
Deciding Properties for Message Sequence
Charts

Anca Muscholl 1, Doron Peled 2 and Zhendong Su 3

1 Institut fiir Informatik, Universit~t Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany

2 Bell Laboratories, Lucent Technologies, 600 Mountain Av., Murray Hill, NJ 07974,
and Carnegie Mellon University, School of Computer Science, Pittsburgh, PA,

15213-3891, USA
3 EECS Department, University of California, Berkeley, CA 94710-1776, USA

Abstract . Message sequence charts (MSC) are commonly used in de-
signing communication systems. They allow describing the communi-
cation skeleton of a system and can be used for finding design errors.
First, a specification formalism that is based on MSC graphs, combin-
ing finite message sequence charts, is presented. We present then an
automatic validation algorithm for systems described using the message
sequence charts notation. The validation problem is tightly related to a
natural language-theoretic problem over semi-traces (a generalization of
Mazurkiewicz traces, which represent partially ordered executions). We
show that a similar and natural decision problem is undecidable.

1 Introduct ion

Message sequence charts (MSC) are a notation widely used for the early design of
communication protocols. With its graphical representation, it allows to describe
the communication skeleton of a protocol by indicating the messages that are sent
between its different processes. Using message sequence charts one can document
the features of a system, and the way its parts interact. Although MSCs often do
not contain the full information that is needed for implementing the described
protocols, they can be used for various analysis purposes. For example, one can
use MSCs to search for missing features or incorrect behaviors. It is possible to
detect mistakes in the design, e.g., the existence of race conditions [1] or non-
local choice [2]. Another task that is often done using MSCs is providing 'feature
transparence' , namely upgrading a communication system in a way that all the
previous services are guaranteed to be supported.

In recent years MSCs have gained popularity and interest. An international
committee (ITU-Z 120 [7]) has been working on developping standards for MSCs.
Some tools for displaying MSCs and performing simple checks were developed [1,8].
We model systems of MSCs, allowing a (possibly infinite) family of (finite or in-
finite) executions. Each execution consists of a finite or infinite set of send and
receive events, together with a partial (causal) order between them. Such a sys-
tem is denoted using M S C graphs, where individual MSCs are combined to form

227

a branching and possibly looping structure. Thus, an MSC graph describes a
way of combining partially ordered executions of events.

We suggest in this paper a specification formalism for MSC properties based
on directed graphs: each node of the graph consists of a template, which includes
a set of communication events, and the causal order between them. We study
three alternative semantics for the specification by MSC graphs:

- Using the same semantics as for an MSC system. Namely, each maximal
sequence corresponds exactly to one execution.

- With gaps, i.e., as a template, where only part of the events (and the or-
der between them) is specified. Moreover, choices in the specification graph
correspond to different possible ways to continue the execution.

- Again with gaps, but with choices corresponding~to conjunctions. Namely
an execution matching the specification must include all the events in every
possible path of the specification, respecting the associated causal orders.

The main focus of this paper is on developping an algorithm for deciding
whether there are executions of the checked system of MSCs that match the
specification. Such an execution is considered as a 'bad' execution and if exists
it should be reported as a counter-example for the correctness of the system.
For the first semantics we show in Section 5 that the matching problem is unde-
cidable. For the last two problems we provide algorithms and we show them to
be NP-complete, see Section 4. In the special case of matching two single MSCs
we provide a deterministic polynomial time algorithm, improving the result of
[8], see Section 3. The complexity of related problems has been studied for pom-
set languages [6]. In contrast, in [6] only finite pomset languages are studied
(however, over a richer structure).

The matching problem can also be represented as a decision problem for
semi-traces [4]. A semi-trace is a set of words that is obtained from some word
by means of (not necessarily symmetric) rewriting rules. These rules allow com-
muting pairs of adjacent letters. A semi-trace language is a set of words closed
under these given rewriting rules. We provide a natural transformation from
MSCs to semi-traces. This allows explaining our decidability result as a deci-
sion problem on rational languages of semi-traces. One surprising consequence
of this translation is that it applies in the same way to two rather different com-
munication semantics for a natural subclass of MSCs: that of asynchronous fifo
communication and that of synchronous (handshake) communication.

Work is in progress to add the proposed validation framework to a toolset
that was developed for manipulating MSCs [1]. This paper concludes with several
open problems and suggested work.

2 C h a r t s a n d M S C G r a p h s

In this section, we introduce message sequence charts (MSC) and MSC graphs,
as well as the matching problem.

228

D e f i n i t i o n 1 (M S C) . A message sequence chart M is a quintuple (E, <, L, T, 7 ~)
where E is a set of events, < C_ E x E is an acyclic relation, P is a set of
processes, L : E -~ 7) is a mapping tha t associates each event with a process,
and T : E --+ {s, r} is a mapping that describes the type of each event (send or
receive).

The order relation < is called the visual ordering of events and it is obtained
from the syntactical representation of the chart (e.g. represented according to the
s tandard syntax ITU-Z 120). I t is called 'visual ' since it reflects the graphical rep-
resentation of MSCs. We distinguish between two types of visual ordering as fol-
lows. Wele t <c -- {(e,e ') IT (e) = s ,T(e ') = r and e ,e ' are the send and receive
events of the same message} denote the message ordering. Furthermore, for P E
P let Ep = {e [e E E A L(e) = P} , i.e., E p is the set of events tha t belong
to process P . We define the relation < p = < A (Ep x Ep) t ha t represents the
ordering between events of P only. Then the visual order < is the union of these
orders, i.e., < --- <c U (UPep <P)"

Thus, for two events e and f , we have e < f if and only if one of the following
holds:

- e and f are the send and receive event of the same message. In this case, we
call e and f a message pair.

- e and f belong to the same process P , with e appear ing before f on the
process line. This imposes a total order among all events of P , for every
process P.

In general, the visual order provides more ordering than intended by the
designer. Therefore we associate with every chart a causal s t ructure providing
the intended ordering. Causal structures are related to pomsets [11], event struc-
tures [9], and traces [5]. A causal structure is obtained from an MSC by means
of a given semantics. Formally, the causal s t ructure of an MSC M is a quintuple
t r (M) = (E,-~, L, T, P) , where the only component tha t differs from the defini-
tion of an MSC is the relation -~, called the precedence order of events. For two
events e and f , we have e -~ f if and only if event e must te rminate before event
f starts. The transitive closure -~* of -~ is called the causal order. Events which
are not causally ordered can occur independently of each other.

The precedence order of events is defined by a set of semantic rules. As the
semantics used throughout the paper, we give below the set of rules for an archi-
tecture with fifo queues. This means tha t every one-directional communication
between two processes is done through a fifo channel. For this architecture we
have in the visual order for each message pairs e <c] and e ~ <c f~ with e < p e ~
and L (f) = L (f ') = P' also f (p , f ' . Then, for two events e and f , let e -~ f
for the fifo semantics if one of the following holds:

1. Two sends from the same process:

T(e) = T (f) = s A e <v f for some process P .

2. A m e s s a g e p a i r : T (e) = s A T (f) = r A e <c f .

229

3. Messages ordered by the fifo queue:

T(e) = T (f) = r A e <p f for some p r o c e s s P A

3e ~ , f f (e ~ < c e A f ' < c f A e ' < p , f f for some processP~) .

4. A receive precedes a send on the same process line:

T(e) = r A T (f) = s A e <p f for some p r o c e s s P .

Remark 2. For a causal structure O = (E, -~, L, T, :P) we use the usual notation
e $ for the downward closure of an event e E E w.r.t, the partial order of (9,
i.e. e $= {f E E I f -~* e}. The notion of a minimal element e in O is also
standard, meaning that e ~ -~* e implies e t -- e. We denote by min(O) the set of
minimal elements of the partial order of (9.

Note that the following relation between configurations associated to a mes-
sage pair holds under the fifo semantics:

L e m m a 3. Let e <c f be a message pair. Then we have under the fi]o semantics:

f $ = e S U { f l E E [T (f l) = r , L (f l) = L (f) and

el < c f t for el with et "~ e, T(ez) = s, n(e l) = n (e)} .

2.1 T e m p l a t e s a n d t h e M a t c h i n g P r o b l e m

An MSC M matches an MSC N (or is embedded in N) if the chart N respects
the causal order on the events specified by M. (Clearly, matching is defined with
respect to a given semantics.) The MSC M is called a template M S C and it
represents the specification, whereas the MSC N is called a system MSC. For
matching M against N it suffices to consider the reduced partial order of M.
Moreover, a template is viewed as a possibly partially specified execution of
the system. The actual executions may contain additional messages, which may
induce additional ordering.

D e f i n i t i o n 4 (M a t c h i n g a t e m p l a t e w i t h an M S C) . Under a given seman-
tics, a template M with the causal structure t r (M) = (EM, "~M, LM, TM,7~M)
matches a chart N with the causal structure t r (N) = (EN,-~N, LN,TN,TPN) if
and only if ~OM C ~ g and there exists an injective mapping (called embedding)
h : EM --4 EN such that

- for each e E EM, we have LN(h(e)) = LM(e) and TN(h(e)) = TM(e) (pre-
serving processes and types), and

- if el -~M e2 then h(el) -~N h(e2) (preserving the causal order).

Let P = (P 1 , . . . ,Pn} denote the set of processes. For an event e E E we are
often interested in its 'message type ' msg(e) and we let msg(e) = sij, if e is a
send event from Pi to Pj, and msg(e) = rij if e is a receive event of Pj from Pi,
respectively. Let msg(M) = {msg(e) t e E EM}.

230

Note that under the fifo semantics the injectivity of the embedding is already
implied by the two other properties in the definition above. Moreover, under this
semantics we have a simpler characterization of embeddings, which takes into
account just message types:

L e m m a 5. Let M, N denote two MSCs and let h : M ~ N be a mapping. Then
h is an embedding from M to N if and only if the following conditions hold for
any two events e, f E EM :

1. If (e, f) is a message pair, then (h(e), h (f)) is also a message pair between
the same processes.

2. Let e "~M f such that (e, f) is not a message pair (thus, e, f are on the same
process). Then msg(h(e)) = msg(e), msg(h(f)) = msg(f) and h(e) <N h(f)
holds in the visual order <g of N .

Let J~4 denote the class of finite message sequence charts. Let Mi = (Ei, <~
, Li, Ti, 7~i) be two MSCs, i = 1, 2. The (syntactic) concatenation of M1 and M2,

denoted M1M2, is defined by letting M1M2 = (El tJ E2, <, L,T , Pl U P2) with
LIE, = Li, TIE, = T~ and < = <1 tA <20{(e,e ') [e E El ,e ' E E2,L(e) = L(e')}.

Here, E1 U E2 means the disjoint union of the event sets of M1 and/1//2. The
concatenation of an infinite sequence M1, M2,. . . is defined in an analogous way.
Message sequence graphs (MSC graphs, sometimes called high-level MSCs [7]),
are used to compose MSCs to larger systems. Equivalently, one can compose
MSCs using rational operations, i.e. union, concatenation and iteration. MSC
graphs are finite directed graphs where each node of the graph is associated
with a finite MSC [1].

Def in i t ion 6 (MSC graph) . An MSC graph N is a quadruple (S,T, So,c)
where (S, T, SO) is a finite, directed graph with states set S, transition relation
T C_ $ x S and starting state So E S. The mapping c : S ~ .A4 assigns to each
node a finite MSC.

Let ~ = Sl ,S2, . . . be a (possibly infinite) path in N, i.e. (si,si+l) E T for
every i. The execution (MSC) defined by ~ is given by c(~) -- C(Sl)C(S2)

In order to distinguish MSC graphs from finite MSCs we denote throughout
the paper a finite MSC (not bounded to any MSC graph) as a single MSC.

In an MSC graph N = (S, T, SO, C), a path ~ is called maximal if it begins with
the starting state so and it is not a proper prefix of another path. Notice that a
maximal path can be either infinite or finite. Let also msg(N) = Usesmsg(c(s)).

Fig. 1 shows an example of an MSC graph where the state in the upper left
corner is the starting state. Note that the executions of this system are either
finite or infinite. Also note that the events of receiving messages of fail and report
are not causally ordered.

Def in i t ion 7 (Match ing paths) . Let ~1 and ~2 be two finite or infinite paths
in some MSC graphs. Then ~z matches ~2 if c(~l) matches c(~2).

231

I i T

Fig. 1. A system MSC graph.

A strongly connected component C of a directed graph (S, T) is a subset
C C_ S such that for any u ,v e C, there is a nonempty path from u to v.
A maximal strongly connected component is a strongly connected component
which is maximal w.r.t, set inclusion.

3 Matching a Template

In this section, we consider the problem of matching a single template MSC with
an MSC graph. As a first result, we show that we can check whether a template
can be embedded into a single MSC in polynomial time. (Recall that we assume
that the fifo semantics is used.) This algorithm refines the result of [8], where a
PSPACE algorithm was exhibited without specifying the semantics. The present
matching algorithm is based on the simple observation that it suffices to match
a suitable minimal send event and the corresponding receive event with the first
occurrence of a message pair of the same type.

Proposition 8. Let M = (EM, <M, LM, TM, 7~M), N = (EN, <N, LN,TN, PN)
be single MSCs. For each event e E min(tr(M)) which is minimal w.r.t. "<*M let
#(e) E EN denote the first event in N with msg(e) = msg(#(e)). Choose eo E
min(tr(M)) be such that/~(eo) is minimal within the set {#(e)] e E min(tr(M)) } .
Let fo, resp. f~, denote the corresponding receive events of co, resp. #(co). Let
M' = M \ {co, fo} and N ' = N \ {g' e EN I g' "<*N]~}. Then M matches Y if
and only if eo is well-defined and M I matches N' . Moreover, if h ~ : M ~ -+ N ~ is
an embedding of M I into N' , then h' U {Co ~-~ #(Co), fo ~-~ f~} is an embedding
of M into N .

232

Proof. Note first that all minimal elements of t r (M) are send events. Suppose
that M matches N via h : M --~ N, where h(eo) r #(eo) (hence, h(fo) ~ f~).
Let e~ :--- #(eo) and let h be given by h(eo) = e~o, h(fo) = f~ and h(g) = h(g)
for every g it {e0, f0}. Now, if eo -~M g, then h(eo) -~N h(g)and hence also
e~o -~g h(g), since e~o "~N h(eo) and e~, h(eo) have the same message type. A
similar argument holds for fo "~M g, which shows that h is again an embedding
from M to N. In order to show that M ~ matches N ~ it suffices to show that
s n {g' e EN I g' "~*N fO} = {elo, fo}" Assume the contrary, i.e. there exists
g E EM such that h(g) "<~v f~ and h(g) it {e~, f~}. Since every receive event is
preceded by its corresponding send event, we may assume that TM(g) = s, i.e. g
is a send event. Let et e min(tr(M)) be a minimal event with et -<~ g, then
s -<~v s -~v f~. By Lemma 3 we obtain that s "~v e~, since el is a
send event. By the definition of # we have #(el) "~v h(el), hence #(el) "~v e~.
Thus, by the choice of eo we obtain ~(el) -~ e~. Therefore, e~ -<~v h(g) "<~v f~,
which yields e~ = h(g) due to Tu(g) = s, contradiction.

Suppose finally that M ~ matches N ~ via h ~ and consider some event g in M ~.
If e0 "~M g, then we also have e~o "<N ht(g), since h ~ preserves message types
and h'(g) E EN,. Similarly, f0 "~M g implies e~ "<N h'(g), which shows that
h ~ U {eo ~+ e~, fo ~ f~} is an embedding of M into N.

Remark 9. Proposition 8 yields an embedding algorithm, mapping the events of
M in such a way that minimal events are mapped first, to the first event with
the same type. This algorithm is of linear complexity if we keep min(tr(M)),
resp. {#(e)] e e min(tr(M))} in two lists. More precisely, note that on each
process of M, resp. N, there is at most one event e E min(tr(M)), resp. #(e).
Moreover, we will record for each process of N the event on that process line
which is of the form ~(e) for some e E min(tr(M)), if there is one on that process.
This additional information is needed in order to update the set of minimal
elements of {#(e) I e E min(tr(M))} in constant time. For the complexity of our
algorithm note first that min(tr(M~)) can be updated in constant time, since
at most two new minimal events can occur on L(eo) and L(fo). Moreover, for
el E min(t r (M')) \min(t r (M)) we can check whether #(el) is minimal in {#(e) I
e E min(tr(M*))} in constant time, using the additional information mentioned
above. This suffices, since p(el) is a send event and every event preceding it in
the visual order is a predecessor in the causal order, too. Hence, #(el) is not
minimal within {#(e) I e E min(tr(M~))} if and only if its process contains an
event p(e2), e2 E min(tr(M~)), such that #(e2) <N' #(el).

Note also that the embedding h suggested by Proposition 8 is actually unique.
It is not difficult to show that an event e E EM is mapped by h to e ~ E EN if
and only if e ~ is the minimal event w.r.t. "~v such that e $ matches e ~ $.

In the remaining of this section we consider the exact complexity of matching
a template MSC with an MSC graph.

Defini t ion 10 (Matching a t empla te wi th an M S C graph). A template
MSC M matches an MSC graph N if M matches some maximal path of N.

233

Matching a template against an MSC graph actually requires only paths of
bounded length to be checked:

P ropos i t i on 11. Let N be an M S C graph and let M be a single template M S C
such that M matches N . Then there is a path in N that embeds M and has length
at most rod, where m is the number of messages in M and d is the maximal length
of a simple path in N (i.e. of a path where no node appears twice).

Proposition 11 yields a non-deterministic algorithm for matching a template
with an MSC graph which guesses a path in N and verifies that the template
matches the graph. The algorithm is polynomial in the size of the template and
the number of nodes in the graph. The proposition below shows that matching
is also NP-hard.

Proposition 12. Matching a single template M S C with an MSC graph is NP-
complete, even if the graph is acyclic.

Proof. It suffices to show that matching is NP-hard. For this, we reduce the
satisfiability problem for formulas in conjunctive normal form (CNF-SAT) to
the MSC matching problem.

Consider a formula]~=1 Cj with clauses (disjunctions) Cj over the variables
x l , . . . ,xl. For each clause Cj we take two processes, Pj and Rj. Let m (j)
denote a message from Pj to Rj. Note that the events of different messages
m (i) , m (j) , i ~ j , are not causally ordered. Then the template M is given as
M = m(1) �9 �9 �9 m(k) . The system graph N = (S, T, SO, C) contains for each variable
xi three states denoted as oi,pi and ni, i.e. S = {oi ,pi ,ni I 1 < i < l}. Let so =
ol. The edge set is given by r = {(oi,pi), (oi,ni), (pj, oj+l), (n j ,o j+l) I 1 < i <
l, 1 _< j < l}. The assignment of MSC to states is as follows: for every i, c(oi) = 0,
c~ i) = {re(j) I xi occurs in Cj} and c(ni) = {re(j) [~i occurs in Cj}. That is,
c(pi) contains messages associated to all clauses satisfied by xi := true, whereas
c(ni) contains messages associated to all clauses satisfied by xl := false. Thus,
a maximal path in the MSC graph N corresponds exactly to an assignment of
the variables. The single MSC M matches a maximal path of N if and only if
the assignment given by the path satisfies all clauses.

4 M a t c h i n g M S C G r a p h s

In this section, we discuss our extension of the matching algorithm to deal with
MSC graphs. Adopting the same convention for matching two single MSCs, we
call one of the MSC graphs the template (MSC) graph. The other graph is called
the system (MSC) graph.

The template graph represents a collection of properties (behaviors), each
defined by one of its maximal paths. Then for the or-semantics as defined below,
the template corresponds to a non-deterministic choice among these behaviors,
so an execution of the system needs to contain at least one of the executions

234

~ F a i l ?

I I

?ono

Fig. 2. A template MSC graph.

described by the template. For the and-semantics an execution of the system
matches the template if it contains all the executions of the template MSC
graph.

Def ini t ion 13 (Match ing a t e m p l a t e graph wi th a s y s t e m graph) . Let
M and N be two MSC graphs.

1. M or-matches N if there exists a maximal path ~ of N and a maximal path
of M which matches ~.

2. M and-matches N if there exists a maximal path ~ of N such that all
maximal paths ~ of M match ~.

Consider the and-graph template in Fig. 2. This template matches the system
of Fig. 1, since the system may alternate infinitely often between Connect and
Fail.

The next lemmas present some fundamental properties of matching paths of
MSC graphs. A subpath ~ of a path ~ = So, s l , . . , in some graph G is a path of
G of the form ~ -- Sio, siz, si2,.., with i0 < il < In this case, we denote
a superpath of ~.

L e m m a 14. Let M, N be two MSC graphs and let ~1, ~2 denote paths in M, N,
resp. Let ~1 match ~2. Then for every subpath ~ of ~1 and every superpath ~ of
~2, ~11 matches ~ .

P r o p o s i t i o n 15. Let M, N be two MSC graphs and consider an infinite path
in M such that every state from ~ occurs infinitely o~en in ~. Let C be the

strongly connected component of M induced by the states from ~. Consider also

235

an infinite path X in N and let C ~ denote the strongly connected component of
the states occurring infinitely often in X. Then the following holds:

1. ~ matches X if and only if msg(C) c_ msg(C').
2. Let K denote a simple cycle within C and suppose that ~ matches X. Then

K ~ matches X, too (here, K ~ denotes the infinite path K K . . .) .
3. Let K be a cycle containing all states from C ~. Then ~ matches X if and only

if ~ matches K~ .

Proof. Suppose first tha t ~ matches X- Then, since embeddings preserve message
types, it is easily seen that msg(C) c_ msg(C'). For the converse let X = XoX1 . . . ,
with Xi finite paths such that every Xi, i > 1, contains all states from C ~. Also,
consider a linearization e l e2 . . , of tr(~) satisfying the property that for each i,
(e2i-1, e2i) is a message pair. We define an embedding h inductively by mapping
(e2i-l ,e2i) to events from Xi, i > 1. More precisely, h maps e2i-1 to the first
event e ~ occurring in e(Xi) satisfying msg(e2i_l) = msg(e*). Then, e2i is mapped
by h to the corresponding receive event of e ~. By Lemma 5 it is easy to check
that h preserves the causal order.

The second assertion of the proposition is obtained directly from Lemma 14,
whereas the last assertion is a consequence of the first one.

4.1 The Complexity of OR-Matching

The next theorem shows that for or-matching two MSC graphs only finite paths
have to be considered for an embedding. More precisely, for the recurrent part
of a path only the message types of events are relevant. For a strongly connected
component C and a state s we denote below a path from s to some node in C
as a path from s to C.

Theorem 16. Let M = (S, % So, c) be a template graph and N = (S I, T ~, S~o, c ~)
be a system graph. Then M or-matches N if and only if either there exists a
finite maximal path of M which matches N , or there exist

- a simple cycle K in M and a simple path ~ from so to K ,
- a strongly connected component C ~ of N and a path X from S~o to C ~,

such that ~ matches X and msg(K) C msg(C) .

Proof. Suppose that M or-matches N via an infinite maximal path. Then, by
Lemma 14 and Proposition 15(2) we also obtain a path of M of the form ~ K K . . .
which matches N, where K is a simple cycle and ~ is a simple path from So to
K. Let p denote a path in N such that ~K ~ matches p. Moreover, let X be
a minimal prefix of p such that ~ matches X and the corresponding suffix is a
strongly connected component of N. Then, by applying Proposition 15(1), we
obtain the result.

For the converse we may use again Proposition 15(1) in order to extend the
embedding of ~ into X to an embedding of ~K W into a path in N starting with

X.

236

First note tha t in Theorem 16 the path X is in general not simple. But by
Proposition 11 its length is bounded by size(~) �9 n, with size(~) denoting the
number of messages in ~, and n denoting the number of states in N. Note also
that we can require above that C ~ is a maximal strongly connected component,
due to Lemma 14. Hence, an algorithm based on Theorem 16 would first com-
pute in linear time all maximal strongly connected components of N. Then, for
each maximal strongly connected component C ~ consider the states s of M with
msg(c(s)) c_ msg(C) and the subgraph Me, induced by these states. The al-
gorithm checks whether there is some simple path ~ from So to some strongly
connected component of Mc, which matches a path X from s~ to C'. (The length
of X is bounded by a polynomial in the size of ~ and the size of N.)

The complexity of the above algorithm basically derives from two problems:
one consists of finding all simple paths from the initial node to a given subgraph,
and the second one is the problem of matching a single template MSC with
an MSC graph. Clearly, Theorem 16 directly yields an NP-algorithm for or-
matching. Moreover, by Proposition 12 already the case where the template
graph is a single node is NP-hard. Hence, we obtain:

C o r o l l a r y 17. The or-matching problem for MSC graphs is NP-complete.

4.2 The Complexity of AND-Matching

For the and-matching problem we need to deal not only with strongly connected
components, but also with states reachable from some strongly connected com-
ponent. The reason is that some of the events in such states have to be mapped
to events belonging to recurrent states in the system graph.

For an MSC graph M = (S,T, so,c) let Sc C_ S denote the set of nodes
belonging to some strongly connected component of M. For each state s E 8
let us parti t ion the events belonging to the single MSC c(s) associated with s in
two sets cf(s),c~(s) as follows. For each event e E e(s) let e e c~(s) if and only
if there exist some state s ~ �9 So, some event e t in c(s t) and a path ~ from s t to s
with e t -~ e for the causal order -~ associated to the execution of ~. We denote
by Ew the set of events {e I e �9 co,(s), s �9 $}. The set Eo, can be computed in
polynomial time as follows: let E~ := {e'] e' �9 c(st), s' �9 So}. Then for every
e ~ E~, e �9 c(s), test whether there is some event e t �9 E~,, e t �9 c(s~), such that s
is reachable from s t through a path ~ and e ~ -~ e for the execution of tha t path.
Note that e t -~ e holds if and only if e ~ -~x e holds for any other path X from s t
to s. Moreover, by Lemma 3 the condition e ~ -~ e can be checked by examining
the message types of e, e ~. If the test is positive, then let E~ -- E~, U {e}. This
step is repeated until no more events can be added. Note also that for every
e �9 e~(s) and e ~ �9 c(s) with e -~*(s) e~, also e ~ �9 co,(s) holds. Moreover, for
every message pair el <c e2 in e(s) we have el �9 cf(s) if and only if e2 �9 cf(s)
(this is easily checked using Lemma 3.) The set c I (s) together with the visual
order inherited from c(s) is thus a single MSC which we also denote by ci(s)
(analogously for co,(s)). By the previous remarks we have that the causal order

237

of c(s) is the same as the causal order of cf(s)cw(s). Finally, for s E 8c we have
e(s) =

T h e o r e m 18. Let M = (S,v, s0, c) be a template graph and N = (St,T',S'o,e ')
be a system graph. Define a mapping ~ : S -+ A4 by letting ~(s) = e l (s). Let
1~I = (S, ?, So, ~) denote the M S C graph with states set ~ = {s E S I 5(s)
0} U {So} and (s ,s ') E ~" if and only if s ,s ' E S such that -~(s = s' = so) and
there is a path s = S l , . . . ,Sk = s t in M satisfying 5(si) = O]or all 1 < i < k.
Then M and-matches N if and only if there exists a subgraph C' of N and a
path X from s' o to C' such that

I. All paths in)~I match X.
2. I f M contains cycles then msg(Eo~) C_ msg(C') and C' is a strongly connected

component of N .

Proo]. First, note that the MSC graph 2t7/is acyclic (since the only possible loop
would be a self-loop of so, which has been excluded by definition).

Suppose that M and-matches N and consider a path p in N such that all
maximal paths in M match p. If M is acyclic, hence M = M, then we are done
by choosing an appropriate finite prefix X of p. So suppose that 3c ~ 0, then p
must be infinite. Let C t be the strongly connected component containing^exactly
the states occurring infinitely often in p. Let ~ be a (finite) path from M. Then
it is easy to verify that there exists a path a in M such that the causal order of
the execution of ~ is a prefix of the causal order of the execution of a. Hence,
matches p, too. Let X be a finite prefix of p such that all (finite) paths from M
match X and the corresponding suffix is a strongly connected component of N.
Finally, consider an event e in some c~(s), for some state s. Then there exists
for each n _> 0 a path ~ from so to s such that the configuration e $ of the
occurrence of e in the last node of ~ contains at least n events. Hence, there is
some state s t occurring in p infinitely often, such that msg(e) = msg(e r) holds
for some event e t in s'. This concludes one direction of the proof.

Conversely, suppose that M has cycles. Let ~ = so , s1 , . . , be a maximal
(finite or infinite) path in M. Note that the causal order associated to the ex-
ecution c(~) of ~ is identical to the causal order of ci(~)c~(~), where ci(~) =
c l (s o) c l (s i) . . , and c~(~) = c~(8o)Cw(81) Moreover, c l (s o) c l (s l) . . , is a fi-
nite MSC since there can be only a finite number of nodes si with ei(si) ~ 0.
Also, c] (so)c$(s l) . . , is the execution of a finite path in 2t3/, thus it matches X.
Since msg(Ew) C_ msg(C t) we obtain similarly to Proposition 15 that the MSC
e~(so)c,~(Sl). . , matches / (~ , for some fixed cyc le /~ containing all the states

^

from C'. Thus, ~ matches X K~, which shows the claim.

By the previous theorem we have to consider the problem of and-matching
a single MSC against an aeyclic MSC graph. The next proposition shows that
for and-matching an acyclic graph it suffices to look for a mapping which is an
embedding for all the paths (instead of embedding each path separately).

238

Proposition 19. Let M be an acyclic MSC graph and let N be a single MSC.
Then M and-matches N if and only if there exists a mapping g : M --~ N which
is an embedding for all paths in M.

Proof. Suppose that M and-matches N and let g~ denote an embedding of a
maximal path ~ of M in N. Let ~ denote the set of all maximal paths of M. De-
fine a mapping g : M ~ N by letting g(e) = max{g~(e) I ~ E S , e occurs on ~}.
Note that for a fixed event e the set {gr] ~ E ~ , e occurs on ~} is totally
ordered w.r.t. "~v. This is due to the fifo semantics, since for each e, e ~ with
msg(e) = msg(e') we have either e _ e' or e' ~ e.

We show that g is an embedding for every path ~ E ~. If e <c S is a message
pair in M, then g(e) <c g(f) holds, due to the fifo semantics. Thus, suppose
that e -~ f and e ~c f both hold, where -4~ denotes the causal order associated
to the execution of ~. Let X E S be a path also containing e, f . Note that we
have e "~x f due to M being acyclic. Hence, gx(e) -~N gx(S). By the definition
of g we finally obtain g(e) "~g g(f)"

The previous proposition shows that there exists a mapping g for matching
all paths in M with N. This yields an NP-algorithm for matching an acyclic MSC
graph M with a single MSC (note that after guessing the mapping g we test the
embedding property for every pair of events e, f with e -~ f for some path ~).
We now show that we can even find a canonical mapping deterministically in
polynomial time (similar to Proposition 8).

Proposition 20. Let M = (S, v, so, c) be an acyelic MSC graph and let s E S be
a source node, i.e. a node without predecessors. Let N = (EN, <g, LN, TN, 7JN)
be a single MSC. Assume that M and-matches N and let h : c(s) -+ N be defined
by

h(e) = e ~ if e' is minimal w.r.t. "~*N such that e $ matches e ~ $

Let g : M --~ N be a mapping which is an embedding for all paths from M in
N . We define a mapping g~ : M --+ N by letting g'ic(s) = h and g~(e) = g(e) for
every e ~ c(s). Then g~ is also a mapping which embeds all paths of M into N .

Proof. It can be easily verified that for every event e E c(s) and every mapping
g : M --+ N which is an embedding for all paths in M (in particular for c(s)) one
has h(e) ~N g(e). Therefore, if e -~ f holds for the execution of a nonempty path

from s to s' for two events e, f with e E s and f E s', then also h(e) "~g g(f)
holds.

Proposition 20 yields a polynomial-time algorithm for matching an acyclic
and-graph with an MSC defined by a path. We first determine for each node s
and for each event e E c(s) the immediate predecessor events of e (w.r.t. the
causal order) located in s and in the nodes preceding s. Then we embed a source
node s of M and iterate this procedure with M \ {s}. When processing the

239

current node s events in c(s) are mapped according to the partial order (starting
with minimal elements) as suggested by Proposition 8. That is, a suitable event
e E min(tr(M)) is mapped to the minimal event e ~ of the same type in N, such
tha t e ~ $ contains all events to which the immediate predecessor events of e were
mapped to.

Together with Theorem 18 we obtain an NP-algorithm for the and-matching
problem by first guessing a subgraph C ~ of the system graph N and a path X
from the starting node of N to some node in C . Then we verify deterministically
that the acyclic MSC graph M defined in Theorem 18 and-matches the single
MSC corresponding to X. Note that due to Proposition 19 we can bound the
length of X by a polynomial in the number of messages in M and the number of
nodes in N. Together with Proposition 12 we obtain:

C o r o l l a r y 21. The and-matching problem for MSC graphs is NP-complete.

5 A n U n d e c i d a b l e P r o b l e m

The matching problems considered previously were based on the paradigm that
templates represent partial specifications of system behaviors. We show below
that if we require that templates represent exact behaviors, then the or-matching
problem is undecidable.

For the fifo semantics considered in this paper we show first that considering
a message pair as a single letter we obtain an isomorphism between the causal
orders of a natural subclass of message sequence charts and partial orders of semi-
traces. Semi-traces are objects known from the algebraic study of concurrency
(for a survey on semi-traces see Chapter 12 in [5]).

Formally, assume that 7 ~ = {P1, . . . ,Pro} is the set of processes. We asso-
ciate an alphabet ~ = {mij I 1 <_ i ~ j < m} and a non-commutation relation
SD C 2~ x E, SD = {(mij, mik) [j ~ i ~ k} U {(mij, mj~) [i ~ j ~ k}. The idea
underlying SD is to consider in the precedence order the order between sends
on the same process and receives ordered by the fifo condition (mij,mik), and
receives followed by sends on the same process line (mij, mjk). The complemen-
tary relation, SI = (2Y x ~) \ SD, called semi-commutation relation, yields a
rewriting system {ab --+ ba [(a, b) E SI}, which will be also denoted by SI. A
semi-trace [w] is a set of words, [w] -- {v e Z* [w -5~si v}. The concatenation of
two semi-traces [u], [v] is defined as [u][v] = [uv]. It is an associative operation
and the set of all semi-traces over (Z, SI) together with the concatenation is a
monoid with identity 1 = [e], which is denoted (M(Z, SI),., 1). Note also that
the relation SD is reflexive. Moreover, [w] = [w'] holds if and only if w can be
rewritten into w ~ by using symmetric rules only.

In the next proposition we show that a naturally arising subclass of MSCs can
be identified with semi-traces. We restrict our consideration to MSCs satisfying
the condition that in the visual representation no two message lines intersect.
We denote this subclass as ordered MSCs. Clearly, ordered MSCs satisfy the
fifo condition on the visual order. Note also that the syntactic concatenation of

240

MSCs induces a concatenation operation for the associated causal orders, which
is associative.

P r o p o s i t i o n 22. Let JMo denote the set of ordered MSCs over the set of processes
79 = {P1, . . . ,Pro} and let (E , S1) be defined as above. Then the monoid of causal
orders over ./M is isomorphic to (M(E, S/), . , 1).

Proof. Let M = (E, <,L ,T ,79) and define a homomorphism h : E ~ --+ E* by
letting h(e) = m~j, if e is a send event from Pi to Pj, and h(e) =)~ if e is a
receive event. To M we associate a language tM over ,U*:

tM - - ~ {h(z) I z E E ~ is a linearization of - ~ }

Then we can show that tM is a semi-trace over (~, SI). For this, we first define
a linearization z0 E E ~ of M inductively by choosing some message pair (e, f)
of M satisfying

- e is minimal w.r.t, the visual order < in M
- for every g E EM: g < f r g = e

and letting z0 = efz~, where z~ is defined accordingly for M ~ := M \ {e, f} .
(Note that the existence of e, f as above is due to M being an ordered MSC.)
Then we claim that tM = [h(z0)], i.e. tM is the semi-trace associated to h(zo).
We show this by induction on the length of tM. For lack of space, the details are
left to the full version of the paper.

Traces [5] result from in symmetric rewriting rules, i.e. both SI and SD are
symmetric relations. For the trace monoid given by the rules ab = ba, cd = dc it
is known that one cannot decide for given regular languages L1, L2 C {a, b, c, d}*
whether [L1] n [L2] is empty [3], where [L] = UueL[U] denotes the closure of L

under --~sI-

P r o p o s i t i o n 23. Let M, N be two MSC graphs. Then it is undecidable whether
there exist two maximal paths ~1 in M , ~2 in N such that the associated MSCs
m l , m2 have the same causal order under the fifo semantics.

Proof. We consider four processes, 79 = {P1, P2, P3, P4} and we denote by Sa, ra
a message pair from P1 to P2, resp. by sb,rb a message pair from P2 to P1.
Dually, so, rc denotes a message pair from P3 to P4, whereas sd, rd is a message
pair from Pa to P3. Then we associate to each letter a, b, c, d an MSC as given
by the mapping h, with h(x) = sxr=, for x E {a,b,c,d}. Moreover, h induces a
homomorphism from {a, b, c, d}* to A4.

Note that for any word u over {a, b, c, d} the partial order tr(h(u)) consists of
two totally ordered sequences, one over events between processes P1 and P2, the
other over events between P3 and/)4. Moreover, these total orders are completely
independent. Viewed as a mapping from M(2~, SI) to tr(Ad), h is injective. This,
together with [3], concludes our proof.

241

Let us comment our results in the context of semi-trace languages. One can-
not decide the emptiness of the intersection of two MSC graphs since given
two regular languages L, K c_ ~w and a semi-commutation relation SI over ~,
the question whether the intersection ILl N [K] is nonempty is undecidable. In
contrast, the or-matching problem of Section 4.1 can be expressed as a very
particular instance of the above problem. Before going into some details, let us
fix notations. For a language L _C ~*, we denote by LUAE* the shuffle of L and
~*, i.e. the language {ulvlu~v2""unvn I ulu2"" "un E L, vi E E*). The shuffle
LUAX ~ for L C_ 2Y* U Xo, is defined analogously.

Formally, the or-matching problem for the semantics with gaps is equivalent
to the question whether the intersection [LUA~ ~] N [K] is empty or not, for regu-
lar languages L, K C_ ~ . The crucial point now is that [LLU~U w] has a very par-
ticular form. Suppose without loss of generality that L = UV ~, with U, V C ~*
regular languages such that every element of V has the same alphabet A C ~.
Then VY~ ~ = (UUA~*) Inf(A), with Inf(A) = {u �9 E ~ [[u[a = oo, Va �9
A}. Moreover, [UV~UJE ~] = [(UUA~*)] Inf(A). But it is easy to check that
UUJ~* is a very simple regular language, a finite union of languages of the form
E*alE*a2~*. . . akZ* for some letters ai �9 ~. (This family of languages corre-
sponds exactly to level '1/2' in the concatenation hierarchy of Straubing-Th~rien
[10]). Finally, [~*alZ*a2E* �9 �9 �9 ak~*] = Ua,1 ...a,k e[al...ak],U*ail ~ * " " ai~ ~*.

6 C o n c l u s i o n

In this paper we presented specification and verification methods for MSCs,
which employ languages of partially ordered executions. We were interested in the
problem of deciding whether there is an execution of the given MSC system that
matches the specification. We considered three alternative semantics and showed
that the matching problem under both the or-semantics and the and-semantics
is NP-complete. Under a semantics which allows no gaps in the specification the
matching problem becomes the intersection of two MSC graphs. We showed that
this problem is undecidable. Some open directions for further research include
extending the framework by allowing and/or-graphs and negation, expressing the
finite occurrence of certain events, and obtaining complementable specification
formalisms.

R e f e r e n c e s

1. R. Alur, G. Holzmann, and D. Peled. An analyzer for message sequence charts.
Software Concepts and Tools, 17(2):70-77, 1996.

2. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In E. Brinksma, editor, Proceedings of
theTools and Algorithms for the Construction and Analysis of ~ys~ems, Third In-
ternational Workshop, TACAS'97, number 1217 in Lecture Notes in Computer
Science, pages 259-274, Enschede, The Netherlands, 1997. Springer.

3. J. Berstel. Transductions and context-free languages. Teubner Studienb/icher,
Stuttgart, 1979.

242

4. M. Clerbout and M. Latteux. Partial commutations and faithful rational trans-
ductions. Theoretical Computer Science, 34:241-254, 1984.

5. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

6. J. Feigenbaum, J. Kahn, and C. Lund. Complexity results for pomset languages.
SIAM Journal Disc. Math., 6(3):432-442, 1993.

7. ITU-T Recommendation Z.120, Message Sequence Chart (MSC), March 1993.
8. V. Levin and D. Peled. Verification of message sequence charts via template match-

ing. In TAPSOFT (FASE) '97, Theory and Practice of Software Development, vol-
ume 1214 of Lecture Notes in Computer Science, pages 652-666, Lille, France, 1997.
Springer.

9. M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains,
part 1. Theoretical Computer Science, 13:85-108, 1981.

10. J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Hand-
book of Formal Languages, volume 1, pages 679-738. Springer, Berlin-Heidelberg-
New York, 1997.

11. V. R. Pratt. Modelling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33-71, 1986.

