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A b s t r a c t .  Rational terms (possibly infinite terms with finitely many 
subterms) can be represented in a finite way via/z-terms, that is, terms 
over a signature extended with self-instantiation operators. For example, 
f "  ---- f ( f ( f ( . . . ) ) )  can be represented as/zx.f(x) (or also as/zx.f(f(x)) ,  
f(/zx.f(x)), . . .  ). Now, if we reduce a/z-term t to s via a rewriting rule 
using standard notions of the theory of Term Rewriting Systems, how 
are the rational terms corresponding to f and to s related? 
We answer to this question in a satisfactory way, resorting to the def- 
inition of infinite parallel rewriting proposed in [7]. We also provide a 
simple, algebraic description of/z-term rewriting through a variation of 
Meseguer's Rewriting Logic formalism. 

1 I n t r o d u c t i o n  

Rational terms are possibly infinite te rms with a finite set of subterms. They 
show up in a natural  way in Theoretical Computer  Science whenever some finite 
cyclic structures are of concern (for example da ta  flow diagrams, cyclic t e rm 
graphs, or process algebras with recursion), and one desires to abs t rac t  out 
from the "degree of folding" of such structures, intuitively identifying those tha t  
denote the same infinitary behaviour. 

For example,  the #- te rm tl  = #~.ite(B, seq(Cl ,x) ,C2)  can be used as a 
linear representat ion of a flow chart intended to model the structure of a while 
loop using the i]-then-else (ire) and the sequentialization (seq) statements,  where 
the boolean condition B and the s ta tements  C1 and C2 are left unspecified. As 
stressed in [20], the intended meaning of the operator  #x, when applied to a te rm 
t[x] with x free, is of constraining the instantiation of x in t to #x.t  only; thus 
#~ can be considered as a self-instantiation operator.  By performing this self- 
instantiat ion once in t l ,  we get t2 = ire(B, sea(C1, I~. i te(  B,  seq( C1, x), C2)), C2). 
Now, bo th  tl and t2 c a n  be seen as a finite representation of the same infinite, ra- 
tional t e rm ire(B, seq( C1, ire(B, seq( C1, ire(B, seq( C1, . . . ), C2)), C2)), C2), which, 
in turn,  can be regarded as a representative of the equivalence class of #- terms 
containing tl and t2. LFrom a computat ional  viewpoint, rat ional terms are clearly 
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a very interesting subclass of infnite terms, because they have a finitary repre- 
sentation; usually, however, this is not unique. 

Infinitary extensions of Term Rewriting have been considered by various 
authors during the last decade [12, 11, 15, 16, 7, 20, 21, 22, 9, 8]. Most of those 
contributions are concerned with the study of the rewriting relation induced by 
a set of finite term rules on infinite terms, presenting results about the existence 
of normal forms (possibly reachable after w steps), confluence and so on. Only a 
few of them, namely [20, 21, 8], focus on the subclass of rational terms, regarded 
essentially as the semantics of some finite but possibly cyclic structures (term 
graphs or #-terms). 

The goal of this paper is to provide a solid mathematical basis for the theory 
of rational term rewriting. One main requisite for us is that such a theory must 
provide a "clean" semantics for the rewriting of the finitary representations of 
rational terms. This is a not completely trivial task, as shown by the following 
two simple examples which make use of #-terms, the finitary representation of 
rational terms that we shall use along the paper. 

Let t be the #-term t = #~.](x), representing the rational term ]~ de__/ 
f ( f ( ] ( . . . ) ) ) ,  and let R : f(y) ~ g(y) be a term rewriting rule. Unlike for 
example [20], we insist that in our theory it should be possible to apply R to t, 
obtaining, quite obviously, the reduction #x.](x) -~R #x.g(x). If we consider the 
associated rational terms, this apparently innocuous rewriting step requires some 
infinitary extension of the theory of term rewriting, because there are infinitely 
many occurrences of f in f~,  and all of them have to be changed to g: in fact, 
the #-term #=.g(x) represents g~. 

There are two possible infinitary extensions of term rewriting that allow 
to formalize such a phenomenon. Using the theory of transfinite rewriting of 
[22] (and adopted by most of the papers mentioned above), one obtains g~ as 
the limit (in the standard complete metric space of infinite terms [1]) of the 
infinite (Cauchy) sequence of reductions f~ -+R g(f~) ~ R  g(g(f~)) ~-* g~. 
Using instead the infinite parallel rewriting of [7], g~ is obtained in a single 
reduction step by replacing in parallel all the occurrences of f in f~  by g: this 
kind of reduction is defined using standard completion techniques that exploit 
the cPo structure of possibly partial, possibly infinite terms [19]. 

And what about the application of the "collapsing" rule R ~ : g(y) -~ y to 
#~.g(x)? There is no apparent reason to forbid it, and one would expect to 
obtain the reduction #=-g(x) -~R' #=.x. Considering the corresponding rational 
terms, by applying the theory of [22] we have that since g~ -~R, g~, the limit 
of infinitely many such reductions cannot be different from gW,3 which is not 
related at all to #=.x. Using the infinite parallel rewriting of [7], instead, we 
have that g~ rewrites to _l_, the bottom element of the cPO of terms, and _L is 
indeed the canonical interpretation of the #-term #~.x, according to the Iteration 
Algebras framework [3]. An infinite term made of infinitely many nested redexes 
of collapsing rules (as g~ in this example) will be called a "hypercollapsing 

3 Actually such a derivation is not strongly convergent, and thus it is not considered 
admissible in [22]. 
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tower", using the terminology of [22]. 
This discussion motivates our presentation of rational term rewriting in Sec- 

tion 3, which is an adaptation to the rational case of the definitions and results 
in [7]. In the same section we also introduce the rewriting of #-terms, which 
is as straightforward as possible. The main result of the paper will show the 
soundness of the (parallel) rewriting of #-terms with respect to the reduction of 
possibly infinite, rational set of redexes in their unfolded rational term. 

In Section 4 we provide a logical presentation of #-term rewriting and of 
rational rewriting. For the logical viewpoint, our starting point is the seminal 
work of Jos~ Meseguer about Rewriting Logic [25]. The basic idea is to consider 
a rewriting system T~ as a logical theory, and any rewriting as a sequent entailed 
by that theory. The entailment relation is defined inductively by suitable deduc- 
tion rules, showing how sequents can be derived from other sequents. Sequents 
themselves are triples (a,t,  s), where a is an element of a so-called algebra of 
proof terms, encoding a justification of the rewriting of t into s. 

The original presentation of rewriting logic dealt with the finitary case. We 
consider here a variation of it, called (one-step) Preiteration Rewriting Logic, by 
introducing suitable rules for #-terms. The faithfulness of this presentation of 
#-term rewriting with respect to the original formulation is expressed by a result 
stating that there is bijection between sequents relating two terms and parallel 
reductions between them. The advantage of this logical approach is that not only 
the terms, but also the reductions are now endowed with an algebraic structure 
(the structure of proof terms), and this allows us to obtain a more precise re- 
lationship between #-term and rational rewriting with respect to the results in 
Section 3. In fact, we obtain a faithful (in the above sense) logical presentation 
of rational rewriting by considering rational sequents, i.e., equivalence classes of 
sequents with respect to suitable axioms. 

Finally, in the concluding section we discuss the relationship with related 
papers, and we hint at some topics for future work. 

2 R a t i o n a l  T e r m s  a n d  D - t e r m s  

The study of infinite terms is one of the most relevant contribution of com- 
puter science to the field of Universal Algebra. The starting point was the mid- 
Seventies work of the ADJ group (see e.g. [19, 18]) on continuous algebras, which 
put the basis for the studies on varieties of ordered algebras, that is, algebras 
where the carrier is a partial order (see also [2]). 

We assume the reader to be familiar with the usual notion of algebra over a 
signature E (that is, a ranked alphabet of operator symbols ~ = Une~Zn, saying 
that f is of arity n for f E Zn). We denote by ~-AIg the category of algebras over 
E, and of S-hornomorphisms. Continuous algebras are simply algebras where the 
carrier is not just a set, but rather a complete partial order, and the operators 
are continuous functions. Correspondingly, since homomorphisms must preserve 
the algebraic structure, they are required to be strict continuous functions. 
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Definition I (complete p a r t i a l  o rde r s ) .  A partial order (D, <) is complete 
(is a ceo)  if it has an element _L (called bottom) such that  _L _~ d for all d E D, 
and it has least upper bounds (LUB'S) for all w-chains of elements. If {di}i<~ 
is an w-chain (i.e., dl _~ di+l for all i < w), we denote its LUB by LJi<~{di}. 
A continuous ]unction f : (D, ~_D) -~ (D r, ~_D') between ceo ' s  is a function 
f : D -~ D r which preserves LUB's of w-chains, i.e., f(I li<~){di} = I I~<~,{f(di)}; 
it is strict if f ( I D )  = -LD,. C P O  denotes the category of ceo ' s  and continuous 
functions. [:] 

We denote with E - C A I g  the category of continuous algebras and strict con- 
tinuous homomorphisms. We recall now the basic definitions and the main results 
on initial algebras and rational terms that  will be used along the paper; these 
are borrowed from [3, 19, 17], to which we refer the interested reader. 

It is well-known that,  for each signature ,U, the category ~ - A l g  has an initial 
object, often called the word algebra and denoted by TE. Its elements are all the 
terms freely generated from the constants and the operators of Z,  and can be 
regarded as finite trees whose nodes are labeled by operator symbols. As shown in 
[19], also the category Z - C A l g  has an initial object, denoted CT~. Its elements 
are possibly infinite, possibly partial terms freely generated from E,  and they 
form a cPo where the ordering relation is given by t _< t ~ iff t ~ is "more defined" 
than t. We introduce directly CTE, since T~ can be recovered as a suitable 
sub-algebra: definitions are borrowed from [19], with minor changes. 

De f in i t i on  2 ( t e r m s  as func t ions ) .  Let w* be the set of all finite strings of 
positive natural numbers; its elements are called occurrences, and the empty 
string is denoted by A. Furthermore, let Z be a signature and X be a set of 
variables such that  2 ? n X  = 0. A term over (Z, X) is a partial function t : w* -+ 
5? O X such that  the domain of definition of t, O(t), satisfies (for w E w* and 
i e w )  

- w i  ~ O(t) ~ w ~ o(t);  
- wi E O(t) ~ t(w) E Zn for some n _> i. 

O(t) is called the set o] occurrences of t. A term t is total if t(w) E Zn =~ wi E 
O(t) for all 0 < i _< n; t is finite if so is O(t); and t is linear if no variable occurs 
more than once in it. 

Given an occurrence w E w* and a term t E CTE(X), the subterm of t at 
(occurrence) w is the term t /w defined as t/w(u) = t(wu) for all u E w*. D 

The set of terms over (Z, X) is denoted by CTE(X), and CTs stays for 
CTs For finite, total terms, this description is equivalent to the usual repre- 
sentation of terms as operators applied to other terms. Partial terms are made 
total in this representation by introducing the undefined term _L, which repre- 
sents the empty function _L : 0 -+ ,U U X, always undefined. Thus, for example, 
if x E X,  t = f(.l_, g(x)) is the term such that  O(t) = {A, 2, 2.1}, t(~) = ] E ~2, 
t(2) = g e El ,  and t (2 .1)  = x E X. 

CTE (X) forms a cPo with respect to the "approximation" relation. We say 
that  t approximates t ~ (written t _< t ~) iff t is less defined than t ~ as partial 
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function. The least element of CTE (X) with respect to _< is clearly _L. An w- 
chain {ti}i<~ is an infinite sequence of terms to _ tl  _< . . . .  Every w-chain {t~}i<~ 
in CT~(X)  has a LUB Ui<w{ti} characterized as follows: 

t =  U { t i }  ~ V w e w , . q i < w . v j > _ i . t j ( w ) = t ( w ) .  
i<w 

LFrom CT~, TE can be recovered as the subalgebra of finite, total terms. In the 
paper our main interest is in rational terms. 

Definition 3 (rational terms). A term t over (E, X) is rational if the asso- 
ciated set of prefixes P(t) = {(w, t(w)) I w E O(t)} is regular, that  is, if it is 
recognizable from a finite automata. Equivalently, t is rational if the set of all 
its subterms { t /u  I u e O(t)} is finite. 

The collection of all rational terms over (E, X) is denoted by RTE(X) ,  and 
it is easily shown to be a subalgebra of CTE(X),  but not a continuous one. [] 

A different approach to the study of infinite terms, and in particular to 
the characterization of rational terms, focussed instead on the extension of the 
notion of signature by means of suitable reeursion operators, and on an axiomatic 
characterization of unique fixed-points. A seminal stream (with tight links to the 
categorical notion of algebraic theories [24]) started with the paper on algebraic 
iterative theories by Elgot [13]. Here we recall just a few basic results, for which 
we refer the reader to [4]. 

Definition 4 (p - t e rms ) .  Let E be a signature and X be a (countably infinite) 
set of variables such that  ,U n X = 0. The set #TE(X) of #-terms over (Z, X) is 
defined as the smallest set of expressions satisfying the following clauses: 

- xEI~TE(X)  i f x E X ;  
- f ( t l , . . . ,  t,~) E I~TE(X) if ] E ,~n, ti E #TE(X); 
- #=.t e I~T~(X) if x E X ,  t e # T ~ ( X ) .  

Equivalently, let Z ~  = ~tg{#x ] x E X} be a signature that  extends ,U with one 
unary operator for each variable in X. Then #-terms over (Z, X) can also be 
defined as finite terms over ,U~, i.e., elements of the word algebra T ~  (X). D 

Consistently with the interpretation described in the Introduction, operator 
#x is a binding operator for variable x. Thus we define the set of free variables 
FV(t)  for a term t in the usual way, we call closed any term with no free variables, 
and we identify terms up to a-conversion. 

Substitutions are functions from variables to terms that,  by freeness, can be 
extended in a unique way to operator preserving functions from terms to terms. 
Since we are dealing with two different kind of terms, we introduce now two 
types of substitutions which will be used in the sequel. 
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D e f i n i t i o n  5 ( c o n t i n u o u s  and  p a r a m e t e r  s u b s t i t u t i o n s ) .  Let S be a sig- 
nature and X,  Y be two (countably infinite) sets of variables such that  ~ N X = 

n Y = ~. A (continuous) substitution from X to Y is a function a : X --r 
CTE(Y)  (used in postfix notation). It uniquely determines a strict continuous 
~7-homomorphism (also denoted by a) from CTy,(X) to CT.~(Y), which extends 
a as follows: 

- .l_a = _L; 
- f ( t l , . . . , t n )c r  = / ( t la , . . . , tn~r);  
- = 

A parameter substitution is a function a : X --+ pTE (X  U Y) .  It uniquely deter- 
mines an operator preserving function from p T s  to # T E ( X  U Y), as follows 

- z a  = a ( z ) ;  

- Y( t l , . . . , tn)cr  = f(tl~r,...,tnCr); 
- = 

where a~(y) = x if x = y, and ax(y) = a(y) otherwise. 
A substitution is finite if there is only a finite number of variables x such that  

a(x) ~ x: it will be described as a finite set { x t / t t , . . .  , xn / tn}  with ti = a(xi)  
for all 1 < i < n. [ ]  

As for classical algebras, exploiting the syntactical nature of/~-terms one can 
define suitable structures where operators can be interpreted, called preiteration 
algebras [4]. For our purposes, it is enough to know that  the set p T s  forms 
the free preiteration algebra over X in the category E - P I A l g ,  where objects 
are preiteration algebras and arrows are preiteration homomorphisms, that  is, 
homomorphisms preserving also the p's. 

In this framework an equation is a pair (t, s) of #-terms, and the class of pre- 
iteration algebras satisfying an equational specification forms a suitable variety, 
h la Birkhoff. In particular, we are interested in the variety of iteration algebras, 
and more specifically in the free iteration algebra. Among the many equivalent 
axiomatizations of this free algebra, we prefer the following one (based actually 
on conditional equations) for its clarity and conciseness. Other presentations are 
described in [4], which also presents informal explanations for the rules below. 

D e f i n i t i o n  6 (free i t e r a t i o n  a lgebra) .  Given a signature E and a (countably 
infinite) set X of variables, let ~ be the least congruence relation over # T s ( X ) ,  
closed with respect to parameter substitutions, induced by the following rules 

(composition) 

( r e #  z e r o )  

, , , . ( t { = / s } )  = t{xh,,.(s{=lt})}; 

x ~. F V ( t ) .  

Izx.t = t ' 
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- (regularity) 

u r FV(t ) ,  p,.(t{xl ,ylu}) = 
y / u } )  = 

We define the free iteration algebra over (~,  X) as the set pT~(X)/~_, obtained 
by quotienting the free preiteration algebra #T~(X)  by the congruence ~. [:] 

As far as we know, Ginali in her Ph.D. thesis (see [17]) and independently 
Elgot, Bloom and Tindell [14] were the first to prove a correspondence result 
between the class of regular trees and Elgot's free iterative theories. Building on 
tha t  result, Bloom and l~sik proved in [3] the following theorem. 

Theorem 7 (rational terms and free iteration a lgebras) .  For any signa- 
ture E and set X of variables, there is a preiteration isomorphism between the 
class RTE(X)  of rational trees over (E, X) and the class of elements of the free 
iteration algebra pTE(X) )/~_. [3 

In the rest of the paper for a p-term t we will denote by [t] the rational 
term corresponding (via the isomorphism mentioned in the last result) to the 
equivalence class of t modulo the axioms of Definition 6. Intuitively, It] is obtained 
as the limit of a chain of p-terms starting from t and where at each step a suitable 
self-instantiation (via a parameter substitution) is applied. The only p-term to 
which this intuition is not immediately applicable is p~.x: the reader can safely 
assume that  [p~.x] = J_ by definition. 

3 R e w r i t i n g  o f  R a t i o n a l  T e r m s  a n d  o f  p - T e r m s  

The standard definition of term rewriting will be extended in this section to 
the rewriting of y-terms (i.e., closed elements of pTE(X)) and of infinite terms 
(elements of CTE) via finite rules. Borrowing from [7], besides the standard 
sequential derivations we will introduce an infinitary extension called infinite 
parallel rewriting which allows one to reduce infinitely many redexes of an infinite 
term in a single reduction step. In particular, we will focus on the subcase of 
rational rewriting, i.e., the parallel reduction of rational sets of redexes. The main 
result of the section will show the soundness of y-term rewriting with respect to 
rational term rewriting. Definitions and results are presented here for the class 
of orthogonal term rewriting systems only. 

Definition8 (term rewriting s y s t e m s  (TRS)). Let X be a countably infi- 
nite set of variables. A term rewriting system T~ (over X) is a tuple (,U, L, R), 
where ,U is a signature, 4 L is a set of labels, and R is a function R : L 
TE(X) • such that  for all d E L, if R(d) = (l, r) then var(r) C_ var(l) C_ X 
and l is not a variable. 

A TRS T~ is orthogonal if all its rules are left-linear and non-overlapping, that  
is, the left-hand side of each rule does not unify with a non-variable subterm of 
any other rule in T~, or with a proper, non-variable subterm of itself. 0 

4 Often the signature will be understood. 
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Given a te rm rewriting system (also TRS) T~, we usually write d : l -+ r E R 
if d E L and R(d) = (l,r); to make explicit the variables contained in a rule, 
we write d (x i , . . . ,Xn )  : l (X l , . . . ,Xn)  -+ r (X l , . . . ,Xn )  E R where {Xl , . . . ,Xn}  = 
vat(l). For example, the TRS Z = {d : f ( x , x )  -+ a, di : f ( x ,  f (y ,  z)) --+ a )  is 
not orthogonal: d is not left-linear, while f ( x ,  f (y ,  z)) can unify with its subterm 
S(y,z). 

The definitions below introduce the rewriting of infinite terms and of/~-terms. 

Definit ion9 (subterm replacement).  Given terms t, s E CTE(X)  and an 
occurrence w E w*, the replacement of s in t at  (occurrence) w, denoted t[w +- s], 
is the t e rm defined as t[w +- s](u) = t(u) if w ~ u or t / w  = •  and t[w +- 
s](wu) = s(u) otherwise. 

The definition of subterm replacement applies as it is to #- terms in #TE(X) ,  
simply considering them as finite terms over the extended signature ~ .  [] 

Definition 10 ((plain) redexes and #-redexes).  Let T~ = (E, L, R) be a 
TRS over X.  A (plain) redex A of a t e rm t E C T s  is a pair A = (w, d) where 
w E w* is an occurrence, d : l -+ r E R is a rule, and there exists a continuous 
substi tution a : vat(1) -+ CTE such tha t  t /w  = la. 

A #-redex A of a closed /z-term t E #TE(X)  is a pair  A = (w, d) where 
w E w* is an occurrence, d : l -~ r E R is a rule, and there exists a parameter 
substi tution a : var(1) ~ #TE(X)  such tha t  t /w  = la. 0 

Definition 11 ( r e d u c t i o n  and derivation). Let d : l --+ r E R be a rule and 
A = (w, d) be a redex of t. The result of its application is s = t[w ~-- ra] .  We 
also write t --+a s, and we say tha t  t reduces to s (via A). We say tha t  there is a 
derivation from t to t t if there are redexes A 1 , . . . ,  An such tha t  t -~zal t l  ~z~2 
�9 . .  - - ~ A .  t n  = t t .  [] 

The last definition applies both  to plain and to #-redexes: simply, if A is 
a #-redex of t, bound variables in t are not affected in some undesirable way 
thanks to the fact tha t  the matching substitution is required to be a parameter 
substitution. In this case, sometimes we will denote the corresponding reduction 
by t - ~  s. 

Sequential te rm rewriting, as just  defined, can be generalized to parallel t e rm 
rewriting by allowing for the simultaneous application of two or more redexes to 
a term. The definitions below summarize those in [6] (see also [23, 7]), and are 
valid for orthogonal TrtS's only: as for subterm replacement,  all definitions and 
results lift smoothly to #-terms. 

Def in i t ion l2  (residuals). Let A = (w,d) and A ~ = (w' ,d ~ : l '  -~ r') be two 
redexes in a te rm t. The set of residuals of A by A I, denoted by A \ A  I, is defined 
as: 

A \ A  I = /4} if w ~ w'; 
I, {(wlw~u,d) I r'/w~ = l ' /v~} if w = w'v~u and l i lY, is a variable. 

D 
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Note that  A \ N  can contain more than one redex, whenever the right-hand 
side of the rule d is not linear. As an example, consider the TRS )IV = {d : 
f ( x )  -+ g(x, x), d' : a --+ b} and the redexes A = (1, d~), A' = (A, d) in the term 
f (a) :  then A / A ' =  {(1, d'), (2, d')}. 

Proposit ion 13 (residual of a reduction).  Let r U {A} be a finite set of re- 
dexes of t, such that t -+ za s. Then the set ~ \  A of residuals of �9 by A, defined 
as the union of N \  A for all A' E ~, is a set of redexes in s. [] 

The well-definedness of the notions below is based on the previous result. 

Definit ion 14 (residual of a sequence, c o m p l e t e  d e v e l o p m e n t ) .  Let �9 be 
a finite set of redexes of t and p = (t --+al tl . . .  ~za .  tn) be a reduction se- 
quence. Then ~ \ p  is defined as ~/f if n = 0, and as (4i\A1)\p~, where p~ = 
(tl -~a2 t 2 . . .  ~za ,  tn), otherwise. 

A development of ~ is a reduction sequence such that  after each initial seg- 
ment p, the next reduced redex is an element of ~\p .  A complete development 
of �9 is a development p such that  ~ \ p  = ~. [] 

Proposit ion 15 (uniqueness o f  c o m p l e t e  d e v e l o p m e n t s ) .  All complete de- 
velopments p and p' of a finite set of redexes �9 in a term t are finite, and end with 
the same term. Moreover, for each redex A of t, it holds A \p = A \p  ~. Therefore 
we can safely denote by A \ ~  the residuals of A by any complete development of 

(and similarly replacing A with a finite set of redexes ~ of t). [] 

Exploiting this result (whose proof can be found in [6]), we define the parallel 
reduction of a finite set of redexes as any complete development of them. 

Definit ion 16 (pa ra l l e l  r e d u c t i o n ) .  Given a finite set ~ of redexes in a term 
t, we write t -+r t '  and say that  there is a parallel reduction from t to t ~ if there 
exists a complete development t -~zh tl  . . .  -~A. t '  of ~. D 

Thus parallel rewriting allows to reduce a finite set of redexes of a term in 
a single, parallel step. If we consider an infinite term, there might be infinitely 
many distinct redexes in it: since the simultaneous rewriting of any finite subset 
of those redexes is well-defined, by a continuity argument one would expect that  
also the simultaneous rewriting of infinitely many redexes in an infinite term can 
be properly defined. We present here a definition which makes use of a suitable 
limit construction: for details we refer to [7]. It is however worth noticing that  
since #-terms are finite by Definition 4, this infinitary extension is meaningful 
for plain redexes only. 

Definit ion 17 (infinite parallel reduction).  Given an infinite set �9 of re- 
dexes in a term t, let to _< tl _< t2 . . .  be any chain of finite terms such that  its 
LUB is t, and for each i < w, every redex (w, d) E �9 is either a redex of ti or 
ti (w) = _L (that is, the image of the left-hand side of every redex in �9 is either all 
in ti, or it is outside, but  does not "cross the boundary") .  Let ~i be the subset 
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of all redexes in �9 which are also redexes of tl, and let si be the result of the 
(finite) parallel reduction of ti via ~i (i.e., ti - ~  si). Then we say that  there 

def 
is an (infinite) parallel reduction from t to s = {.Ji<,~{si} via ~, and we write 
t --~ ~ s. [] 

Let us consider the TRS 12 = {d :  f ( x )  --+ 9(x),  d' : g(x) ~ x}. Then the 
infinite set of redexes 4~ = 1" • {d} = {($, d), (1, d ) , . . .}  can be applied to the 
infinite term t = f~  = Ui<~{f i ( l )} :  a suitable chain of finite approximations 
is given by ti = fi(-l-), and the associated subset ~i is {(1 j,  d) I J < i}. Then 
ti -~r gi(_l_), and thus t -+~ g~ by definition. Next, the infinite set of redexes 
4~' = 1" x {d'} = {()~,d'), (1 ,d ' ) , . . .}  can be applied to t ' = g ' .  Now a suitable 
chain approximating g~ is t~ = gi(_L), the associated subsets ~ are {(1 j,  d') [ j _< 
i}, and clearly t~ --+~i _L. Therefore g~ - ~ ,  Ui<~ • = .L, which explains formally 
the reduction of the hypercollapsing tower described in the introduction. 

The next result states that  the reduction of an infinite set of redexes is a 
well-given definition. 

Proposition 18 (infinite para l le l  reduction is well-defined). In the hypothe- 
sea o] Definition 17: 

1. For each i < w, s~ < Si+x; i.e., {si}i<w is a chain. 
2. Definition 17 is well-given; i.e., the result of the infinite parallel reduction of 

t via �9 does not depend on the choice of the chain approximating t, provided 
that it satisfies the required conditions. 

3. I f  the set �9 of redexes is finite, then the infinite parallel reduction of Defini- 
tion 17 yields the same result as the parallel reduction of Definition 16. [] 

/.From infinite parallel rewriting, rational rewriting can be easily recovered 
by suitably restricting the class of infinite sets of redexes which can be applied 
to a given rational term. 

De f in i t i on  19 ( r a t iona l  t e r m  r e w r i t i n g ) .  Let ~ = (27, L, R) be an orthog- 
onal TrtS over X,  and let 27* = 27 ~ {f* I f E 27} be an auxiliary signature. 
For a set of redexes �9 in a term t, the associated marked term t~ is a term over 
(S*, X) defined by the following clauses: 

f* if (w, d) E �9 and t(w) = f;  
t o ( w ) =  t(w) otherwise. 

A set of redexes # of a rational term t is rational if the associated marked term 
t~ is rational [21]. A parallel reduction t ~ s is rational if so is ~. [] 

Thus tv is obtained by marking in t all the operators which are root of a 
redex in ~. It is rather easy to prove that  if �9 is a rational set of redexes of a 
term t and t ~ v  s, then also s is rational. 

The main result of this section shows tha t  the rewriting of It-terms is sound 
with respect to the rational rewriting of rational terms. 
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Theorem 20 (soundness of It-rewriting w.r.t,  rational rewriting).  Let T~ 
be an orthogonal TRS. 
(1) I f  �9 is a finite set of #-redexes of a p- term t and t - ~  s, then there is a 

rational set of redexes bt(~) such that [t] ---ru(~) [s]. 
(2) I f  ~ is a rational set of redexes of a term t, then there is a It-term ~( t ,  ~) 

and a finite set of It-redexes JPI(t, ~) such that [~'(t, ~)] = t, ~'(t, ~lf) --%~(t,v) s', 
and [s'] = s. 

Proof outline. (1) The rational set of redexes H(~) is determined by taking the 
marked It-term tv (in the sense of Definition 19), by unfolding it obtaining the 
marked rational term [t~], and by considering all redexes of [t] whose root are 
in correspondence with the marked nodes of [t~]. 

Next suppose that  [t] -+u(~) s', i.e., according to Definition 17, that  there is 
a chain of finite terms to _< tl _< t2 . . .  having [t] as LUB and satisfying suitable 
conditions with respect to ~, such that  ti --+~ si for all i < w, and s' = 
Ui<w{si}. Then it can be shown by induction that  si <_ Is] for all i < w, 
which implies s' < Is]. For the converse, it must be shown (by the way in which 
the approximation ordering is defined) that  for every occurrence w such that  
s ' (w) = • also [s](w) = _L holds. The only not obvious case here is when a _L is 
generated in s' by the reduction of a hypercollapsing tower, but this is shown to 
be possible only if a #-term equivalent to #=.x is generated in s by the reduction 
of ~, which unfolds to • in [s]. 
(2) Since set ~ is rational, so is the marked term re. A marked #-term t I is 

shown to exist, such that  [t'] = t~, and such that  for each marked node there is 
a redex for its unmarked version, 9e(t, ~), having that  node as root. 5 Let then 
2,4(t, ~) be the set of such #-redexes of ~'(t, ~): it is a rational set of redexes, 
and the rest of the statement holds by point (1). [7 

C o r o l l a r y  21. For an orthogonal TRS TPt., the rewrite relation induced on ratio- 
nal terms by rational term rewriting of Definition 19 coincides with the rewrite 
relation induced by p-term rewriting, modulo the axioms of Definition 6. [] 

In our opinion, this result provides a completely satisfactory interpretation 
(or "semantics") of the rewriting of It-terms expressed via a suitable notion of 
rewriting of the corresponding unfoldings. 

4 R a t i o n a l  R e w r i t i n g ,  A l g e b r a i c a l l y  

In this section we introduce (one-step) preiteration and rational rewriting logic, 
exploiting the rewriting logic formalism proposed in [25] for reasoning in logical 
terms about rewriting. Such logics will be presented in the form of sequent calculi, 

For example, if t =.f~ d : f (f(y))  --r g(y), and 4f = {(1 �9 (1 �9 1) i,d) I i < w}, 
then tv ---- f ( f* ( f ( f* ( . . . ) ) ) ) .  In this case we cannot take t' -= it~.f(f*(x)) (even if 
It'] = t~), because there is no redex rooted at f* (indeed, the redex would "cross" 
the # operator), but we can take instead t' = f(l~=.f*(f(x))). 



167 

via deduction rules which allow to generate sequents. The one-step preiteration 
and rational rewriting logics are shown to specify sequents which are in one- 
to-one correspondence with y-terms and rational reductions, respectively. The 
added value of this approach is that  not only the terms, but also the reductions 
are now endowed with an algebraic structure (using suitable proof terms), and 
this allows us to obtain a more precise relationship between y-term and rational 
rewriting with respect to Corollary 21. Intuitively, using the notation of point 
(1) of Theorem 20, one would like to identify two sets of p-redexes �9 and ~'  in 
equivalent (but distinct) y-terms t and t' if the induced rational set of redexes 
coincide, i.e., i f / / (~)  = / / ( ~ ' ) .  Interestingly, this can be obtained in the rewriting 
logic framework by providing the proof terms denoting y-term reductions with 
a pre-iteration structure, and by imposing on them exactly the same axioms of 
Definition 6. 

Space constraints forbid us to introduce the deduction rules for sequential 
composition, which allow to derive sequents which model many-step reductions 
(as done for example in [25, 9]). This will be included in the full version of the 
paper: we just discuss in the concluding section the relevance of this extension. 

Definition 22 (rewriting sequen ts ) .  Let ~ = iS ,  L , R )  be an orthogonal 
TrtS over X. Let A =UnAn be the signature containing all the rules d : l ~ r E R 
with the corresponding arity given by the number of variables in d: more pre- 
cisely, for each n, An = {d] d(Xl , . . . ,  xn) : l ( x l , . . . ,  Xn) --~ r ( x l , . . . ,  xn)  E R} .  
A proof term ~ is a y-term of the preiteration algebra pTr~ (X) = pTEuA ( X )  (we 
assume that  there are no clashes of names between the two sets of operators). 
A (rewriting) sequent is a triple (a, t, s) (usually written as a : t ~ s) where c~ 
is a proof term and t, s 6 p T m ( X ) .  0 

A sequent is closed if the associated proof term is so. For a given term t and 
a finite substitution { x l / t l , . . . ,  Xn / tn} ,  we usually write t ( t l , . . . ,  tn) for ta.  

Definition 23 (one-step preiteration rewriting logic).  Let R = iS ,  L, R) 
be a TRS over X. We say that  7~ entails the sequent a : t -~ s if it can be 
obtained by a finite number of applications of the following rules of deduction: 

(reflexivity) 

(instantiation} 

d : l - - ~ r E R ,  

(congruence) 

x E X  

x : x - ~ x  

d E A,~, ~i : ti "-+ si for i = l ,  . . . , n 

d i o q , . . . , O ~ n ) : l ( t l , . . . , t n )  ~ r ( s l , . . . , S n )  ' 

f E Z n ,  a i : t i - - + s i f o r i = l , . . . , n  

f ( o q , . . . , a n ) :  f i t l , . . . , t n )  --~ f i s l , . . - , S n ) ;  
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- ( r e c u r s i o n )  

a : t - - ~ s ,  x E X  

P=.~ : Px. t --~ Px.s" 

O 

The class of sequents entailed by ~ induces a set-theoretical rewrite relation 
over terms, simply obtained by dropping the proof term of a sequent. Rule 
reflexivity is self-explaining: it allows any variable to be rewritten into itself, tha t  
is, to play an idle rSle during a rewriting step. Both recursion and congruence 
state tha t  the rewrite relation is also compatible with respect to the algebraic 
structure, since it is closed under contexts. Maybe, the most interesting rule 
is instantiation: first, it implies that  the transition relation is stable, that  is, 
it is closed under substitutions. But the associated sequent describes also the 
simultaneous execution of nested rewrites: two subterms matching the left-hand 
sides of two rules can be rewritten simultaneously, in parallel, provided they do 
not overlap (and this is always the case for orthogonal systems). 

Proposition 24 (sequents and parallel p-term rewriting). Let T~ be an or- 
thogonal TRS. (1) I f  T~ entails a closed sequent ~ : t -+ s, then there is a set of 
p-redexes ~(a)  such that t -+~(~) s (according to the parallel rewriting of Defi- 

nition 16). 
(2) Viceversa, if �9 is a set of p-redexes of t and t - -~  s, then there is a closed 
proof term &(~) such that 7"~ entails the sequent &(~) : t -~ s. 
(3) Functions �9 and & are inverse to each other. [] 

Exploiting Theorem 7, we could easily obtain a description of the rewriting 
of rational terms by considering "abstract" sequents of the form a : It] ~ [s] 
for each sequent a : t --+ s entailed by a TRS T~. However, using Theorem 20 
we could obtain a result relating such sequents with the reduction of rational 
sets of redexes that  is weaker than the last proposition, because the bijective 
correspondence would not hold. To ensure such a bijection we need to consider 
proof terms as well modulo the axioms of iteration algebras. 

Definition 25 (one-step rational rewriting logic) .  A rational sequent has 
the form a : t -~ s, where a is a rational proof term (i.e., a rational term in 
RTEuA(X) ) ,  and t, s E R T E ( X ) .  A TRS T~ entails the rational sequent a : t -~ s 
if it entails a sequent a '  : t '  ~ s' (according to Definition 23) such that  a = [a'], 
t = [t'], and s = [s']. A sequent is closed if so is its proof term. [] 

This definition of rational sequent allows us to lift the result of Proposition 
24 to rational rewriting. 

Proposition 26 (rational sequents and rational rewriting). Let ~ be an 
orthogonal TRS. (1) If T~ entails a closed rational sequent ~ : t -+ s, then there 
is a rational set of redexes ~(a)  such that t -r~(~) s (according to the rational 

rewriting of Definition 19). 
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(2) Viceversa, if ~ is a rational set of redexes of t and t --+8 s, then there 
is a closed rational proof term &(~) such that Tr entails the rational sequent 
~ ( ~ )  : t -+ s .  

(3) Functions ~ and & are inverse to each other. [3 

5 Discussion and Future Work 

The main result presented in this paper is the fact that the parallel rewriting of 
#-terms (defined in a very natural way) provides a faithful implementation for 
rational term rewriting, i.e., for the parallel reduction of a possibly infinite (but 
rational) set of redexes in a rational term. 

Some notions introduced here should be compared with the corresponding 
ones in [20], even if the focus of the papers is different. The notion of #-term 
rewriting of [20] is quite different from ours, firstly because rewriting is defined 
essentially modulo ----equivalence, and secondly, and more importantly, because 
it is not allowed to rewrite a subterm t' of a #-term t if t' contains a free 
variable which is bound in t. For example, rule f (y)  ~ g(y) cannot be applied 
to the subterm f (x )  of #=.f(x). Furthermore, #x.x is not considered as a legal 
#-term. Such restrictions are motivated by the authors by potential problems 
that collapsing rules could cause. Recalling the discussion in the Introduction 
about the collapsing rule g(y) ~ y, we can safely claim that such problems are 
due to the (implicit) use of the infinitary extension of term rewriting proposed 
in [22] as reference model for theory of #-term rewriting of the mentioned paper. 
In fact, such problems simply disappear using the theory of infinite parallel 
rewriting presented in [7], which provides a satisfactory interpretation for the 
#-term #x.x, as well as for the reduction of hypercollapsing towers. 

Closer to the soundness result of Section 3 are the adequacy results relating 
term graph rewriting and rational term rewriting proposed in [21] and [8]. In 
fact, possibly cyclic finite term graphs can be considered as an alternative finite 
representation of rational terms, where also "horizontal sharing" is allowed. In 
[21], the notion of adequacy between rewriting systems is introduced, which is 
essentially equivalent to soundness plus a form of partial completeness. 6 In the 
same paper, it is presented an adequacy result between term graph rewriting and 
rational term rewriting defined using [22]; however, the result is restricted to the 
case of systems with at most one collapsing rules, or modulo hypercollapsing 
towers. In [8] instead, rational rewriting is defined exactly as in this paper, and 
it is shown that cyclic term graph rewriting using the algebraic approach is 
adequate for it, even in the presence of collapsing rules. 

In the last section we showed essentially that the main result of the paper can 
be rephrased in a very elegant way by making explicit the algebraic structure of 
the one-step reductions (using proof terms). Recall that, by Theorem 7, rational 

6 As a concrete example, the result presented in Theorem 20, which is actually stronger 
than a soundness result by point (2), could be rephrased as "parallel #-term rewriting 
is adequate for rational term rewriting". 
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terms are ----equivalence classes of p-terms. Giving to one-step reductions of #- 
terms in an obvious way a p-term structure over a suitable signature, we are 
able to recover rational rewriting by imposing the congruence ~ on proofs terms 
as well. In other words, the relationship between p-term and rational one-step 
rewriting is obtained simply by lifting the relationship between the corresponding 
class of terms to the level of reductions. 

And one can go further, by lifting the same relationship to the level of rewrit- 
ing sequences; due to space limitation the results we sketch here will appear in 
the full paper only. Full rewriting logic introduces a binary operator modeling 
sequential composition, and lifts the same algebraic structure of one-step re- 
ductions to whole derivations as well. The resulting structure provides a bridge 
between the standard presentation of rewriting and categorical models based on 
2-categories as proposed for example in [26, 27], where arrows represent terms 
and cells represent rewriting sequences. As in the case of the "one-step" vari- 
ants, we can consider both (full) preiteration and rational rewriting logic, and 
the corresponding categorical presentations based on preiteration and iteration 
2-categories, respectively [5]. Furhtermore, it can be shown that  they can be gen- 
erated via a free construction from a suitable representation of a term rewriting 
systems as a suitable computad. 

Finally, we mention that  the formal framework just described, consisting in 
lifting the algebraic structure of terms to the level of reductions and of rewriting 
sequences and obtaining in this way categorical models, provides one interesting 
application of the general methodology for the semantics of structured transition 
systems proposed in [10]. 
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