
Functor Categories and Two-Level Languages

E. Moggi

DISI - Univ. di Genova, via Dodecaneso 35, 16146 Genova, Italy
phone: +39 10 353-6629, fax: +39 10 353-6699, e-mail: moggi~disi.unige.it

Abs t rac t . We propose a denotational semantics for the two-level lan-
guage of [GJ91, Gom92], and prove its correctness w.r.t, a standard
denotational semantics. Other researchers (see [Gom91, G J91, Gom92,
JGS93, HM94]) have claimed correctness for lambda-mix (or extensions
of it) based on denotational models, but the proofs of such claims rely
on imprecise definitions and are basically flawed. At a technical level
there are two important differences between our model and more na-
ive models in Cpo: the domain for interpreting dynamic expressions is
more abstract (we interpret code as h-terms modulo a-conversion), the
semantics of n e w n a m e is handled differently (we exploit functor cat-
egories). The key idea is to interpret a two-level language in a suitable
functor category Cpo v~ rather than Cpo. The semantics of r*ewname
follows the ideas pioneered by Oles and Reynolds for modeling the stack
discipline of Algol-like languages. Indeed, we can think of the objects of
T~ (i.e. the natural numbers) as the states of a name counter, which is
incremented when entering the body of a A-abstraction and decremented
when coming out. Correctness is proved using Kripke logical relations
(see [MM91, NN92]).

I n t r o d u c t i o n

Two-level languages are an important tool for analyzing programs. In the context
of partial evaluation they are used to identify those parts of the program that can
be reduced statically, and those that have to be evaluated dynamically. We take
as representative of these two-level languages that described in [G J91], which
we call P C F 2 , since it can be considered as the " P C F of two-level languages".
The main aims of this paper are: to point out the flaws in the semantics and
correctness proof given in [Gom92], and to propose an alternative semantics for
which one can prove correctness.
The interpretation of dynamic A-abstraction given in [GJgl, Gom92] uses a
n e w n a m e construct "informally". Indeed, Gomard and Jones warn that "the
generation of new variable names relies on a side-effect on a global state (a name
counter). In principle this could have been avoided by adding an extra para-
meter to the semantic function, but for the sake of notational simplicity we use a
less formal solution". Because of this informality, [GJ91, Gom92] are able to use
a simplified semantic domain for dynamic expressions, but have to hand wave
when it comes to the clause for dynamic A-abstraction. This informality is main-
tained also in the correctness proof of [Gom92]. It is possible to fix the informal
semantics using a name-counter (as suggested by Gomard and Jones), but then

212

it is unclear how to fix the correctness proof. In fact, several experts were unable
to propose a patch. Lack of precision in the definition of denotational semantics
and consequent flaws in correctness proofs are not confined to [Gom92], indeed

- Chapter 4 of [Gom91] and Chapter 8 of [JGS93] contain the same definitions,
results and proofs

- [GJ91] quotes the same definitions and results (but without proofs)
- while [HM94] adapts Gomard's technique to establish correctness for a poly-

morphic binding-time analysis (and introduces further flaws in the denota-
tional semantics).

The specific model we propose is based on a functor category. In denotational
semantics functor categories have been advocated by [Ole85] to model Algol-
like languages, and more generally they have been used to model locality and
dynamic creation (see [OT92, PS93, FMS96]). For this kind of modeling they
outperform the more traditional category Cpo of cpos (i.e. posets with lubs of
w-chains and w-continuous maps). Therefore, they are a natural candidate for
modeling the newname construct of [G J91].
In the proposed functor category model the domain of residual programs is a bit
more abstract than expected, namely a-convertible programs are identified. This
identification is necessary for defining the category D of dynamic expressions,
but it seems also a desirable abstraction. Functor categories are definitely more
complex than Cpo, but one can avoid most of the complexities by working in a
metalanguage (with computational types). Indeed, it is only in few critical places,
where it is important to know which category (and which monad) is used. The
graduate textbook [Ten91] gives the necessary background on functor categories
for denotational semantics to understand our functor category model. In Cpo
models the renaming of bound dynamic variables (used in the interpretation of
dynamic A-abstraction) is modeled via a side-effect monad with a name-counter
as state, on the contrary in the functor category model renaming is handled by the
functor category itself (while non-termination at specialization-time is modeled
by the lifting monad).
The paper is organized as follows: Section 1 recall the two-level language of
[G J91, Gom92] which we call PCF2; Section 2 describes a general way for inter-
preting PCF2 via translation into a metalanguage with computational types, and
explains what's wrong with previously proposed semantics of PCF2; Section 3
describes our functor category model for PCF2 and proves correctness; Section 4
make a comparison of the semantics.

Acknowledgments. I wish to thank Olivier Danvy and Neil Jones for e-mail
discussions, which were very valuable to clarify the intended semantics in [G J91,
Gom92], and to identify the critical problem in the correctness proof. Neil Jones
has kindly provided useful bibliographic references and made available relevant
internal reports.

213

1 T h e t w o - l e v e l l a n g u a g e o f G o m a r d a n d J o n e s

In this section we recall the main definitions in [GJ91, Gom92], namely: the
untyped object language Ao and its semantics, the two-level language PCF2 and
its semantics (including with the problematic clause for A). Both semantics are
given via a translation into a metalanguage with computational type (see [Mog91,
Mog97b]). In the case of Ao the monad corresponds to dynamic computations,
while in the case of PCF2 it corresponds to static computations.

1.1 T h e u n t y p e d o b j e c t l anguage

The object language Ao is an untyped A-calculus with a set of ground constants
e (which includes the truth values)

M ::= z l A x . M } M ~ @ M 2 I f i z M l i f M x M2 M3 Ic

There is a canonical CBN interpretation of Ao in D = (const+(D --+ D))• where
coast is the flat cpo of ground constants (ordered by equality). This interpretation
can be described via a CBN translation n into a suitable metalanguage with
computational types, s.t. a Ao-term M is translated into a meta-term M n of type
T V with V = const + (T V -+ T V) , or more precisely �9 : T V ~'ML M " : T V
when M is a Ao-term with free variables included in the sequence ~:

_ X n - - X

- c - = [i n l (c)]

- (Az.M)" = [inr(Az: TV.M")]
- (MI@M2) n = let u ~ M 1 n incase u of Jar(f) ~ f (M2 n)

_ ~ •
where .L : T V is the least element of T V

- (i f M M1 M2) n = let uC=M'~incase u of inl(true) ~ M1 n
inl(false) ~ M2 n

_ ~ l

- (f i x M) n = let uC=M n incase u of inr (f) ~ Y (f)
_ ~ •

where Y : (T V --+ T V) -+ T V is the least fixed-point of T V

Note 1. T can be any strong monad on Cpo s.t.: (i) each T X has a bottom
element _L; (ii) let zr in e = _1_, i.e..1_ is preserved by f* : T X ~ T Y for any
f : X --+ T Y . With these properties one can interpret recursive definitions of
programs and solve domain equations involving T.

The interpretation by Gomard amounts to take T X = X• and D = T V .

214

1.2 T h e two- leve l l anguage P C F 2

The two-level language P C F ~ can be described as a simply typed A-calculus
over the base types base and code with additional operations. The raw syntax of
P C F ~ is given by

- t ypesv ::= base]code [r l - - + r 2

- te rmse ::= x] ~ x : r . e]e l@e2] f i z ~ e] i f r el e2 e3 I v]

~.ift e I ~_x.e] elf----e2 I f i x e I i f e I e 2 e 3 I c_.

The well-formed terms of P C F ~ are determined by assigning types to constants:

- f i z ~ : (r ~ r) --+ r
- i f~ : base, r, r -+ r
- c : base

- g i f t : base -+ code
- A_ : (code -+ code) -4 code, following Church we have taken ~ to be a

higher order constant rather than a binder (all the binding is done by ~).
The two presentations are equivalent: the term ~ x . e of [G J91] can be re-
placed by ~()~x : code.e) , while the constant A__ can be defined as ~ f : code -+

c o d e . ~ x . f @ x .
- ~_ : code, code - 4 code

- f i x : code ~ code
- i f : code, code, code -+ code
- c : code

R e m a r k . The language P C F 2 corresponds to the well-annotated expressions of
Gomard and Jones. For two-level languages with dynamic type constructors (e.g.
that in [HM94]) it is necessary to distinguish between static and dynamic types.
In P C F ~ the only dynamic type is code, and there is no need to make this explicit.

2 M o d e l s o f P C F 2 in C p o

The interpretation of P C F 2 is described by a translation _s into a suitable
metalanguage with computational types, s.t. xl : r l s , . . . , xn : rn s ~-ML eS : Ts

when xl : r l , . . . , x n : rn F'PCF2 e : r. The translation highlights that static
computations take place only at ground types (just like in P C F and Algol).

- base s = T (c o n s t) , where c o n s t is the fiat cpo of ground constants
- code s = T (e x p) , where e x p is the flat cpo of open Ao-terms with (free and

bound) variables included in v a t = {xn[n ~ N}. When translating terms of
P C F 2 we make use of the following expression-building operations:

�9 bui ld_const : c o n s t --~ exp is the inclusion of ground constants into terms
�9 bu i ld_va t : v a t -+ e x p is the inclusion of variables into terms.
�9 build_@ : e z p , e z p -+ e x p is the function 1141, M2 ~-+ M I @ M 2 which builds

an application. There are similar definitions for b u i l d _ f i x and bu i ld_ i f .

215

�9 b u i l d ~ : var , e x p --+ e x p is the function x, M ~-+)~x.M which builds a
A-abstraction.

- (rl --+ r ~) ~ = r l ' ~ r ~ ~

- - x s ~ x

- e = [c]

- : r . e) ' = : r ' . e '

- (el@e2) ~ = el~@e2 ~
- (if~. e el e2)' = let uC=e* incase u of t rue ==~ 618

f a l s e ~ e2 a
_ ~ . L

where 2_ is the least element of r ~
- (f i x r e) ~ = Y (e S) , where Y is the least fixed-point of r*
- (g i f t e) ~ = let xC::e 8 in [bui ld_const(x)]

- 2 = [b ild_eo.st(c)]

- (op ~)' = let M r in [build_op M], where op E { f i x , @, i f }

* (A e) ~ = let x ~ n e w n a m e in let M ~ e 8 ([bu i ld_var (x)]) i n [bu i ld .~ (x , M)]
where n e w n a m e : T (v a r) generates a f r e sh variable of the object language.

The monad T for static computations should satisfy the same additional proper-
ties stated in Note 1.

R e m a r k . In the above interpretation/translation the meaning of n e w n a m e (and
A) is not fully defined, indeed one should fix first the interpretation of computa-
tional types T X .

The interpretation of [G J91, Gom92] uses s impl i f i ed semantic domains (which
amount to use the lifting monad T X = X • but with these domains there is
no way of interpreting n e w n a m e (consistently with the informal description).
Therefore, most of the stated results and proofs are inherently faulty.
Gomard and Jones are aware of the problem and say that "the generation of new
variables names relies on a side effect on a global state (a name-counter). . , but
for the sake of notational simplicity we have used a less formal solution". Their
proposed solution amounts to use a side-effect monad T X = (X • N)~ , and
to interpret n e w n a m e : T (v a r) as n e w n a m e = An : g . u p ((x n , n + 1)), where
u p x : X --+ X • is the inclusion of X into its lifting.
A simpler solution, suggested by Olivier Danvy, uses a state-reader monad T X =
X ~ . In this case one can interpret the operation n e w n a m # x : (T X) ~ar ~ T X

as n e w n a m # x (f) = An : N . f x n (n + 1), and use it for translating h

- (,k e) 8 -- newname~exp()~x: v a t . l e t M ~ e S ([b u i l d _ v a r (x)]) i n [bui ld .A(x , M)]).

The only place where a name-counter is really needed is for generating code, so
we could use the simpler translation base s = c o n s t • and code ~ = T (e x p) . This
is similar to what happens in Algol, where expressions cannot have side-effects,
while commands can.

216

2.1 C o r r e c t n e s s : a t t e m p t s a n d fa i lu res

Informally speaking, correctness for PCF2 should say that for any 0 ["PCF2 e :
code if the static evaluation of e terminates and produces a Ao-term M : exp, then
Ao-terms M and e r are equivalent, where _r is the translation from PCF2 to Ao
erasing types and annotations. In fact, this is an over-simplified statement, since
one want to consider PCF2-terms ~ : code ~-PCF~ e : code with free dynamic
variables.
In a denotational setting one could prove correctness by defining a logical relation
(see [MW85, Mit96]) between two interpretations of PCF2

r
PCF~ > Ao

MLT(s - ' ~ Cpo

The parameterized logical relation R~ C [r '] x D, where p : vat -+ D, proposed
by [Gom92] is defined as follows

- • R base d and up(b) R base d r d = up(in1 b) - - p - - p

Roodo d d = l / I ; - • R e~ d and up(M) "'p

- f _pR r'-+T2 d * ~ x R~ 1 y D (f@x) Rrp ~ (d@~ this is the standard way of
defining at higher types a logical relation between typed applicative struc-
tures.

Gomard interprets types according to the informal semantics, i.e. [base s] =
const• and [code s] = ezp• According to the fundamental]emma of logical rela-
tions, if the two interpretations of each operation/constant of PCF2 are logically
related, then the two interpretations of each PCF2-term are logically related. It
is easy to do this check for all operations/constants except A. In the case of A_
one can only hand wave, since the interpretation is informally given. Therefore,
Gomard concludes that he has proved correctness.

Remark. Gomard does not mention explicitly logical relations. However, his
definition of R is given by induction on the structure of PCF2-types, while cor-
rectness is proved by induction of the structure PCF2-terms F ~-PCF2 e : r. This
is typical of logical relations.

In order to patch the proof one would have to change the definition of R c~
since in the intended semantics [code s] = exp~ or (exp x N) N, and check the
case of A_ (which now has an interpretation). We doubt that this can be done, for
the following reasons (for simplicity we take [code 8] = exp~N):

217

- The interpretation of ~ may capture variables that ought to remain free. For
instance, consider the interpretation of x : code b'pcF~ ~_y.z : code, which is
a function f : exp g --+ ezp N, and the element [M] =)~n.up(M) of exp N,
then f ([M]) =)~n.up()~zn.M) (here there is some overloading in the use of
A, since)~n is a semantic lambda while)~z,~ is syntactic). Depending on the
choice of n we may bind a variable free in M, therefore the semantics of
fails to ensure freshness of xn.

- The semantic domain ezp N has junk elements in comparison to exp• and
so there are several ways of defining u RCp ~ d, e.g.

�9 Vn: N.VM: exp.u(n) = up(M) D [M~~ = d
�9 3n: N.VM: ezp.u(n) = up(M) D [M]~ = d
�9 B M: exp.Vn: Y.u(n) =-a up(M) D [M]~ = d

but none of them works (nor is more canonical than the others).

If there is a way to prove correctness using (Kripke) logical relations, it is likely
to involve something more subtle than parameterization by p : vat ~ D.

3 A f u n c t o r c a t e g o r y m o d e l o f P C F 2

In this section we define a categorical model of PCF~ in a Cpo-enriched functor
category 79 = C p o v~ where 7) is a syntactic category corresponding to ,ko, and
the objects of 7) can be viewed as states of a name-counter. The main property of
this model is that the hom-set ~(ezp n, exp) is isomorphic to the set of ,ko-terms
modulo a-conversion whose free variables are included in {x0 , . . . , zn-1}.

3.1 T h e d y n a m i c c a t e g o r y

We define 79 like the category associated to an algebraic theory (as proposed by
Lawvere in [Law63]), i.e.:

- an object of 79 is a natural number; we identify a natural number n with the
set { 0 , . . . , n - 1} of its predecessors;

- an arrow from m to n, which we call subs t i t u t i o n , is a function cr : n --+
A(m), where A(m) is the set of Ao-terms modulo a-conversion with free
variables included in {z0 , . . . , z,n-1}; thus 79(m, n) = A(m)n;

- composition is given by composition of substitutions with renaming of bound
variables (which is known to respect a-conversion). Namely, for ~rl : m --+ n
and r : n ~ p the substitution (or2 o al) : m --+ p is given by (cr2 o 6q)(i) =
Ni[cq], where i E p, Ni = cry(i) E A(n), Nile1] E A(m) is the result of
applying in parallel to Ni the substitutions zj := Mj with j E m.
Identities are given by identity substitutions id : n --+ A(n).

It is easy to see that 79 has finite products: the terminal object is 0, and the
product of m with n is m -}- n. Therefore, the object n is the product of n copies
of the object 1, moreover 79(m, 1) "- A(m).

218

Remark. We can provide an informal justification for the choice ofT). The objects
of 7) correspond to the states of a name-counter: state m means that m names,
say x0 , . . . , xm-1, have been created so far.
For the choice of morphisms the justification is more technical: it is almost forced
when one wants :D(exp m, exp) to be isomorphic to the set of Ao-terms whose free
variables are included in {x0 , . . . , xm-1}. In fact, the natural way of interpreting
e~:p in ~ is with a functor s.t. exp(m) = the set of Ao-terms with free names
among those available at state m. If we require F = Y(1), i.e. the image of 1 E 7)
via the Yoneda. embedding, and m to be the product in 2) of m copies of 1,
then we have :D(exp m, cap) = ~(Y(1) "~, Y(1)) = :D(Y(m), Y(1)) = :D(m, 1) =
exp(m). Therefore, we can conclude that :D(m, n) = exp(m) n. Moreover, to define
composition in ~ we are forced to take Ao-terms modulo a-conversion.

3.2 T h e s ta t ic c a t ego ry

We define ~ as the functor category Cpo v~ which is a variant of the more
familiar topos of presheaves Set ~~ Categories of the form W (where 141 is a
small category) have been used in [Ole85] for modeling local variables in Algol-
like languages. 142 enjoys the following properties:

- it has small limits and colimits (computed pointwise), and exponentials;
- it is Cpo-enriched, thus one can interpret fix-point combinators and solve

recursive domain equations by analogy with Cpo; A
- there is a full and faithful embedding Y : W -+ W, which preserves limits

and exponentials. This is basically the Yoneda embedding Y(w) = W(_, w).
- the functor A : Cpo ~ W s.t. (AX)(_) = X has left and right adjoints.

Since :D has a terminal object, A : C p o - + ~ is full and fai~ful , and its right
adjoint is the global section functor F : 7:) --+ C p o s.t. FF = 7)(1, F) = F(0).
A description of several constructions in 142 relevant for denotational semantics
can be found in [Ten91]. Here we recall only the definition of exponentials.

De f in i t i on2 . The exponential object G F in W is the functor s.t.

- Gf(w) is the cpo of families s E yIl:w,_~ o Cpo(Fw ' , Gw') ordered pointwise
and satisfying the c o m p a t i b i l i t y c o n d i t i o n

w < fl wl Fwl sfl > Gwl

f 2 ~ lginl4;impliesFg 1 I G g i n C p O

w2 Fw2 , > Gw2
sl2

- (GFfs)g "-- Slog for any w" g > w' f > w in 141.

We recall also the notion of w-inductive relation in a Cpo-enriched functor cat-
egory)IV, which is used in the correctness proof.

219

Definition3. Given an object X E W, a (unary) w-inductive relation R C X
in)/Y consists of a family (Rw C_ X w l w E W) of w-inductive relations in Cpo
satisfying the monotonicity condition:

- f : w ~ - 4 w i n) / V a n d x ~ R w C X w i m p l i e s X f x E R w , C_Xw I.

3.3 Interpretation of P C F 2

By analogy with Section 1, we parameterize the interpretation of PCF2 in 7~
w.r.t, a strong monad T on C p o satisfying the additional properties stated in
Note 1. Any such T induces a strong monad T v~ on 7~ satisfying the same
additional properties. With some abuse of language we write T for its pointwise
extension (T v~ F) (m) = T (F (m)) .
In the proof of correctness we take T X - X• since the monad has to account
only for the possibility of non-termination at specialization-time, while the inter-
pretation of A_ exploits only the functor category structure (and not the monad,
as done for the interpretations in Cpo).
Also in this case the interpretation of PCF2 can be described by a standard
translation _~ into a suitable metalanguage with computational types (which play
only a minor role). The key differences w.r.t, the interpretation/translation of
Section 2 are: the interpretation of exp (which is not the image of a cpo via
the functor A), and the expression-building operation build_A (which has type
(exp -4 exp) -+ exp, as expected in a higher-order syntax encoding of Ao).

- base" = T(A(cons t)) , where const is the flat cpo of ground constants. There-
fore, base(n) - T(const) and so global elements of base correspond to ele-
ments of the cpo T(const).

- code 8 = T(exp) , where exp = Y(1), i.e. the image of 1 E 7) via the Yoneda
embedding Y: 7) -4 D. Therefore, exp(n) = A(n) and code(n) = T(A(n)) .
It is also immediate to show that :D(exp '~, exp) is isomorphic to A(n):

�9 ~(Y(1) n, Y(1)) -~ because Y preserves finite products
�9 :D(Y(n), Y(1)) ~ because Y is full and faithful
�9 :D(n, 1) ~ A(n) by definition of 7).

When translating terms of PCF2 we make use of the following expression-
building operations (which are interpreted by morphisms in 7), i.e. natural
transformation):

�9 build.const : A(const) -4 exp s.t. build_constn : const -4 A(n) is
the obvious inclusion of ground constants. Alternatively, one can define
build_const via the isomorphism ~ (A(const), exp) "~ Cpo(eonst , A(0))
induced by the adjunction A -t F.

�9 build_@ : exp, exp --+ exp s.t. build_@n : A(n), A(n) -4 A(n) is the func-
tion M1, M2 ~4 MI@M2 which builds an application. Alternatively, one
can define build_@ as the natural transformation corresponding to the
term xo@xl E A(2), via the isomorphism ~(exp ~, exp) ~ A(2). There
are similar definitions for build_fix and build_if.

�9 build_A : exp e~p -4 exp is the trickiest part and is defined below.

220

- the interpretation of static operations/constants is obvious, in particular we
have least fixed-points because 13 is Cpo-enriched.

- (~ift e) s = let z ~ e s in [build_const(x)]
- c" = [build_const(c)]
- (op ~)s = let Mr in [build_op M], where op e { f i x , @, i f }
* ~ : code c~ --4 code is defined in terms ofbuild_~ : exp exp --~ exp as explained

below.

To define the components of the natural transformation build.A : exp e~p -+ exp
we use the following fact, which is an easy consequence of Yoneda's lemma.

A

L e m m a 4. For any u E)IV and F E W there is a natural isomorphism between
the functors F Y(u) and F(_ • u).

By Lemma 4, build_A amounts to a natural transformation from 7)(_ + 1, 1) to
7)(_, 1). We describe build_A through a diagram:

m M E A(m + 1) m

ev 1) 1
n

build-Arr~ (Axm.M) E A(m)

T

C p o]_o ~r in

M[e + 1] e A(n + 1) 'build_~2 (Axn 'M)M E A(n)

Observe that 7)(_, 1) = A(_), the substitution (~ + 1) : m + 1 --+ A(n + 1) is like
on m and maps m to xn, while the commutativity of the diagram follows from

(Axn.M[e+ 1]) =a (Axm.M)[~].
To define h : T(exP) 7"(exp) -+ T(exp) we need the following lemma.

L e m m a b . For any functor T : C p o ~ Cpo, u E }IV and F E W there is a
natural isomorphism between the functors (TF) y(u) and T(FY(u)) .

Proof. For any v E W we give an isomorphism between (TF)Y(U)(v) and T(FY(u))(v):

- (TF)Y(~)(v) = by Lemma4

- (T F) (u • v) = since T is extended pointwise to W
- T (F (u • v)) = by Lemma 4
- T(FY(U)(v)) = since T is extended pointwise to
- T(FY(~))(v)

It is immediate to see that this family of isomorphisms is natural in v.

By exploiting the isomorphism i : T(exp) ~*p --+ T(exp ~zv) given by Lemma 5,
one can define ~ : T(exp) T(exp) --+ T(exp) in a metalanguage with computational
types as

h(f) = let f ' ~ i (A x : exp.f([x])) in [build_A(f')]

221

Remark. The category 7) has two full sub-categories 7) and Cpo , which have
a natural interpretation: 7) corresponds to dynamic types, while C p o corres-
ponds to pure static types, i.e. those producing no residual code at specialization
time (e.g. base). A key property of pure static expressions is that they can-
not depend on dynamic expressions. Semantically this means that the canonical
map (AX) -+ (AX)Y(~) , i.e. z ~+ Ay : Y(u) .x , is an isomorphism. In fact, by
Lemma 4 (A X) Y(~) is naturally isomorphic to (AX)(_ x u), which is (AX).

3 . 4 C o r r e c t n e s s a n d l o g i c a l r e l a t i o n s

The semantics for the two-level language PCF2 was used in [GJ91, Gom92]
to prove a correctness theorem for partial evaluation. The correctness theorem
relates the interpretation I ~ of the object language Ao in C p o to the interpretation
I s of the two-level language PCF2 in 7).
The first step is to define a translation _r from PCF2 to Ao, i.e. z : v b-pcF:
e : 7- implies ~ ~-,Xo e ~, which erases types and annotations, so (Az : v.e) ~ =
Ax.e 4', (opt "d) r = op "~r (opE) r = op e -r and (eift e) r = e ~. By composing the
translation r with the interpretation I ~ we get an interpretation of 11 of PCF2
in Cpo , where every type is interpreted by the cpo D = (const + (D --~ D))•
At this stage we can state two correctness criteria (the first being a special case
of the second), which exploit in an essential way the functor category structure:

- Given a closed PCF~-e, xpression 0 b- e : code, its I s interpretation is a global
element d of ezps E 7), and therefore do E A(0)• Correctness for e means:
do = up(M) implies [M] ~ = [er ~ E D, for any M E A(0).

- Given an open PCF~-expression �9 : code F- e : code where ~ = z o , . . . , zn-1,
its I s interpretation is a morphism f : exp~ --+ ezp• and therefore fn :
A(n)~ --~ A(n)• Correctness for e means: f , , (up(zo) , . . . , up(zn- i)) = up(M)
implies [[~ I-- M] ~ = ~ I- e e l ~ D n --+ D, for any M e A(n).

The proof of correctness requires a stronger result, which amounts to prove
that the two interpretations of PCFg~
different categories. Therefore, before
relation R between typed applicative

are logically related. However they live in
one can relate them via a (Kripke) logical
structures (see [MM91]), they have to be

moved (via limit preserving functors) to a common category C.

I 1
PCF2 > i = C p o

- g is the category whose objects are pairs (m E 7), p E Din), while morphisms
from (m, p) -* (n, p') are those ~ : m -+ n in 7) s.t. p' = [crl],

- ~r : g -+ 7) is the obvious projection functor (rn, p) ~-~ m.

222

The Kripke logical relation R is a family of w-inductive relations (see Definition 3)
R ~ in C defined by induction on the structure of types v in PCF2.

base

code

Rba•e (re,p) C constj, x D s.t. -LR(m,p)d and up(c)R(m,p)d ~ d = up(inl c)
Rcode (re,p) C A(m)j. • D s.t..J-R(m,p)d and up(M)R(m,,)d ~ d = [M]p
We must check that R ~~ satisfies the monotonicity property of a Kripke rela-
tion, i.e. a : (rn, p) --+ (n, p ') in g and up(M)R~~ implies up(M[~r])R~~
This follows from p~ = [c~]]o, i.e. from the definition of morphism in g, and
[[m[c]]]0 = ~M]][oL, i.e. the substitution lemma for the interpretation of Ao.
More diagrammatically this means

D s code R c~ D

m (re, p)

n (~, #)

[M[cr]]]p

up(M) R(n,p,)lM]o, = d

The family R on functional types is defined (in the internal language) in the

standard way, i.e. fRTl'*r~g r Vx, y.xRrly D f@~xFU2g@ly, where @i is the
binary application of the applicative structure used for the interpretation I i. The
definition of the Kripke logical relation at types base and code says that partial
evaluation is only partially correct, namely if it terminates it gives the expected
result.
By the fundamental lemma of logical relations, to prove that the interpretations
11 and 12 of PCF2 are logically related it suffices to show that the interpretation
of all higher-order constants (besides @ and ,~) are logically related. This is a
fairly straightforward check, therefore we consider only few cases, including the
critical one of dynamic A-abstraction.

Since ~2 is strict, we need to prove only that up(Mi)R(,n,p)d~ (for i = 1, 2)

implies up(M1)~2up(M2) = '~ up(Ml@M2)R(m,p)da@ld2 =A d1~ld2
By definition of R at type code, we have to prove that [MI@M2]p = dl@ld2

* [Mi]p =di, because up(Mi)R(rn,p)di
�9 [Ml@m2]p = @~([ml]p, [M2L), by definition of 11
�9 therefore ~MI@M2]p = d1@ld2

fixr We need to prove that fRr"*rg implies (t3ixi)Rr(L3iyi), where x0 = y0 = _L
and Xi+l = f@2xi and y/+l = g@lYi.
This follows immediately from w-inductivity of R T , i.e.

�9 .LRT_L and
�9 (t3ixi)Rr(L3iyi) when x~e~ and Y/e~ are w-chains and Vi.xiRry~

~-inductiviSy of R r can be proved by a straightforward induction on r.

223

The case of A__ : (code -+ code) -4 code is the most delicate one. Suppose that
f Rcode-~eode _ (re,p) g, we have to prove that ~_m(f)R~~ D.g@ld)).
For this we need an explicit description of ~-,n(f) E A(m)•

�9 am(f) = _L when h:m+i-~rn(uP Xm) = .L, where 7r: m + 1 --4 m is the
first projection in 7) and we exploit the definition of exponentials in 2);

�9 Am(f) : up(Axm.M) when up(M) -- h:ra+l~ra(Up Xrn) E A(m + 1)•
We can ignore the first case, since when Am(f) = _L there is nothing to prove.
In the second case, we have to prove that [Axm.M]p = up(inr(Ad: D.g@Id)),
i.e. [M]p[rn~4 = g@l d for any d E D

u~g x ~ R c ode �9 F~ rnl (m+l,p[m~d])d' by definition of R

--. ~ ~Dcode .@IA because r
�9 up(M) ,a f ~ r : m + l - + m (u p .~rnlav(rnTl,p[rn~.+a~).y ~, r (rn,p) !t

�9 [M]p[m~d] = g@ld, by definition of R.

4 Comparisons

In this section we make a comparative analysis of the interpretations of PCF2 in
C p o and 7~. In fact, to highlight more clearly the differences in the interpretations
of code and dynamic A-abstraction (and ignore orthogonal issues), it is better to
work in a simplified setting, where

- Ao is the pure untyped A-calculus;
- PCF~ is the simply typed A-calculus with atomic type code, and additional

operations ~ : code, code --+ code and A_ : (code -+ code) --+ code.

With this simplification one can ask for total correctness of the interpretation
of PCF2 w.r.t, an interpretation of Ao in C p o (say in the standard model D =
(D --+ D)• for the lazy A-calculus). Moreover, the interpretation of PCF2 without
fix~. can be given in Set or Set ~~ where the syntactic category 7) has to be
changed to reflect the simplifications in Ao.
The following table summarizes the key differences between the original interpret-
ation proposed by Gomard (Gomard's naive), its patching (Gomard's patched)
and the interpretation in 7~ (functor category).

Semantics
category

Gomard's patched
Set

[code] exp N

[code----~code]

Rcoae

correctness proof

(expi v)(exp N)

use counter
not defined
not stated

Gomard's naive
Set

functor category
Set v~

exp A(n) at stage n
expeXp

not defined

Rp:N-+ D
not meaningful

A(n + 1) at stage n
use functorcategory

Rn:Ntp:n.-+ D
by Kripke log. tel.

Where exp is the set of A-terms with variables in N, A(n) is the set of A-terms
modulo s-conversion with free variables in n, and D E C p o is a domain for
interpreting the lazy A-calculus, i.e. D = (D --+ D)• When describing the functor
in ~ interpreting a certain type of PCF2, we have given only its action on objects.
The comparison shows that:

224

- The functor category interpretation is very similar to Gomard's naive inter-
pretation, when it comes to the definition of ~code] and R c~ though more
care is taken in spelling out what object variables may occur free in an object
expression.

- The advantage of working in a functor category becomes apparent in the
interpretation code -+ code, this explains also why the functor category can
handle the interpretation of A.

- Gomard's patched has strong similarities with the simple-minded semantics
in Cpo for modeling local variables in Algol-like languages. In fact, Gomard's
patched semantics parameterizes the meaning of expressions, but not that of
types, w.r.t, the number of names generated used so far.

Conclusions and fu tu re work

The first part of the paper recalls the main definitions and results in [Gom92],
points out the problems with the published interpretation of the two-level lan-
guage PCF2, presents possible ways of fixing the interpretation (these were pro-
posed by Olivier Danvy, Fritz Henglein and Neil Jones during several e-mail
exchanges) along the lines hinted by Gomard. After fixing the interpretation of
PCF2, there are however problems in fixing the correctness proof in [Gom92]. In
the second part of the paper we propose an alternative semantics, and prove cor-
rectness for it. We have also cast doubts on the possibility of giving an interpreta-
tion of PCF2 in Cpo and prove its correctness w.r.t, the standard interpretation
of Ao using a logical relation.
An alternative approach to correctness is proposed in [Wan93]. This avoids any
explicit use of operational or denotational semantics, instead he proves correct-
ness modulo/?-conversion. Wand uses logical relations, and represents dynamic
expressions using higher-order abstract syntax (while [Gom92] uses concrete syn-
tax, and can distinguish a-convertible expressions).
Similar problems to those pointed out in Section 2 are present in other correctness
proofs (e.g. [HM94]), which adapt Gomard's approach to more complex two-level
languages. We would like to test whether the functor category approach scales
up to these languages.

References

[FMS96]

[GJ91]

[Gom91]

[Gom92]

[HM94]

M. Fiore, E. Moggi, and D Sangiorgi. A fully-abstract model for the pi-
calculus. In 11th LICS Con]erence. IEEE, 1996.
K. Gomard and N. Jones. A partial evaluator for the untyped lambda calcu-
lus. J. of Func. Program., 1(1), 1991.
Carsten Krogh Gomard. Program Analysis Matters. PhD thesis, DIKU,
November 1991. DIKU report 91/17.
K. Gomard. A self-applicable partial evaluator for the lambda calculus. A CM
Trans. on Progr. Lang. and Systems, 14(2), 1992.
F. Henglein and C. Mossin. Polymorphic binding-time analysis. In
D. Sanella, editor, ESOP'94, volume 788 of LNCS. Springer Verlag, 1994.

225

[JGS93]

[Law63]

[Mit96]

[MM91]

[Mot91]

[Mog97a]

[Mog97b]

[MW85]

[NN92]

[OleSS]

[OT92]

[PS93]

[Ten91]
[Wan93]

Nell D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International, 1993.
F.W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad.
Sci. U.S.A., 50, 1963.
John C. Mitchell. Foundations of Programming Languages. The MIT Press,
Cambridge, MA, 1996.
J. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus.
Journal of Pure and Applied Algebra, 51, 1991.
E. Moggi. Notions of computation and monads. In[ormation and Computa-
tion, 93(1), 1991.
E. Moggi. A categorical account of two-level languages. In MFPS XIII,
ENTCS. Elsevier, 1997.
E. Moggi. Metalanguages and applications. In Semantics and Logics of
Computation, Publications of the Newton Institute. CUP, 1997.
A. Meyer and M. Wand. Continuation semantics in typed lambda calculus.
In R. Parikh, editor, Logics of Programs '85, volume 193 of LNCS. Springer
Verlag, 1985.
F. Nielson and H.R. Nielson. Two-Level Functional Languages. Number 34
in Cambridge Tracts in Theoretical Computer Science. CUP, 1992.
F.J. Oles. Type algebras, functor categories and block structure. In M. Nivat
and J.C. Reynolds, editors, Algebraic Methods in Semantics, 1985.
P.W. O'Hearn and R.D. Tennent. Semantics of local variables. In Applica-
tions of Categories in Computer Science, number 177 in L.M.S. Lecture Notes
Series. CUP, 1992.
A.M. Pitts and I.D.B. Stark. Observable properties of higher order functions
that dynamically create local names, or: What's new? In Math. Found. of
Comp. Sci. '93, volume 711 of LNCS. Springer Verlag, 1993.
R.D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.
Mitchell Wand. Specifying the correctness of binding-time analysis. Journal
of Functional Programming, 3(3):365-387, July 1993.

