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Abstract 

We propose new variants of the Kabin encryption scheme and the 
Fiat-Shamir identification scheme which require only a small fraction 
of the random access memory (RAM) required by the original schemes. 
The improved variants are provably as secure as the original variants, 
and can be implemented on standard smart cards with as few as 36 
bytes of RAM without using dedicated coprocessors. 

1 Introduct ion 

Almost all the public key encryption and identification schemes proposed 
so far are based on modular multiplications with a modulus n which is the 
product of two secret primes p and q. To make the factorization of n difficult, 
it is necessary to use very large numbers. The minimum recommended size 
of n is currently 512 bits, but due to the explosive growth of computing 
power available to cryptanalysts, this minimum size is likely to increase to 
1024 bits (and to even larger values for high security applications). 

In many communication and access control applications, it is desirable 
to use smart cards to carry out the sensitive computations. Among the 
many reasons for such a choice are the small physical size, the portability, 
the convenience of non-volatile memory, and the security offered by a single 
chip computer embedded in a plastic card. Millions of smart cards are used 
each year to make bank cards more secure, to control access to pay-TV, to 
carry billing information in cellular telephones, etc. 

The biggest limitation in today's smart cards is the small amount of 
random access memory (RAM) available in the card. The most popular 
smart card chip made by Motorola has 36 bytes of RAM, and the most 
popular smart card chip made by Thomson has 44 bytes of RAM. This 
should be compared with the 4 million bytes of RAM available in a typical 
personal computer. 
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Some algorithms can make use of other types of memory: A typical 
smart card contains several thousand bytes of ROM and several thousand 
bytes of EEPROM. ROM is unchangeable, and typically stores the program 
which controls the operation of the smart card. EEPROM is changeable, 
but writing into it is about one thousand time slower than writing into 
RAM and the number of times a bit can be rewritten cannot exceed 10,000. 
It is thus possible to use EEPROM to store slowly changing data  such as 
cryptographic keys or the details of financial transactions, but not as a RAM 
substitute for intermediate values in a long computation. 

In this paper, we show how to modify in a provably secure way two of 
the most popular public key schemes (the Rabin encryption scheme and the 
Fiat-Shamir identification scheme) in order to make them suitable for smart 
cards with severely limited RAM's. The standard implementations of the 
original schemes require quadratic time and linear space (as a function of 
the modulus size). The modified variants require quadratic time but  only 
logarithmic space, and thus even the simplest 36 byte smart card can handle 
moduli n with thousands of bits without any difficulty. 

2 Randomized  Multipl ication 

We first consider the basic operation of multiplying two large numbers x 
and y which are already stored in the smart card (e.g., in its EEPROM).  
The result z = x �9 y cannot fit in the small RAM, but if it is the final result 
computed by the smart card, its successive bytes can be sent out (rather 
than stored) as soon as they are generated. 

The classical method for multiplying two O(k)-byte numbers in O(k 2) 
time with O ( l o g ( k ) )  workspace is to use convolution: Start with c = 0. 
To compute the i-th byte of the result z for i = 0, 1 , 2 , . . . , k ,  compute 

k forj = 0, 1, 2, . .  " send the least significant byte of t = c + ~ j = o  x j  �9 Y i - j  . ,  ~, 
t as z i ,  and use the value of the other bytes of t as the new carry c. Note 
that  for any x and y with up to half a million bits, t fits into 4 bytes, and 
thus the algorithm can be easily implemented even on a smart card with 36 
bytes of RAM. 

Next we consider the problem of computing z = x �9 y (mod n). By 
definition, z = x. y -  w- n where w = L x .  y / n J  (i.e., w is x .  y / n  truncated to 
the largest integer below it). Since we cannot store z, it is not obvious how 
to carry out this division operation. We can try to generate the successive 
bytes of z by the convolution method, but in the division operation we need 
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these bytes from left to right, whereas the convolution computes them from 
right to  left. We are thus forced to recalculate each byte  of z a large number 
of times, and the cryptographic scheme becomes unacceptably slow. 

We solve this problem by replacing the modular  multiplication operation 
z = x .  y - w-  n where w = [x .  y /nJ  by a new randomized multiplication 
operat ion z ~ = x �9 y % r .  n where r is a randomly chosen integer in a suit- 
able range [0, b]. Such a z ~ can be easily computed by the following double 
convolution process: 
1. Set c = 0. 

2. For i = 0, 1 , . . . ,  k compute ~ = c + ~ x j .  Y i - j  + ~ rm" h i -m ,  send the 
low-order byte  of t as zl, and set c to the number  represented by the other 
bytes of t. 

Clearly, the value of z can be recovered from the value of z ~ by reducing 
z ~ modulo n, and thus there is no loss of information in sending z ~ instead 
of z. We now show tha t  when b is a large enough public bound,  there 
is no loss of cryptographic security in sending z ~ instead of z. Assume 
tha t  there exists an at tack against the cryptographic scheme which uses 
the knowledge of z ~ = x �9 y + r �9 n for a random r in [0, b]. These values 
define a probability space P~. We now show tha t  such an at tack can also 
be based on the deterministic value of z = x - y - w - n. Given z, the 
cryptanalys t  can easily compute by himself another  probability space pr~ 
defined by the values z" = z + u .  n for a random u in [0, b]. By definition, 
z" = x .  y + (u - w ) .  n. The only difference between P~ and P "  is tha t  the 
range of coefficients of n is shifted by the unknown quant i ty  w from [0, b] 
to I - w ,  b - w]. The probability tha t  a random point in one range will fall 
outside the other is w/b.  If x and y are in [0, n], and b is much larger than  
n, then  this probability is negligible (e.g., when b is a power of 2 which is 
64 bits longer than  n, this probability is less than  2-64). Since P~ and P~ 
are statistically indistinguishable, any cryptanalyt ic  a t tack  will be equally 
successful over the two probability spaces. 

The  only disadvantage of randomized multiplication with  respect to  mod- 
ular multiplication is tha t  the t ransmit ted  result is about  twice as long. 
However, this adds only a negligible communication delay, and the receipi- 
ent (which is usually a powerful PC or a network server) can immediately 
change z ~ to z before storing or processing it further.  

In the next two sections we describe how to use randomized multiplica- 
tions in order to obtain space-efficient variants of the Rabin and Fiat-Shamir  
cryptographic schemes. 
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3 A Space-Efficient Variant of the  Rabin Encryp- 
t ion Scheme 

Rabin's public key scheme is used t o  establish a common secret key K 
between two parties, which can then be used to encrypt the actual message 
with a standard cryptosystem such as DES. K is usually the low order 
bits (56 in the case of DES) of a long number x in the range [0, n] chosen 
randomly by the sender. The sender then computes and sends z = z .  
x (rood n), and the receipient uses his knowledge of the factorization of 
n in order to compute the modular square root of z (rood n). A slight 
complication is that  z yields four possible K's ,  but this can be easily solved 
by adding some redundancy. 

In the proposed new variant, K is sent by computing the randomized 
multiplication z ~ = x �9 x + r �9 n instead of the modular multiplication z = 
x �9 x (rood n). In a typical implementation, n (which is the product of two 
large primes p and q) is kept in EEPROM. It is usually the public key of the 
organization which issues the cards to its employees and customers, and even 
small cards with one kilobyte of EEPKOM can store an 8000 bit modulus. 
The numbers x and r are pseudo randomly generated from random secret 
seeds s~ and sr (which are loaded into EEPROM when the card is issued), 
a session counter v (which is incremented in EEPROM at the beginning 
of each communication session), and a byte index j .  A convenient way of 
achieving this is to hash sx, v, and j into the j - th  byte of x in session v, 
and to hash st ,  v, and j into the j - th  byte of r in session v. In this way 
it is possible to access individual bytes of x and r in any order without 
storing z and r anywhere, and thus it is possible to compute and send out 
the successive bytes of z ~ by the double convolution method even when n 
has thousands of bits and the card has only 36 bytes of RAM. 

4 A Space-Efficient Variant of the  Fiat-Shamir 
Identif ication Scheme 

In this section we describe a space-efficient variant of the Fiat-Shamir iden- 
tification scheme which makes it possible to implement it on smart cards 
with very small RAM's. 

In the original Fiat-Shamir identification scheme, the smart card (known 
as the prover) contains in its EEPROM a public modulus n = p .  q and a 
secret number c. The other party (known as the verifier) knows n and 
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d = c- c (rood n). The smart card proves its identity to the verifier by using 
a zero knowledge protocol to demonstrate its knowledge of c. The proof 
consists of the following steps: 

1. The prover chooses a random number z, and sends z = z. z (rood n) 
to the verifier. 

2. The verifier sends a random bit to the prover. 
3. Based on this bit, the prover sends either x or z �9 c (rood n) to the 

verifier. 
4. Based on this bit, the verifier checks that the square of the received 

number is either z (rood n) or z-  d (rood n). 
5. Steps 1-4 are repeated several times to reduce the probability of 

cheating. 
In the new space-e~cient variant of the Fiat-Shamir scheme, the prover 

performs the same steps, but replaces the modular multiplications x.x (rood n) 
and x. c (rood n) by the randomized multiplications x. z + r- n and z- c + t- n 
for pseudo-random r and t in [0, b], where b is substantially larger than n 
(e.g., by at least 64 bits). As demonstrated in Section 2, these operations 
can be carried out with very small RAM's. 

R e m a r k :  After the presentation of this paper at Eurocrypt 94, David 
Naccache pointed out that a related idea appeared in his European Patent 
Application 91402958.2, submitted on November 5-th 1991. In his patent 
application he also adds random multiples of n to various values, but his goal 
is to reduce the computation time by a constant factor, whereas our goal is 
to reduce the RAM space from linear to logarithmic. Another difference is 
that  his variant is not proven to be as secure as the original variant, and 
some of its possible implementations are in fact breakable. 


