pt.Cnl.rl...rn.Cnn.r n event selecting the version of Cp, where its port p t is attached
to the role r I of Cn I and its portPn attached to the role r n of Cn n. For example, the con-
nector L is translated to:

L = L.go.c.C.p.s.Primary.p --* Glue 1
I] L.go.c.C.p.s.Secondary.p ~ Glue 2

Glue 1 = L.c.request.C.p --r (L.s.request.Primary.p --r Glue 1 [] ...
Glue 2 = L.c.request.C.p ---> (L.s.request.Secondary.p --~ Glue 2 [] ...

Finally, the configuror definition is transformed into a CSP process too, where the new,
del, attach and detach actions are transformed into the previous Cp.go... events that select
the proper configuration of the components at each reconfiguration step. For example, the
following configuror portion:

new.L ~ Attach.C.p.to.L.c ~ Attach.Primary.p.to.L.s ---> ...

is transformed to L.go.c.C.p.s.Primary.p --~ ...

* In the rest of this paper, Cp designates a Wright component, p a port, Cn a connector, r a
role, and C a component or a connector.

31

The component transformation ~/Comp is formally defined in Figure 9. The transforma-
tion TCompl introduces a main label (to restart the component in its initial state) and enu-
merates the different versions of the code with the help of the CSP notation V i : { 1, 2, 3 }
[] Pi = P1 0 P2 I] P3. In each version the events are renamed according to the current at-
tachments (an unattached port is treated as attached to the role void of the dummy connec-
tor Void). The next to last substitution renames the internal events, and the last one restarts
the process in its initial state after each control event, so that a different version can be se-
lected. If a control event occurrence is followed by an arbitrary expression (rather than the
label Computation), an auxiliary definition should be introduced and compiled similarly.

V Cp: Component and Ports(Cp) = {Pl Pn}
q'Comp 1[Cp]l = TCompl 1[Computation(Cp)]]

ClEompl [[P]] = IxCp.maln.
w
(V Cnl: Connectors u [Void} V Cnn: Connectors u {Void}
V rl: Roles(Cnl) V rn: Roles(Cnn)
fl
(Cp.go.Pl.Cnl.rl...pn.Cnn.rn --> p [Cp.pl.e.Cn 1.r 1 / pl.e]

[Cp.pn.e.Cnn.r n I pn.e]
[Cp.e / e]

[Cp.control.evt ---> Cp.main / control.evt ---> Computation]))

Figure 9 Component Cp Semantics

The connector definitions are "compiled" in the same way. The Glue transformation
(not shown here) is symmetric: rather than enumerating all possible roles that may attach
to the given port, we vary the ports, while holding the role fixed. The renaming pattern is
similar to that of Figure 9 (i.e., Cp.p.e. Cn. r), so that it matches the "compiled" component
events.

The grammar in Figure 10 defines legal configurors. An initial sequence of action
events building the original system is followed by re-configuration rules. Basically, a re-
configuration rule is defined by a triggering sequence of control events followed by a se-
quence of action events. Several rules can compete in parallel (Rule 1 [] ... [] Rulen); one of
them is selected as the components produce the proper control events. Every rule is fol-
lowed by a piece of configuror (i.e., the next rules to apply). The success process w termi-
nates the reconfigurations and recursion permits infinite reconfiguration sequences.

Main = Action + ---> Configuror where A + = A ---> A + I A
Configuror = (Rule 1 H .-. I] Rule n) I IxX.Configuror(X)
Rule = w I C.control.evt + ----> Action + ---> Configuror
Action = new.C I del.C I attach.Cp.p.to.Cn.r I detach.Cp.p.from.Cn.r

Figure 10 Conliguror BNF Grammar

The Configuror transformation qr_anfis defined in Figure 11 with the help of a cfg ar-
gument recording the current configuration. In order to make the transformation simpler,
we assume a first pass has reordered all actions so that each reconfiguration rule follows
the sequence: detachments, deletions, attachments and creations. The first rule in Figure

32

11 reproduces the control events, the second and fourth ones maintain the cfg argument.
The rule for new produces go events according to cfg. The rule for del produces nothing,
since according to our transformation in Figure 9 after a control event the component or
connector is in its initial state waiting for a go. The seventh case detects the end of a rule
and resumes (go events) the components and connectors which triggered the current rule
and haven't been deleted, then it calls TConf2. The four TConf2 rules reproduce the config-
uror structure.

TConf[C.control.e ---> P] cfg = C.control.e --> ~rConf[P] cfg
TConf[detach.Cp.p.from.Cn.r ---> P]cfg = TConf[P]1 (detach Cp.p Cn.r cfg)
TConf[del.C ---> P] cfg = TConf[P] (del C cfg)
ffUonf[attach.Cp.p.to.Cn.r --~ P]1 cfg = TConf[P] (attach Cp.p Cn.r cfg)
5rConf[new.Cp --> P]
TConf[new.Cn ---> P]
~onf[P]

TConf2 [Rulel [] ... [] Rule n]
TConf2 [~ . P (X)]
~onf2 [x l

cfg = Cp.go.pl.Cn l.rl.. .pn.Cnn.r n ---> TConf[P] (new Cp cfg)
cfg = Cn.go.rl.CPl.Pl...rn.CPn.Pn ---> ff'Conf~ P] (new Cn cfg)

cfg = Cpl.go.pl 1.Cnl 1 .rl 1...Pin .Cn ln'rln --->

Cnm.gO.rml.CPml.Pml. . .rmp.Cpmp.Pmp ---->
(TConf2 [P] cfg)

cfg = (TConf[Rule 1] cfg) [] ... [] (TConf[Rule n]1 cfg)
cfg = gX.(TConf[P(X)] cfg)
cfg = X
cfg = w

Figure 11 Configuror Semantics

7 Analysis
Having specified a system and given its semantics, we would now like to analyze it. The
formal semantics based on CSP allows us to adapt or extend the consistency and complete-
ness analysis provided by (static) Wright. First, we formally present these checks in our
dynamic context. Then we apply them to our fault-tolerant client-server example. Finally
we show how to check the equivalence of a dynamic system with a static one.

7.1 Formal Tests Definition

As a configuror describes a sequence of steady state systems, the original Wright checks
can be easily adapted to the dynamic extension. In this section, we review and adapt two of
the most relevant Wright checks in our example. (A complete presentation of the original
tests can be found in [1,2].) We then propose a new test dealing with the configuror and the
dynamic aspects of the system.

7.1.1 Connector Consistency

In Wright the connector roles specify the expected behaviors of connected components
and the glue specifies the coordination of these behaviors. Thus, inconsistencies between
the participants in an interaction and the coordination of the glue are detected by the fol-
lowing check (using the CSP process labelling operator label:process):

Cheek 1 (C.Glue II rl:(C.rl) II ... II rn:(C.rn)) is deadlock free.

33

Another kind of inconsistency is also detectable as deadlock: if a role specification is
internally inconsistent. In a complicated role specification, there may be errors that lead to
a situation in which no event is possible for that participant, even if the glue were willing
to take any event. This is detected by another test:

Check 2 Each role r 1 r n o f the connector C is deadlock free.

Both checks can be directly reused in our dynamic extension. They are easily per-
formed with the help of the FDR model checker [4]. In case of failure, the tool provides
the execution traces leading to the deadlock. This information may help the user to debug
his specifications.

7.1.2 Attachment Consistency

In Wright, a port is a specification of a component, as it is seen from the point of view of a
single interaction. A role, on the other hand, acts has a placeholder representing the range
of potential participants in the interaction described by a connector. An important check is
whether the port of a component is "consistent" with respect to a role to which it is at-
tached (see especially [2]). Specifically, the port-role consistency check must ensure that
when in a situation described by the role protocol, the port must always continue the proto-
col in a way that the role could have. This property can be expressed with a CSP refine-
ment check. When the role r of the connector Cn is attached to the port p of the component
Cp, we must check:

Cheek 3 R _ (P II det(Cn.r)) with P = Cp.p I I StoPar\ap and R = Cn.r l l Stopap\ar

As the role specifies the range of behavior that the component may have, and it cir-
cumscribes the behaviors over which the connector's rules are expected to apply, the check
uses its deterministic version det(Cn.r) to constraint the port behavior. The CSP refinement
operator P c_ Q requires P and Q have the same alphabet. Stop processes, in the previous
check, are used to extend the port and role alphabets.

This check must be redefined in our dynamic context. First, because of reconfigura-
tions, it may not be a port which is attached to a single role in a dynamic system, but a se-
quence of ports as described by the configuror. For each role, a corresponding "virtual"
port must be constructed using the configuror and port definitions. If a control event e has
several occurrences in a port (e.g., p control.e ---) E 1 .. . control.e --~ E2 . . .) , we cannot
select either E 1 or E 2 when e occurs. We must assume the component can be in any of
these states and use the virtual port expression control.e ~ (E 1 I7 E2). Second, the ports
and roles use different control events, which are associated by the configuror rules. So, the
configuror must appear on both sides of the refinement checks. Third, a re-configuration
rule expresses the rendez-vous of several components (the re-configuration actions are per-
formed once all parts are ready). To express this synchronization, the control events of the
port and role, and the control events sequences of the configuror rules are bracketed by a
shared event Synchro (see example in section 7.2). With these transformed expressions
(noted as E"), the port-role compatibility check becomes:

Cheek 4 (Cn.r" I I Configuror") c_ (Virtual.p" I I det(Cn.r") I I Configuror")

Wright provides other tests, which are easily adapted to our extension. We do not detail
them here. These tests include: component consistency checks (is a port a projection of the
computation?), attachment completeness checks (does an unattached port expect to inter-

34

act with its environment?), style checks (is a style constraint satisfied by a configuration?)
and initiator checks (are the initiated-observed annotations consistent?). However, our dy-
namic context provides also new opportunities for checking.

7.1.3 Configuror Consistency

Consistent configurors must guarantee that when the event new.C occurs, C does not al-
ready belong to the current configuration. As the configuror is defined in CSP, the test of
this property can be formally expressed as a CSP refinement check:

Check 5 (prop = (new.C ---> (del.C ---> prop [] w [] w c configuror

Similar properties dealing with attachments can be expressed and checked in the same
way. Also, more configuror checks can be defined. These tests include: configuror-connec-
tor consistency (do a glue and the configuror agree on next control events?), and config-
uror-component consistency (do a computation and the configuror agree on next control
events?).

7.2 Applications

In this section, we apply the previously-defined checks to our fault-tolerant client-server
system specifications (Figures 6 and 8).

7.2.1 Connector Consistency

The FTLink connector consistency checks are expressed as:

Claim 1 (FTLink.Glue I I c:(FTLink.c) I I s:(b'TLink.s)) is deadlock free.

Claim 2 Roles Fl'Link.c and FFLink.s are deadlock free.

Checking these properties with FDR, we discover that the connector of Figure 6 is, in
fact, not deadlock-free (Claim 1 fails). Indeed, if a reconfiguration (changeOk) occurs after
the client has sent a request (c.request), but before it has been transmitted to the server
(s.request), the connector will deadlock. On the other hand, we do not have to worry about
reconfiguration when the Link is transmitting a reply back to the client. In this case we can
postpone the reconfiguration until the end of the transaction.

This failure has an intuitive explanation. In a concrete implementation, if the active
server goes down in the middle of a request transmission (between c.request and s.re-
quest), the reconfiguration must be taken into account or the connector will try to send the
request to the wrong server. But, if the active server goes down in the middle of a reply
transmission (between s.reply and c.reply), the FTLink connector can still send the reply to
the client, before reconfiguring its attachments with the servers.

This specification and its analysis can help the programmer modify the original Link
definition (Figure 2) to achieve a fault-tolerant one. In practice, the code dealing with re-
configuration (e.g., switching the communication channel) should not be simply inserted
in the original Link definition as a new fourth case, but it must also be interleaved with the
transmission of a request. A correct version of Link's Glue is detailed in Figure 12.

35

Finally, this example reveals a point about fault-tolerance: this kind of system requires
a buffer to handle transient states. In our case, a request is stored in the connector until a
stable configuration with a working server is reached (see RequestToSend).

Glue = c.request --~ (s.request --~ Glue [] control.changeOk ~ RequestToSend)
[] s.reply --~ c.reply --~ Glue
[1w
[] control.changeOk ~ Glue

where RequestToSend = s.request --~ Glue [] control.changeOk --~ RequestToSend

Figure 12 Dynamic Wright Specification : Deadlock Free FTLink Connector

7.2.2 Attachment Consistency

In our dynamic fault-tolerant client-server system, the FTLink connector is alternatively
attached to a FlakyServer and a SlowServer. So, the "virtual" server port attached to L.s is:

Virtual.p1 = w [] (request ~ ~ ~ Virtual.p1 [q Primary.control.down ~ Virtual.p2)
Virtual.P2 = request ~ reply ~ Virtual.p2 [] Secondary.control.off ~ Virtual.p1 D w

Then, the shared event Synchro is introduced in the port, role and configuror defini-
tions. Because of space constraints we have abstracted the sequences of actions in the con-
figuror as a single actions event. The resulting process definitions are:

Virtual.pl" = w I] (request --~ reply ~ Virtual.pl"
[q Synchro ~ Primary.control.down ~ Synchro ~ Virtual.p2")

V'trtual.p2" = request ~ reply ~ Virtual.P2"
[] Synchro --~ Secondary.control.off ~ Synchro --~ Virtual.pl" [] w

Link.s" = (request ~ reply ~ Link.s"
f'l Synchro ~ Link.control.ChangeOk ~ Synchro ~ Link.s") [] w

Configuror = actions ~ WaitForDown
where
WaitForDown = w [] (Synchro ~ Primary.control.down ~ Secondary.control.on

L.control.changeOk --~ Synchro ~ actions ~ WaitForUp)
WaitForUp = w [] (Synchro ~ Primary.control.up --~ Secondary.control.off --~

L.control.changeOk ~ Synchro --~ actions ~ WaitForDown)

Finally, the attachment consistency of the connector L role s is checked as:

Claim 3 (Link.s" I I Configuror") c_ (Virtual.pl" I I Configuror" I I det(Link.s"))

We do not detail here the configuror consistency checks of our simple system.

7.3 Equivalence

The previous analysis ensures that the system satisfies certain consistency properties. An-
other application of our semantics is to prove that a dynamic system (or sub-system) is
equivalent to some steady-state one. This is a useful result because for certain purposes we
can treat the dynamic system as a static one. For instance, as in the previous example, we
might like to show that the reconfigurable client-server system is equivalent to a simple
client-server system in which the server never goes down.

36

In order to compare a dynamic system with a static one, the control and go events must
be hidden, the remaining communication events should be stripped of their configuration
encoding part (i.e., renaming Cp.p.e.Cn.r into Cp.p.e) and some components may have to
be renamed (e.g., Primary and Secondary are unified with S). The following check ensures
that our fault-tolerant system has the functionality of a simple client-server system:

Rename(Strip(DynamicClient-Server \ {_.control go... })) = Simple

With the tool FDR [4], we discover that these two systems are nearly equivalent: they have
the same traces and failures, but Simple never diverges, while the left-hand side system
may diverge (performing no "useful" communication, but only an infinite sequence of re-
configurations). This discrepancy indicates that without some additional guarantees of
fairness, the two systems are not, in fact, identical. However, although it is not possible to
add fairness to our CSP description, in practice it would not be difficult to ensure this prop-
erty for an implementation.

Finally we can examine the reusability of code. Our definitions of the client compo-
nent are the same in the first Client-Server steady-state system (Section 3) and in the fault-
tolerant Client-Server dynamic system (Section 5). We did not have to introduce control
events in the client definition. So, in an implementation the same client code could be used
in both steady-state and dynamic systems.

8 Future Work and Discussion

We believe that a number of technical extensions of the research are worth exploring. First,
fault-tolerance introduces notions (e.g., time-out, preemption) along with idiomatic encod-
ing (e.g., replacing the absence of event by a time-out event, or set an interruptible inter-
pretative cycle). We think style libraries with specialized analyses and transformations
might support these idioms.

Wright provides abstract specifications of software architectures. Our central config-
uror may not be realistic in a concrete implementation. In this case, a partial evaluation of
the specifications could distribute the configuror actions in the components and connectors
to be closer to real code.

Our semantics is a formal basis to further develop analysis and transformations. In-
tractable analysis could be replaced by proofs based on the semantic expressions and CSP.
For example, a case study in [1] does not rely on model checking to study the deadlock
freedom of a buffered connector style. Also, we restricted our study to dynamic systems
with a finite number of configurations. The subordination CSP operator (//) can be used to
dynamically duplicate processes by recursion. For example, [6] gives a definition of a fac-
torial process where each level of recursion declares a new local process to deal with the
recursive call. This technique might allow us to express semantics of dynamic architec-
tures with regular pattern topology involving an unbounded number of configurations.

The present work focuses on protocols and deadlock freedom. Other properties should
be studied in Wright. For example, [3] proposes a security analysis based on information
flow in CSP expression. We think, this work could be adapted to Wright by introducing ex-
tra information specifying information flows hidden by the specifications. Finally, all in-
teresting properties can't be expressed in CSP, but our framework and the tagging
technique of our semantics could be reused with another formalism (e.g., CSP which lacks
fairness must be replaced by temporal logic [8]).

37

In this paper, we have described an approach to architectural specification that permits
the representation and analysis of dynamic architectures. The approach is based on four
ideas:

�9 Localization of reconfiguration behavior, so that it is possible to understand and ana-
lyze statically what kinds of dynamic (topological) architectural changes can occur in a
running system.

�9 Uniform representation of reconfiguration behavior and steady state behavior, so that
interactions between the two can be analyzed.

�9 Clearly delimited interactions between the two kinds of behavior through the use of
control events, so that one can explicitly identify the points in the steady state behavior
at which reconfigurations are permitted.

�9 Semantic foundations based on CSP, so that we can exploit traditional tools and analytic
techniques based on process algebras.

To make this approach work we have limited ourselves to dynamic architectures that
have a finite number of possible reconfigurations. Thus we have made a tradeoff between
generality and power: by considering a restricted set of dynamic architectures we are able
to provide strong support for static reasoning and automated analysis.

Because of space constraints, we illustrated the approach with a very simple example,
showing how specification and analysis could help us detect and then fix a bug in the de-
scription. However we are confident that our extension scales up to realistic systems, as
static Wright does [1]. Indeed, our checks remain local, and identical checks can be shared
in systems with a high degree of symmetry (e.g. multiple instances of the same compo-
nent). Further study would be necessary.

References
[1] R.J. Allen. A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie Mellon University,

School of Computer Science, May 1997.
[2] R.J. Allen and D. Garlan. A Formal Basis for Architectural Connection. In ACM Transactions on

Software Engineering and Methodology, July 1997.
[3] J.-P. Ban[ltre, C. Bryce and D. Le Mttayer. Compile-time detection of information flow in sequential

programs. In Proc. ofESORICS'95, LNCS 875, 1995.
[4] Failures Divergence Refinement: User Manual and Tutorial. Formal Systems (Europe) Ltd., Oxford,

England, l.2[~ edition October 1992.
[5] D. Garlan, R. T. Monroe and D. Wile. ACME: An Architecture Description Interchange Language.

Submitted for publication, January 1997.
[6] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall, 1985.
[7] E Inverardi and A. Wolf. Formal Specification and Analysis of Software Architectures Using the

Chemical Abstract Machine Model. IEEE Trans. SW Eng., 21(4), 95.
[8] L. Lamport. The Temporal Logic of Actions. In ACM TOPLAS, 16(3), 1994.
[9] D. Le M6tayer. Software Architecture Styles as Graph Grammars. In Proc. of FSE'96, ACM SIG-

SOFT.
[10] D. Luckham, L. Augustin, J. Kenney, J. Vera, D. Bryan and W. Mann. Specification and Analysis of

System Architecture Using Rapide. In IEEE Trans. on Soft. Eng., 21(4), 1995.
[l 1] J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In Proc. of FSE'96, 1996.
[12] N. Medvidovic.A Classification and Comparison Framework for Software ADLs. Univ. of lrvine,

Dept. of Information and Computer Science, 1997.
[13] L. Sha, R. Ragunathan and M. Gagliardi. Evolving Dependable Real-Time Systems. Carnegie Mellon

University SE1 Report CMU-SEI-95-TR-005, 1995.
[14] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young and G. Zelesnik. Abstractions for Software Archi-

tecture and Tools to Support Them. In IEEE Trans. on Soft. Eng., 21(4), 1995.

