
Memory Efficient Variants of Public-Key
Schemes for Smart Card Applications

Adi Shamir

Applied Mathematics Department
The Weizmann Institute of Science

Rehovot 76100, Israel

Abstract

We propose new variants of the Kabin encryption scheme and the
Fiat-Shamir identification scheme which require only a small fraction
of the random access memory (RAM) required by the original schemes.
The improved variants are provably as secure as the original variants,
and can be implemented on standard smart cards with as few as 36
bytes of RAM without using dedicated coprocessors.

1 Introduct ion

Almost all the public key encryption and identification schemes proposed
so far are based on modular multiplications with a modulus n which is the
product of two secret primes p and q. To make the factorization of n difficult,
it is necessary to use very large numbers. The minimum recommended size
of n is currently 512 bits, but due to the explosive growth of computing
power available to cryptanalysts, this minimum size is likely to increase to
1024 bits (and to even larger values for high security applications).

In many communication and access control applications, it is desirable
to use smart cards to carry out the sensitive computations. Among the
many reasons for such a choice are the small physical size, the portability,
the convenience of non-volatile memory, and the security offered by a single
chip computer embedded in a plastic card. Millions of smart cards are used
each year to make bank cards more secure, to control access to pay-TV, to
carry billing information in cellular telephones, etc.

The biggest limitation in today's smart cards is the small amount of
random access memory (RAM) available in the card. The most popular
smart card chip made by Motorola has 36 bytes of RAM, and the most
popular smart card chip made by Thomson has 44 bytes of RAM. This
should be compared with the 4 million bytes of RAM available in a typical
personal computer.

446

Some algorithms can make use of other types of memory: A typical
smart card contains several thousand bytes of ROM and several thousand
bytes of EEPROM. ROM is unchangeable, and typically stores the program
which controls the operation of the smart card. EEPROM is changeable,
but writing into it is about one thousand time slower than writing into
RAM and the number of times a bit can be rewritten cannot exceed 10,000.
It is thus possible to use EEPROM to store slowly changing data such as
cryptographic keys or the details of financial transactions, but not as a RAM
substitute for intermediate values in a long computation.

In this paper, we show how to modify in a provably secure way two of
the most popular public key schemes (the Rabin encryption scheme and the
Fiat-Shamir identification scheme) in order to make them suitable for smart
cards with severely limited RAM's. The standard implementations of the
original schemes require quadratic time and linear space (as a function of
the modulus size). The modified variants require quadratic time but only
logarithmic space, and thus even the simplest 36 byte smart card can handle
moduli n with thousands of bits without any difficulty.

2 Randomized Multipl ication

We first consider the basic operation of multiplying two large numbers x
and y which are already stored in the smart card (e.g., in its EEPROM).
The result z = x �9 y cannot fit in the small RAM, but if it is the final result
computed by the smart card, its successive bytes can be sent out (rather
than stored) as soon as they are generated.

The classical method for multiplying two O(k)-byte numbers in O(k 2)
time with O (l o g (k)) workspace is to use convolution: Start with c = 0.
To compute the i-th byte of the result z for i = 0, 1 , 2 , . . . , k , compute

k forj = 0, 1, 2, . . " send the least significant byte of t = c + ~ j = o x j �9 Y i - j . , ~,
t as z i , and use the value of the other bytes of t as the new carry c. Note
that for any x and y with up to half a million bits, t fits into 4 bytes, and
thus the algorithm can be easily implemented even on a smart card with 36
bytes of RAM.

Next we consider the problem of computing z = x �9 y (mod n). By
definition, z = x. y - w- n where w = L x . y / n J (i.e., w is x . y / n truncated to
the largest integer below it). Since we cannot store z, it is not obvious how
to carry out this division operation. We can try to generate the successive
bytes of z by the convolution method, but in the division operation we need

447

these bytes from left to right, whereas the convolution computes them from
right to left. We are thus forced to recalculate each byte of z a large number
of times, and the cryptographic scheme becomes unacceptably slow.

We solve this problem by replacing the modular multiplication operation
z = x . y - w- n where w = [x . y /nJ by a new randomized multiplication
operat ion z ~ = x �9 y % r . n where r is a randomly chosen integer in a suit-
able range [0, b]. Such a z ~ can be easily computed by the following double
convolution process:
1. Set c = 0.

2. For i = 0, 1 , . . . , k compute ~ = c + ~ x j . Y i - j + ~ rm" h i -m , send the
low-order byte of t as zl, and set c to the number represented by the other
bytes of t.

Clearly, the value of z can be recovered from the value of z ~ by reducing
z ~ modulo n, and thus there is no loss of information in sending z ~ instead
of z. We now show tha t when b is a large enough public bound, there
is no loss of cryptographic security in sending z ~ instead of z. Assume
tha t there exists an at tack against the cryptographic scheme which uses
the knowledge of z ~ = x �9 y + r �9 n for a random r in [0, b]. These values
define a probability space P~. We now show tha t such an at tack can also
be based on the deterministic value of z = x - y - w - n. Given z, the
cryptanalys t can easily compute by himself another probability space pr~
defined by the values z" = z + u . n for a random u in [0, b]. By definition,
z" = x . y + (u - w) . n. The only difference between P~ and P " is tha t the
range of coefficients of n is shifted by the unknown quant i ty w from [0, b]
to I - w , b - w]. The probability tha t a random point in one range will fall
outside the other is w/b. If x and y are in [0, n], and b is much larger than
n, then this probability is negligible (e.g., when b is a power of 2 which is
64 bits longer than n, this probability is less than 2-64). Since P~ and P~
are statistically indistinguishable, any cryptanalyt ic a t tack will be equally
successful over the two probability spaces.

The only disadvantage of randomized multiplication with respect to mod-
ular multiplication is tha t the t ransmit ted result is about twice as long.
However, this adds only a negligible communication delay, and the receipi-
ent (which is usually a powerful PC or a network server) can immediately
change z ~ to z before storing or processing it further.

In the next two sections we describe how to use randomized multiplica-
tions in order to obtain space-efficient variants of the Rabin and Fiat-Shamir
cryptographic schemes.

448

3 A Space-Efficient Variant of the Rabin Encryp-
t ion Scheme

Rabin's public key scheme is used t o establish a common secret key K
between two parties, which can then be used to encrypt the actual message
with a standard cryptosystem such as DES. K is usually the low order
bits (56 in the case of DES) of a long number x in the range [0, n] chosen
randomly by the sender. The sender then computes and sends z = z .
x (rood n), and the receipient uses his knowledge of the factorization of
n in order to compute the modular square root of z (rood n). A slight
complication is that z yields four possible K's , but this can be easily solved
by adding some redundancy.

In the proposed new variant, K is sent by computing the randomized
multiplication z ~ = x �9 x + r �9 n instead of the modular multiplication z =
x �9 x (rood n). In a typical implementation, n (which is the product of two
large primes p and q) is kept in EEPROM. It is usually the public key of the
organization which issues the cards to its employees and customers, and even
small cards with one kilobyte of EEPKOM can store an 8000 bit modulus.
The numbers x and r are pseudo randomly generated from random secret
seeds s~ and sr (which are loaded into EEPROM when the card is issued),
a session counter v (which is incremented in EEPROM at the beginning
of each communication session), and a byte index j . A convenient way of
achieving this is to hash sx, v, and j into the j - th byte of x in session v,
and to hash st , v, and j into the j - th byte of r in session v. In this way
it is possible to access individual bytes of x and r in any order without
storing z and r anywhere, and thus it is possible to compute and send out
the successive bytes of z ~ by the double convolution method even when n
has thousands of bits and the card has only 36 bytes of RAM.

4 A Space-Efficient Variant of the Fiat-Shamir
Identif ication Scheme

In this section we describe a space-efficient variant of the Fiat-Shamir iden-
tification scheme which makes it possible to implement it on smart cards
with very small RAM's.

In the original Fiat-Shamir identification scheme, the smart card (known
as the prover) contains in its EEPROM a public modulus n = p . q and a
secret number c. The other party (known as the verifier) knows n and

449

d = c- c (rood n). The smart card proves its identity to the verifier by using
a zero knowledge protocol to demonstrate its knowledge of c. The proof
consists of the following steps:

1. The prover chooses a random number z, and sends z = z. z (rood n)
to the verifier.

2. The verifier sends a random bit to the prover.
3. Based on this bit, the prover sends either x or z �9 c (rood n) to the

verifier.
4. Based on this bit, the verifier checks that the square of the received

number is either z (rood n) or z- d (rood n).
5. Steps 1-4 are repeated several times to reduce the probability of

cheating.
In the new space-e~cient variant of the Fiat-Shamir scheme, the prover

performs the same steps, but replaces the modular multiplications x.x (rood n)
and x. c (rood n) by the randomized multiplications x. z + r- n and z- c + t- n
for pseudo-random r and t in [0, b], where b is substantially larger than n
(e.g., by at least 64 bits). As demonstrated in Section 2, these operations
can be carried out with very small RAM's.

R e m a r k : After the presentation of this paper at Eurocrypt 94, David
Naccache pointed out that a related idea appeared in his European Patent
Application 91402958.2, submitted on November 5-th 1991. In his patent
application he also adds random multiples of n to various values, but his goal
is to reduce the computation time by a constant factor, whereas our goal is
to reduce the RAM space from linear to logarithmic. Another difference is
that his variant is not proven to be as secure as the original variant, and
some of its possible implementations are in fact breakable.

