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Abs t rac t .  An important question in designing cryptographic functions 
including substitution boxes (S-boxes) is the relationships among the var- 
ious nonlinearity criteria each of which indicates the strength or weakness 
of a cryptographic function against a particular type of cryptanalytic at- 
tacks. In this paper we reveal, for the first time, interesting connections 
among the strict avalanche characteristics, differential characteristics, 
linear structures and nonlinearity of quadratic S-boxes. In addition, we 
show that our proof techniques allow us to treat in a unified fashion all 
quadratic permutations, regardless of the underlying construction meth- 
ods. This greatly simplifies the proofs for a number of known results on 
nonlinearity characteristics of quadratic permutations. As a by-product, 
we obtain a negative answer to an open problem regarding the existence 
of differentially 2-uniform quadratic permutations on an even dimen- 
sional vector space. 

1 N o n l i n e a r i t y  C r i t e r i a  

We first introduce basic notions and definitions of several nonlinearity criteria 
for eryptographic functions. 

Denote by V,~ the vector space of n tuples of elements from GF(2) .  Let 
= ( a l , . . . ,  an) and/~ = ( b l , . . . ,  bn) be two vectors in V,~. The scalar product 

of a and/~,  denoted by (a,/~), is defined by (a, r )  = atb~ ~ . . .  ~ anbn, where 
multiplication and addition are over GF(2) .  In this paper we consider functions 
from V, to GF(2)  (or simply functions on Vn). We are particularly interested in 
functions whose algebraic degrees are 2, also called quadratic functions. These 

functions take the form of a00 �9 ~ aijxixj, where aij is an element from 
l <i,j <_n 

GF(2) ,  while x~ is a variable in GF(2) .  
Let f be a function on Vn. The (1,-1)-sequence defined by ( ( - 1 )  f(~o), 

(_1)f(~1), . . . ,  (-1)S(~2--1)) is called the sequence of f ,  and the (0, 1)-sequence 
defined by ( f (a0) ,  f ( a l ) ,  . . . ,  f (a2~-x) )  is called the truth table of f ,  where 
~0 = ( 0 , . . . , 0 , 0 ) ,  a l  = ( 0 , . . . , 0 , 1 ) , . . . ,  a2- -1  = ( 1 , . . . , 1 , 1 ) .  f is said to be 
balanced if its t ru th  table has 2 n-1 zeros (ones). 

An ad~ne function f on Vn is a function that  takes the form of f = a lx l  @ 
�9 .. ~ anxn @ c, where aj, c E GF(2) ,  j = 1, 2 , . . . ,  n. Furthermore f is called a 
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linear function if c = 0. The sequence of an affine (or linear) function is called 
an affine (or linear) sequence. 

The Hamming weight of a vector a C Vn, denoted by W(a), is the number 
of ones in the vector. 

Now we introduce bent functions, an important combinatorial concept in- 
troduced by Rothans in the mid 1960's (although his pioneering work was not 
published until some ten years later [18].) 

Def in i t ion  1. A function f on Vn is said to be bent if 

2-~ ~ (-1)f(~)o(/~,~) = 4-1 
~EV,, 

for every/~ E V,. Here z = (x l , . . . ,  z , )  and f(x) ~ {/3, x) is considered as a real 
valued function. 

hFrom the definition, it can be seen that bent functions on Vn exist only when 
n is even. Another fact is that bent functions are not balanced, hence not directly 
applicable in most computer and communications security practices. Dillon pre- 
sented a nice exposition of bent functions in [7]. In particular, he showed that 
bent functions can be characterized in various ways: 

L e m m a  2. The following statements are equivalent: 

(i) f is bent. 
(ii) (~,e} = q-2�89 n for any affine sequence ~ of length 2 n, where ~ is the sequence 

o f f .  
(ii i)  oO balanced for  non-zero vector e V. ,  where �9 = 

The strict avalanche criterion (SAC) was first introduced by Webster and 
Tavares [24, 25] when studying the design of cryptographically strong substitu- 
tion boxes (S-boxes). 

Def in i t ion3 .  A function f on V, is said to satisfy the strict avalanche criterion 
(SAC) if f(x) ~ f(x $ a) is balanced for all c~ e Vn with W(a) = 1, where 
x = 

It is widely accepted that the component functions of an S-box employed 
by a modern block cipher should all satisfy the SAC. A general technique for 
constructing SAC-fulfilling cryptographic functions can be found in [22]. 

While the SAC measures the avalanche characteristics of a function, the 
linear structure is a concept that in a sense complements the former, namely, it 
indicates the straightness of a function. 

Def in i t ion4.  Let f be a function on Vn. A vector ~ E Vn is called a linear 
structure of f if f(x) ~ f (z  q~ ~) is a constant. 
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Evertse apparent ly  was the first person who studied implications of linear 
structures (in a sense broader than ours) on the security of encryption algo- 
r i thms [8]. By definition, the zero vector in Vn is a linear structure of all functions 
on V'*. I t  is not hard to see tha t  the linear structures of a function f form a linear 
subspace of Vn. The dimension of the subspace is called the linearity dimension 
of f .  Clearly, the linearity dimension of a function on Vn is bounded from the 
above by n, with the affine functions achieving the m a x i m u m  dimension n. I t  
is bounded f rom the below by 0 when n is even and by 1 when n is odd. The 
lower bound 0 is achieved only by bent functions tha t  have the zero vector as 
their only linear structure, while 1 can be achieved by functions tha t  have only 
two linear structures (one is the zero vector and the other is a nonzero vector). 
Examples  of the lat ter  are those obtained by concatenating two bent functions 
(see [19, 23]). 

In ma themat ica l  terms, an n • s S-box (i.e., with n input bits and s output  
bits), can be described as a mapping  from V'* to V, (n > s). To avoid trivial sta- 
tistical at tacks,  an S-box F should be regular, namely, F (x )  should run through 
all vectors in Vs each 2 "*-8 t imes while x runs through Vn once. Note tha t  an 
n x n S-box is a permuta t ion  on V'* and always regular. 

Regulari ty of  an n • s S-box F can be characterized by the balance of nonzero 
linear combinations of its component  functions. It  has been known tha t  when 
n = s, F is regular if and only if all nonzero linear combinations of the com- 
ponent  functions are balanced. A proof can be found in Remark 5.8 of [7]. The 
characterization can be extended to the case when n > s. 

T h e o r e m  5. Let F = ( f l , . . . , f s ) ,  where fl is a function on V'*, n > s. Then F 
is a regular mapping from V'* to V8 if and only if all nonzero linear combinations 
o f f 1 , . . . ,  f'* are balanced. 

A proof  for the theorem will be given in the full version. It  seems to the 
authors tha t  the proof  for the case of n -- s as described in [7] can not be 
directly adapted  to the general case of  n > s, and hence the extension presented 
here is not trivial. 

The  next criterion is the nonlinearity tha t  indicates the Hamming  distance 
between a function and all the affine functions. 

D e f i n i t i o n 6 .  Given two functions f and g on Vn, the Hamming distance be- 
tween them, denoted by d(f ,  g), is defined as the Hamming  weight of the t ruth  
table of the function f ( x )  @ g(x), where x = (xl ,  �9 . . ,  x , ) .  The nonlinearity of f ,  
denoted by Ny, is the minimal  Hamming  distance between f and all affine func- 
tions on Vn, i.e., N!  = mind=l, 2 ..... 2,+1 d(f ,  ~i) where ~1, ~2, .--, ~2-+1 denote 
the affine functions on Vn. 

The above definition can be extended to the case of mappings,  by defin- 
ing the nonlinearity of a mapping  from V'* to V8 as the min imum among the 
nonlinearities of nonzero linear combinations of the component  functions. 

The  nonlinearity of a function f on V'* has been known to be bounded from 
the above by 2 '*-1 - 2]  n-1. When n is even, the upper  bound is achieved by 
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bent functions. Constructions for highly nonlinear balanced functions can be 
found in [19, 23]. 

Nonlinearity has been considered to be an important criterion. Recent ad- 
vances in Linear cryptanalysis put forward by Matsui [10, 11] have further made 
it explicit that  nonlinearity is not just important,  but essential to DES-like 
block encryption algorithms. Linear cryptanalysis exploits the low nonlinearity 
of S-boxes employed by a block cipher, and it has been successfully applied in 
attacking FEAL and DES. In [21], it has been shown that  to immunize an S-box 
against linear cryptanalysis, it suffices for the Hamming distance between each 
nonzero linear combination of the component functions and each affine function 
not to deviate too far from 2 n - l ,  namely, an S-box is immune to linear crypt- 
analysis i f  the nonlinearity of each nonzero linear combination of its component 
functions is high. 

Finally we consider a nonlinearity criterion that  measures the strength of 
an S-box against differential cryptanalysis [3, 4]. The essence of a differential 
attack is that  it exploits particular entries in the difference distribution tables of 
S-boxes employed by a block cipher. The difference distribution table of an n x s 
S-box is a 2 n x 2 s matrix. The rows of the matrix, indexed by the vectors in 
Vn, represent the change in the input, while the columns, indexed by the vectors 
in V,, represent the change in the output of the S-box. An entry in the table 
indexed by (c~,/3) indicates the number of input vectors which, when changed 
by c~ (in the sense of bit-wise XOR), result in a change in the output by/3 (also 
in the sense of bit-wise XOR). 

Note that  an entry in a difference distribution table can only take an even 
value, the sum of the values in a row is always 2 n, and the first row is always 
(2 n, 0 , . . . ,  0). As entries with higher values in the table are particularly useful 
to differential cryptanalysis, a necessary condition for an S-box to be immune to 
differential cryptanalysis is that  it does not have large values in its differential 
distribution table (not counting the first entry in the first row). 

D e f i n i t i o n 7 .  Let F be an n x s S-box, where n >_ s. Let 6 be the largest value 
in differential distribution table of the S-box (not counting the first entry in the 
first row), namely, 

~ =  max  maxl{x lF(x) (~F(x(])c~)- - :  ~} I. 
aE V.,a~O flE V. 

Then F is said to be differentially 6-uniform, and accordingly, /f is called the 
differential uniformity of f .  

Obviously the differential uniformity ~ of an n x s S-box is constrained by 
2 n - '  < ~ < 2 n. Extensive research has been carried out in constructing differen- 
tially 6-uniform S-boxes with a low 8 [13, 1, 14, 16, 15, 2]. Some constructions, 
in particular those based on permutation polynomials on finite fields, are simple 
and elegant. However, caution must be taken with Definition 7. In particular, it 
should be noted that  low differential uniformity (a small ~i) is only a necessary, 
but not a su17icient condition for immunity to differential attacks. This is shown 
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by the fact tha t  S-boxes constructed in [13, 1] are extremely weak to differen- 
tial attacks, despite that  they achieve the lowest possible differential uniformity 
6 = 2 n-s  [4, 5, 21]. A more complete measurement is the robustness introduced 
in [21]. The reader is directed to that  paper for a comprehensive t reatment  of 
this subject. 

Note that  an n • s S-box achieves the lowest possible differential uniformity 
6 = 2 n-8 if and only if it has a fiat difference distribution table. As has been 
noticed by many researchers (see for instance Page 62 of [4]), a flat difference 
distribution table is not associated with a regular S-box. This result, together 
with a formal proof, is now given explicitly. 

L e m r n a 8 .  The differential uniformity of a regular n • s S-box is larger than 
2 n - - $ .  

Proof. Let F is a regular n x s S-box. By Theorem 5, nonzero linear combinations 
of the component functions of F are all balanced. Assume for contradiction that  
for each nonzero c~ e V., F ( z )  ~ F ( z  ~ a)  is regular, namely it runs through 
all vectors in v~, each 2 n-8 times, while x runs through Vn once. Recall that  
Theorem 3.1 of [13] states tha t  F ( z )  ~ F ( x  ~ a)  is regular if and only if each 
nonzero linear combination of the component functions of F is a bent function. 
Thus the assumption contradicts the fact that  each nonzero linear combination 
of the component functions of F is balanced. 

We have discussed various cryptographic properties including the algebraic 
degree, the SAC, the linear structure, the regularity, the nonlinearity and the 
differential uniformity. As is stated in the following lemmas, some properties are 
invariant under a nonsingular linear transformation. 

L e m m a 9 .  Let f be a function on Vn, A be a nonsingular matrix of order n over 
GF(2) ,  and let g(x) = f ( x A ) .  Then f and g have the same algebraic degree, 
nonlinearity and linearity dimension. 

The next lemma was pointed out in Section 5.3 of [21]. It was also noticed 
by Beth and Ding in [2]. The lemma is followed by a short formal proof for the 
sake of completeness. 

L e m m a  10. Let F be a mapping from Vn to Vs, where n > s, A be a nonsingular 
matrix of order n over GF(2) ,  and B be a nonsingnlar matrix of order s over 
OF(2) .  Let = r ( x A )  and g ( x )  = where = Note 
that A is applied to the input, while B to the output of F.  Then F, G and H all 
have the same regularity and differential uniformity. 

Proof. Let fl be a vector in V,. Since F(z )  = G(zA-1) ,  F(x)  = fl if and only if 
G ( z A  -1) = ~. This implies that ,  while z runs through V~, F (x )  and G(x)  run 
through ~ the same number of times. 

Now consider g ( x )  = F (x )B .  Clearly F(x)  = [3 if and only if H(x)  = 
r ( z ) B  = t3B. As B is nonsingular, F (x )  runs through fl exactly the same 
number of times as that  H(x )  runs through j3B, while x runs through Vn. 
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2 C r y p t o g r a p h i c  P r o p e r t i e s  o f  Q u a d r a t i c  S - b o x e s  

In this section we reveal interesting relationships among the difference distribu- 
tion table, linear structures, nonlinearity and SAC of S-boxes whose component 
functions are all quadratic (or simply, quadratic S-boxes). 

2.1 L i n e a r  S t r u c t u r e  vs N o n l i n e a r i t y  

Consider a quadratic function f on Vn. Then f ( z )  @ f ( z  @ a) is afline, where 
x = ( z l , . . . , z ,~ )  and c~ E Vn. Assume that  f does not have nonzero linear 
structures. Then for any nonzero a E Vn, f ( z )  ~ f ( x  @ oe) is a nonzero affine 
function, hence balanced. By Part (iii) of Lemma 2, f is bent. Thus we have: 

L e m m a  11. I f  a quadratic function f on V~ has no nonzero linear structures, 
then f is bent and n is even. 

The following lemma is a useful tool in calculating the nonlinearity of func- 
tions obtained via Kronecker product. 

L e m m a  12. Let g(x, y) = fl(x)@f2(Y), where x = (zl,  . . . ,  Xn,), y -- ( Y l , . . . ,  Yn2) 
f l  is a function on Vnl and f2 is a function on Vn2. Let dl and d2 denote the 
nonlinearities off1 and f2 respectively. Then the nonlinearity of g satisfies 

N g ~  d12n2+d22 nl - 2did2. 

In addition, we have N a >_ d12 n~ and N a >_ d22 n~. 

Proof. The first half of the lemma can be found in Lemma 8 of [20]. The second 
half is true due to the fact that  dl ~ 2 n1-1 and d2 ~ 2 '~2-1 (see also Section 3 
of [19]). 

We now examine how the nonlinearity of a function on V, relates to the 
linearity dimension of the function. 

Let g be a (not necessarily quadratic) function on Vn, {/31,...,/3l} be a 
basis of the subspace consisting of the linear structures of g. {f/l, �9 �9 can be 
extended to {/31,...,/3l,/31+x,...,/3~} such that  the latter is a basis of V~. Now 
let B be a nonsingular matrix with /3/ as its ith row, and let g*(x) = g(xB).  
By Lemma 9, g* and g have the same linearity dimension, algebraic degree and 
nonlinearity. Thus the question is transformed into the discussion of y*. 

Let ei be the vector in Vn whose ith coordinate is one and others are zero. 
Then we have e jB  --/3j, and g*(ei) = g(/3i), i =- 1 , . . . , n .  Thus { e l , . . . , e l }  is a 
basis of the subspace consisting of the linear structures of g*. Write g* as 

g*(x)=q(y)~E[mj(y)rj(z)] (1) 
J 

where x = ( Z l , . . . , x , ) ,  y = ( z a , . . . , x t ) ,  z = ( ~ l + l , . . . , x , ) ,  mj # 0, the 
algebraic degree of each rj is at least 1 and rj r ri for j # i. Also write el as 
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ei = (#i ,0) ,  where #j E �89 and 0 E V,_,.  As ei is a linear structure of g*, the 
following difference 

g*(x) ~ g*(x ~ ei) = q(y) �9 q(y G Pi) @ ~ [ ( m j ( y )  D m j ( y  ~ /q))rj(z)] 
J 

is a constant.  This  implies tha t  q(y) ~ q(y ~ I~i) is a constant (i.e. p~ is a linear 
structure of q(y)) and each mj(y )  ~ m j ( y  @ pj)  = 0 (i.e. mj = 1). Thus (1) can 
be rewrit ten as 

g * ( z ) = q ( y ) @ r ( z ) .  (2) 

Since all vectors in VL are linear structures of q, q is an affine function on Vl. As 
the linearity dimension of g* is also ~, r must  be a function on Vn-I that  does not 
have nonzero linear structures. By Lemmas  9 and 12, we have N 9 = Ng. = 2iNt.  
This is precisely what  Proposition 3 of [14] states. 

As a special case, suppose tha t  g in the above discussions is quadratic. Then 
the function r in (2) is a quadratic function on Vn-i with no nonzero linear 
structures. By L e m m a  11, r is a bent function on V , - i  whose nonlinearity is 
N~ = 2 " -L-1  - 2�89 ( " - l ) -1 .  Thus we have: 

T h e o r e m  13. Let g be a function on V, whose algebraic degree is at most 2. 
Denote by g the linearity dimension of g. Then 

(i) n -  ~ is even, and 

(ii) the nonlinearity o fg  satisfies Ng = 2 " -1  - 2�89 "+l ) -a .  

The  lower bound on nonlinearity in Theorem 13 can be straightforwardly 
t ranslated into tha t  for quadratic (not necessarily regular) n x s S-boxes (n > s). 

Now we take a closer look at the nonlinearity of a quadratic function g on 
V,. As g is nonlinear, we have ~ < n, where ~ is the linearity dimension of g. In 
addition since g is quadratic,  by (i) of Theorem 13, n - ~ is even. Thus we have 
e _< n - 2, and N o >_ 2 " -1  - 2�89 ("+l)-1 _> 2 " -2 .  This proves the following: 

C o r o l l a r y  14. The nonlinearity of a quadratic function on Vn is at least 2 " -2 .  

Corollary 14 is a bit surprising in the sense that  it indicates that  all quadratic 
functions are fairly nonlinear, and there is no quadratic function whose nonlin- 
eari ty is between 0 and 2 n-2 (exclusive). 

2.2 D i f f e r e n c e  D i s t r i b u t i o n  T a b l e  vs  L i n e a r  S t r u c t u r e  

First we show an interesting result s tat ing tha t  the number  representing the 
differential uniformity of a quadratic S-box must  be a power of 2. 

T h e o r e m  15. Let 6 be the differential uniformity of a quadratic n x s S-box. 
Then 6 = 2 d for  some n - s < d < n. Furthermore, i f  the S-box is regular, then 
we have ~ = 2 d for  some n -  s + 1 < d < n. 
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Let F = ( f i , - - - ,  f , )  be a regular quadrat ic  n • s S-box, and let g be a non- 
linear combina t ion  of  the componen t  funct ions of  F .  Then  it can be shown tha t  
g has at  least one nonzero linear structure.  To prove the claim, we assume t h a t  g 
has no nonzero linear structures.  Then  by L e m m a  11, g is a bent  function.  This  
contradic ts  the fact  t ha t  F is regular and tha t  the nonzero linear combinat ions  
of  its componen t  funct ions are all balanced quadrat ic  or affine functions and 
hence have linear structures.  

Next  we show tha t  the differential uni formity  of  an S-box is closely related 
to  the  number  of  linear s t ructures  of  an nonzero linear combinat ions  of  the 
componen t  funct ions o f  the  S-box. 

T h e o r e m l 6 .  Let F = ( f l , - - . , f s )  be a regular quadratic n x s S-box. Then 
the differential uniformity of F satisfies ~ < 2 n-s+t, where 1 < t < s (see also 
Theorem 15), if  and only if  any nonzero vector a E Vn is a linear structure of 
at most 2 t - 1 nonzero linear combinations o f f 1 , . . . ,  fs .  

T h e o r e m  16 indicates t ha t  with an S-box with a smaller 6, i.e., a smaller 
t, the nonzero linear combinat ions  of  its component  functions have less linear 
s tructures.  This  coincides with our intui t ion tha t  the nonlineari ty of  an S-box 
grows with the s t rength  of  its i m m u n i t y  to  differential at tacks.  

2 .3  D i f f e r e n c e  D i s t r i b u t i o n  T a b l e  v s  S A C  

A r m e d  with Theo re m  16, we fur ther  reveal t ha t  differential uni formi ty  is t ight ly 
associated with the strict  avalanche characteristics. 

T h e o r e m  17. Let F = ( f y , - - - ,  f~) be a differentially 6-uniform regular quadratic 
n • s S-box, where 8 = 2 '~- ,+t ,  1 <_ t <_ s (see also Theorem 15). I f  t and 
s satisfy s < 2 s - t -2 ,  then there exists a nonsingular matrix of order n over 
G F ( 2 ) ,  say A, and a nonsingular matrix of order s over G F ( 2 ) ,  say B,  such 
that ~ (x )  = F ( x A ) B  = ( f l ( X A ) , . . . ,  f s ( x A ) ) B  = ( r 1 6 2  is also a 
differentially 6-uniform regular quadratic n • s S-box whose component func- 
tions all satisfy the SAC. 

Proof. Again  denote by gi, -- . ,  g2.-1 the 2 ~ - 1 nonzero linear combinat ions  of  
f l , . . . ,  fs,  and by cq,  . . . ,  c~2--1 the 2 u - 1 nonzero vectors in V~. We construct  a 
b ipar t i te  g raph  F with gl,  - . . ,  g 2 . - i  on one side and a l ,  . . . ,  a 2 ~ - i  on the other  
side. An  edge exists between gi and a j  if and only if a j  is a linear s t ructure  of  
gi. By Theo rem 16, there exist at  mos t  2 t - 1 edges associated with each a .  Thus  
there exist at  mos t  (2 t - 1) .  (2 n - 1) edges in the graph F .  

Denote  by tj the number  of  linear s tructures of  gj, j -- 1, . . . ,  2 s - 1. W i t h o u t  
loss of  generali ty suppose tha t  t i  _< t2 <_ . . -  <__ t2 , -1 .  I t  can be seen tha t  
tj  < 2 = - s + t + i ,  j = 1 , . . . ,  2 "-1.  The  reason is as follows. Suppose tha t  it is not  
the case. Then  we h a v e t l + . . - + t 2 , - 1  > 2s-1 .2  n - s + t + l  = 2 n+t > ( 2 t - 1 ) . ( 2 n - 1 ) .  

This  contradic ts  the fact  t h a t / "  has at  mos t  2 t - i  �9 (2 n - 1) edges. 
Now set 12 = { g l , . . . , g 2 , - l + l } .  As the rank of  12 is s, we can choose s 

funct ions f rom 12, say gjl,  . . - ,  gj . ,  such tha t  they  are all l inearly independent .  
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Since s _< 2 TM, we have tjx + . . .  + t j ,  < s �9 2 "-*+t+l  _< 2 n-1. By Theorem 2 
of [22], there exists a nonsingular matr ix  A of order n over GF(2) ,  such that  all 
component functions of (gjt ( x A ) , . . . ,  gjo ( z A ) )  satisfy the SAC. Furthermore, as 
each gj is a nonzero linear combination of f l ,  . . . ,  fs, there is a nonsingular matr ix  
B of order s over GF(2)  such that  ( g j , ( x ) , . . . , g j , ( z ) )  = ( f l ( x ) , . . . ,  f~ ( z ) )B .  
Accordingly, by Lemma 10, 

~ ( x )  = F ( x A ) B  = ( f l ( x A ) ,  . . ., f a ( x A ) ) B  = ( r  r  

is a differentially 6-uniform regular quadratic n • s S-box, where each component 
function r  satisfies the SAC. 

In Theorem 17, when the differential uniformity 6 = 2 n-s+t  is small, the 
parameter  t is also small, and the condition s _< 2 ̀ - t - 2  is readily satisfied. 
Equivalently we can say that  S-boxes strong against differential attacks are also 
SAC-fulfilling, subject to a nonsingular linear transformation. Again, this coin- 
cides with our intuition. 

3 A U n i f i e d  T r e a t m e n t  o f  Q u a d r a t i c  P e r m u t a t i o n s  

This section is concerned with differentially 2-uniform quadratic n • n S-boxes. 
Since such an S-box F is a permutation,  F (x )  ~ F (x  ~ c~) takes a vector two 
times or does not take it, while x runs through V, once. F has the following 
property: for any nonzero vector c~ EVn,  F ( x )  (~ F ( x  ~ ~) runs through 2 n-1 
vectors in Vn, each twice, but  not through the other 2 n-1 vectors, while x runs 
through Vn. 

Although there are many question marks regarding the applicability of dif- 
ferentially 2-uniform quadratic n • n S-boxes in computer security practices, 
primarily due to their low algebraic degree, these S-boxes have received exten- 
sive research in the past years [17, 16, 6, 2, 15] and hence deserve our special 
attention. These S-boxes appear in various forms and researchers have employed 
different techniques, some of which are rather sophisticated, to prove their non-  
linearity characteristics. By refining our proof techniques described in Section 2, 
we will show in this section that  all differentially 2-uniform quadratic permuta- 
tions, no mat ter  how they are constructed, have the same nonlinearity and can 
be transformed into SAC-fulfilling S-boxes. This greatly simplifies the proofs for 
a number of known results. 

T h e o r e m  18. Let F = ( f l , . . . ,  fn)  be a quadratic permutation on Vn. Then the 
following s ta tements  are equivalent: 

(i) for  any nonzero linear combination of  f l , . . . ,  fn ,  say g(x)  = ~7"=1 cr162 

its nonlinearity satisfies Ng = 2 n-1 -- 2�89 ("-1).  
n (ii) any nonzero linear combination Of f x , . . . , f n ,  say g(x)  = y~j=~ c j f j ( z ) ,  has 

a unique nonzero linear structure. 
Oil) each nonzero vector in Vn is the linear structure of a unique nonzero linear 

combination of  f l ,  . . ., f , .  
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(iv) F is differentially 2-uniform, i.e. for each nonzero vector a E Vn, F(x)  
F(x  ~ a) rnns through half of the vectors in Vn while x runs through Vn. 

(v) every nonzero linear combination of the component functions, say g, can 
be expressed as g(z) = x C z  r ,  where z = ( z l , . . . , z , ) ,  C is a matviz over 
GF(2) and the rank of C ~ C T is n - 1. 

Proof. The equivalence of (i) and (if): By (if) of Theorem 13, a quadratic function 
has a nonlinearity 2 " -1  - 2 � 8 9  ( ' -1 )  if and only if its linearity dimension is 1. 

The equivalence of (if) and (iii): Let a l , - - - ,  c~2~-1 be the 2 n - 1 nonzero 
vectors in V,~ and g l , - . . ,  g2~-1 be the 2 n - 1 nonzero linear combinations of 
f I , -  �9 fn.  Similarly to the proof of Theorem 17, we construct a bipartite graph 
F with a l , . . . ,  a2=-1 on one side and g l , . . . , g2~-1  on the other side. A link 
exists between ai  and gj if and only if ai is a linear structure of gr Since each 
gj is balanced, it must not be a bent function. By Lemma 11, each gj has at 
least one nonzero linear s t ructure . / ,From the construction of F,  we can see that  
each gj has an edge associated with it. On the other hand, for any nonzero 
vector, say a,  F ( z )  ~ F ( z  @ c~) does not run through the vector zero, as F ( z )  is 
a permutat ion on Vn. By Theorem 5, there exists a nonzero linear combination 
of the component functions of F(z )  ~ F ( z  O a),  say 

n 

(.) �9 (. o,)], (3) 
j= l  

that  is not balanced. Since f j  is quadratic, (3) is affine. Thus (3) must be a 
constant. Write g~(z) = ~ ' = 1  cjf i(z)" Then a is a nonzero linear structure of 
g~. Thus each a has at least one edge associated with it. In summary, each gj 
has at least one edge associated with it, and so does each a j .  As both sides of 
the biparti te graph have the same number of edges, (if) and (iii) must stand in 
parallel. 

The  equivalence of (iii) and (iv): First we note that  the differential uniformity 
of a permutat ion is at least 2. Let s = n and t = 1. Then By Theorem 16, F 
is differential 2-uniform if and only if each nonzero vector in V,~ is the linear 
structure of at most one nonzero linear combination of f l , . . . ,  f , .  In the proof 
of the equivalence of (if) and (iii), it is has been shown that  each nonzero vector 
in V,~ is a linear structure of at least one nonzero linear combination of the 
component functions. Thus F is differential 2-uniform if and only if each nonzero 
vector in V, is the linear structure of a unique nonzero linear combination of the 
component functions. 

The equivalence of (iv) and (v): Note that  for any quadratic function g on 
V,~, there exists an n x n matr ix  C on GF(2)  such that  g(z) = z C z  T. In [16], 
where the statement (v) is called the property (P), Nyberg and Knudsen proved 
that  (v) implies (iv). We now show that  the opposite is also true. Suppose that  
F is a differentially 2-uniform permutation on V,,. Let g be a nonzero linear 
combination of the component functions, and let C a matr ix  such that  g(z) = 
z C z  w. By (if), we have ~ = 1, where l is the linearity dimension of g. By 
Proposition 4 of [14], the linearity dimension of g and the rank of C @ C w satisfy 
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the following relation: s = n - rank(C(gCT) .  Hence we have r a n k ( C ~ C  r )  = n - 1 ,  
namely (iv) implies (v). This proves the equivalence of (iv) and (v). 

An important  corollary of Theorem 18 is: 

C o r o l l a r y  19. There exists no differentially 2-uniform quadratic permutation 
on an even dimensional vector space. 

Proof. Let F ( x )  = ( fa , - - - ,  fn)  be a differentially 2-uniform quadratic permu- 
tat ion on V,~. By (it) of Theorem 18, each component function fi has a unique 
nonzero linear structure. Hence the linearity dimension of fi is 1, and the corol- 
lary follows immediately from Part  (i) of Theorem 13. 

This gives a negative answer to an open problem regarding the existence of 
differentially 2-uniform quadratic permutations on an even dimensional vector 
space. 

Now it is a right place to point out an error in [2]. Corollary 2 of [2] states 
tha t  the permutat ion defined by a polynomial P(x)  = r 2~(2k+1) is a differentially 
2-uniform quadratic permutation,  where r E GF(2n), g, k and n are positive in- 
tegers, and gcd(2 k + 1, 2" - 1) = gcd(k, n) = 1. Beth and Ding claim that  their 
corollary indicates the existence of differentially 2-uniform quadratic permuta- 
tions on V,, n even. This seemingly contradicts the non-existence result shown 
in our Corollary 19. However, one can see that  when n is even, k must be odd 
in order for gcd(k, n) = 1 to stand. On the other hand, if n is even and k is odd, 
then gcd(2k + 1, 2" - 1 )  has 3 as a factor. Thus gcd(2k+l ,  2n - 1 )  = gcd(k, n) = 1 
can not stand for n even. In other words, Beth and Ding's corollary does not 
imply the existence of differentially 2-uniform quadratic permutations on V,~, n 
even. 

The following result has been pointed out by these authors in [22]. It is 
included here, together with its proof, for the sake of completeness. 

T h e o r e m 2 0 .  Let F = ( f l , . . . ,  fn) (n >_ 3) be a differentially g-uniform quadrati~ 
permutation. Then there exists a nonsingular matrix A of order n over GF(2)  
such that ~(x)  = F ( z A )  = ( f a ( x A ) , . . . , f n ( z A ) )  = ( r  r  is also 
differentially e-uniform, and each component function Cj satisfies the SAC. 

Proof. When n > 7, it directly follows from Theorem 17. The proof described 
below applies to all n >_ 3. 

Let �9 denote the set of vectors 7 such that  f j  ~ f j  (x @ 7) is not balanced 
for some 1 < j < n. By (it) and (iii) of Theorem lS, we have I#l = n. Since 
14~l < 2 n-1 for all n > 3, by Theorem 2 of [22], there exists a nonsingular matr ix  
A of order n over GF(2)  that  transforms F into a SAC-fulfilling S-box. 

4 Conclus ion 

We have proved that  for quadratic S-boxes, there are close relationships among 
differential uniformity, linear structures, nonlinearity and the SAC. We have 
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shown that by using our proof techniques, all differentially 2-uniform quadratic 
permutations can be treated in a unified fashion. In particular, general results re- 
garding nonlinearity characteristics of these permutations are derived, regardless 
of the underlying methods for constructing the permutations. 

A future research direction is to extend the results to the more general case 
where component functions of an S-box can have an algebraic degree larger than 
2. Another direction is to enlarge the scope of nonlinearity criteria examined so 
that it includes other cryptographic properties such as algebraic degree, propa- 
gation characteristics, and correlation immunity. 
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