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Abstract. Linear cryptanalysis, introduced last year by Matsui, will
most certainly open-up the way to new attack methods which may be
made more efficient when compared or combined with differential crypt-
analysis.

This paper exhibits new relations between linear and differential crypt-
analysis and presents new classes of functions which are optimally resis-
tant to these attacks. In particular, we prove that linear-resistant func-
tions, which generally present Bent properties, are differential-resistant
as well and thus, present Perfect Nonlinear properties.

1 Introduction

Matsui has introduced last year a new cryptanalysis method for DES-like cryp-
tosystems [Mat94]. The idea of the method is to approximate the non-linear S-
boxes with linear forms. Beside, the performances of linear cryptanalysis seems
next to differential cryptanalysis ones, though a hittle better. These similitudes
seem to mean that the two methods are based on common fundamental princi-
ples.

Each type of cryptanalysis measures the resistance of functions. In this re-
port, we investigate functions F' : K? — K1?, where K is the Galois field with
two elements, and p and ¢ are two integers. Using well known results on Bent
functions we will show that linear resistant functions are also differential resis-
tant.

1.1 Notations
— We call “characteristic function of F” and denote 6z the boolean function
fp : KP x K1 - K

0 (z, ) {1 if y = F(z),

0 otherwise.

* On leave from Délégation Générale de ’Armement.
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— Let f: K? — R be a function, we denote by f the Hadamard-Walsh trans-
form (discrete Fourier transform):

VweK? fw)= 3 fle)(~1)**,
z€K?

where z.w is the dot-product over K and where the sum is evaluated over
the reals.
— Let f and g be two functions over K?, we denote f ® g the convolutional

product
VaeK* (fog)a)= Y. f@)(a®a),
TEK?
where @ is the sum over K? (bit-wise Xor).
— Let f : KP — K be a boolean function, we denote by x;(z) = (—1)(*) the
+1-representation of f.

1.2 Cryptanalysis objects

Let FF : K? — K? be the function we want to cryptanalyze. If we use the
differential cryptanalysis method, we will need non empty sets
Dp(a,b)={2€ K? / F(2®a)® F(z) = b},
where a € K? —{0} and b € K?. The efficiency of differential cryptanalysis based
upon a set Dp(a,b) is measured by its cardinality
ér(a,b) = #Dp(a,b).

Similarly, if we use the linear cryptanalysis method, we will take advantage of
sets

Lp(a,b)={z€ K?/ a.z®b.F(z) = 0},

where a € K? and b € K? — {0}, such that #Lp(a,b) # ng The efficiency of
linear cryptanalysis that uses the set Lp(a,b) is measured by the discrepancy
between the cardinality of Ly(a,b) and the average cardinality

Ar(a,b) = #Lp(a,b) — ‘—I—;—ﬂ.

Hence the resistance of the function F' can be measured by:

Ap = sup ép(a,b) for the differential cryptanalysis.
a#0,b

Ap = sup |Ap(a,b)| for the linear cryptanalysis.
b#0,a
The lower these values are, the more resistant the function F will be against the
corresponding cryptanalysis method.
Note 1 If Ap = 6, then F is said differentially 6-uniform [Nyb94].

Definition 1 For a given set F of functions, we will say a function F € F is
differential resistant in F if Ap is minimal. As the same, we will say F is linear
resistant in F if Ap is minimal.
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1.3 Bent functions
We just recall here the definitions of Bent functions.

Definition 2 Let p be an even integer. A boolean function f over K? is called
Bent if and only if
Vs € KPx5(s) = +27/%.

In fact, 2?/2 is an absolute lower bound for sup sex» 1X7(s)|. Hence, the Bent
functions are exactly those which reach this bound. This definition has been
extended by Nyberg [Nyb91]:

Definition 3 A function F' : KP — K? is Bent if and only if, for all c € K1
the boolean function x — c.F(x) is Bent.

This is equivalent to
Ve # 0Vs Op(s,c) = £2P/2,

as Xer(s) = Op(s,c). Thus, 2¢/2 is a lower bound for SUP, e K»,c£0 Iép(s,c)|.
Hence, the vectorial Bent functions are exactly those which reach this bound.

2 Resistance to cryptanalysis

In the following, we still consider the set F of the functions F : K? — K7 with
p and q fixed integers.

2.1 Differential resistant functions in F

Resistance to differential cryptanalysis have already been studied. We just recall
here a few results.

Lemma 1 For all (a,b) in K? x K9, we have 6r(a,b) = (0r ® 8r)(a,bd).
Proof. We have:

(br®0F)(a,b)= >  Op(z,y)br(ad®z,by)
r€EK? yeKa

= Y Or(a®,b® f(x))

zEK?P
=#{zc K?/ b® f(z) = f(a® z)}
= 6p(a,,b).

Theorem 1 For any mapping F, we have Ap > 2771,

Proof. Tt is easy to see that for all fixed a € K?, we have ), i, 6r(a,b) = 27,
which ensures the result.

Note that this bound cannot be reached if p < ¢ as this is not an integer. We
still define:

Definition 4 A function F is called Perfect Nonlinear if and only if Ap = 2°74,
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2.2 Linear resistant functions in F
Lemma 2 For all (a,b) in K x K1, we have Ap(a,b) = 16p(a,b).

Proof. We have:

br(a,b)= Y O(z,y)(-1)*"b

zcKrP,ycKe

— Z (_l)a.a;qab,F(y)

zEK®
= |Lr(a,b)| - (2 — |LF(a, b))
= 2Ar(a,b).

The theory of Bent functions shows that 2°/2 is an absolute lower bound
for sup |0r(a,d)| (see section 1.3). The functions which reach this bound are
precisely vectorial Bent functions. Hence, when p and g are such that this bound
can be reached, the linear resistant functions are the vectorial Bent functions.

2.3 Links between the absolute bounds

Theorem 2 ([Nyb91, MS90]) A function is Perfect Nonlinear if and only if
it is Bendt.

Proof. Let F : KP — K1 be a Perfect Nonlinear function. Then Ap = 2°~¢, and
so for all a # 0, 6r(a,b) = (0r ® 6F)(a,b) = 2P~ 9. Besides, 6r(0,0) = 27, and
for all a # 0 85 (a,0) = 0. Hence, we get

(Gr)*(a,b) = (Or ® Or)(a, b),
= 3" (0r ® 07)(z, y)(~1)* =0,

x!y
= 4270 Y (—1)*TOy,
z#0,y

{2Pifb;é0,

0if b=0and a #0,
2% ifa=b=0.

So F is Bent as fr(a,b) = £27/2 for all (a, b), b # 0. The converse can be proved
similarly using the classical Walsh transform formulas:

rr—

(0r ®05)(a,) = 5oz (9 BOr)(a,D) = = (6p)".

9+g

Theorem 3 ([Nyb91]) Bent functions ezist only for p > 2q and p even.
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Proof. If F is Bent, then for all b # 0, ép(a,b) = +2%. Hence, p is even. We
denote S the sum . .
=275 "06r(0,0).
b#£0
If ro is the cardinality of the set {b # 0/ dr(0,b) = +2°/2}, then
S=rg—(29-1~rg),
= 2rg— 29 4 1.
Hence, S is an odd integer. Besides, we have

ZéF(Oab) = ZéF(O)b) - éF(O)O))

70 b

— Z Z(_l)b.F(:n) —9P
b =

— Z Z(_l)b.F’(z) —9pr
z b

= 2qao -2?

where aq is the cardinality of the set {z / F(z) = 0}. Hence, as S = 2~ 5 (2%ao—
2?P), we have

ao = 2579(S + 2%).
As ag is an integer and S is an odd integer, 25~¢ must be an integer. Hence
P22

So, differential-resistance is equivalent to linear-resistance when p is even and
greater than 2¢. With these dimensions, such functions are well studied. We can
build an instance with construction similar to those of boolean Bent functions.

Example 1 Similarly to the construction of Maiorana-McFarland’s class of
boolean Bent functions, for all permutation # : KP — KP?, and all function
f: KP — K?, the mapping F : KP x KP — KP? defined as

F(z,y) =z x n(y) + f(y)
where X is the multiplication over GF(2P), is Ben.

For p < 2q, we have to look for other bounds.

3 Almost Perfect Functions

3.1 Almost Perfect Nonlinear functions

Definition 5 ([NK93]) We have Ar > 2. The functions such that Ap = 2 are
called Almost Perfect Nonlinear (APN).

As Arp > 2779, the APN functions can exist only when ¢ > p (the case
(p,q) = (2,1) is trivial). In this case, the differential resistant functions are the
APN functions.
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3.2 Almost Bent functions

Similarly, we can get a lower bound for Ar.

Lemma 3 For all mapping F', we have

Z 0% (a,b) > 227(3 x 2PH9 — 0t1 _ 9%p)
b#0,a

with equality if and only if F is Almost Perfect Nonlinear.

Proof. For all function f over K", let us recall these classical properties of Walsh
transform:

=77,
f)=2"4,

and ) f(a) = f(0).

From the definition of Ay we have

_ 21"‘1 ifa= 0,
Ar(a,0) = {0 otherwise,

and from the definition of ép, we have also ér(0,0) = 2P. Hence, we have for
any mapping F:

Y G(a,0) = 3 (67 ®0r)(a b),

b#0,a b#£0,a
=Y (67 ® Or)2(a,b) — 3 (6F ® Or)*(a, 0),
a,b a

= [6r)1(0,0) — 3"(r)?(a,0),

a

= 276 @ 6£)(0,0) - 2* Y _(Ar)*(a,0).

a

From the definition of convolutional product we have

[6F ®6¢1(0,0) = _ 6r(a,b)ér(a,b),
a,b

= )" 63(a,b) +62(0,0).
a#0,b

Collecting these results, we have

D 05(a,b) = 2749 > 63 (a,b) + 2% — 2%,
b#0,a a#0,b
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For all even number n > 0, we have n2 > 2n, and n? = 2n if and only if
n =2 or n = 0. Hence, for all a # 0 and all b, we have 6Z(a,b) > 26r(a,b), and
we have the equality if and only if F is Almost Perfect Nonlinear. Beside, we
have

> 6p(a,0) =D br(a,b),

a#0,b a0 b
-y,
a#0
=27 x (2P - 1).
Hence, we have
E é}(a,b) Z 2P+Q X 2 x P % (21’ _ 1) + 23p+q _ 24p’
b#£0,a
> 22p(3 x 9PFe _ 9e+l _ 221;).
with equality if and only if F is Almost Perfect Nonlinear.

We can now prove the following bound on Ap:

Theorem 4 For all mapping F, we have

D _ p—1 _ 1/2
AFZ%(3x2p—2—-2(2 DIL 1)) .

20 -1

When the bound is reached, we will say the function Almost Bent. Moreover, an
Almost Bent function F is Almost Perfect Nonlinear as well.

Proof. First, we notice that

A% = sup A%(a,b),
a,b#0

1.
sup 2(0r)?(a,b)
a,b#0

and that for all mapping N(a, b) over Z,

N4(a,b
M = sup N%(a,d) > ——————za’b#o 2(a )
a,b#£0 Za,b;éON (a’b)

with equality if and only if

N(a,b) =0,
Ya,b# 0 {or N(a,b) = —v/M,
or N(a,b)=+\/_M.
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We will now evaluate the sum 3 , 0%(a, b). For all mapping F, we have

Y (et = 3 (6 ® Or)(a,b),

b#0,a b#0,a

= Z Sp(a, b),

b#£0,a

= ng(a,b) - ZsF(a:O)’

= (6r1(0,0) — 43" X2 (a,0),

= 2P%465(0,0) — 42%(0,0),
=2%(27 - 1).

Hence, using lemma 3 we have

22p(3 x 9p+e _ 99+1 _ 22p)

2 _ 9.)2
= e 0D 2 T ey v
3 x 9pte . 9¢+1 _ 92
> s (2)
P _ p—1 _
Z3><21”--2—2(2 ;)q(il 1), 3)

with equality if and only if F' is Almost Perfect Nonlinear, and
Ar(a,b) =0,
Va,b ;é: 0< or )\F(a,b) = —AF,
or Ap(a,b) =+Ap.

Note 2 For Almost Bent Functions, the function Ap(a,b) for b # 0 takes at
most three different values that is to say 0, —Ap or Ap. This looks like Bent
Junctions for which Ap(a,d) for b # 0 takes at most two different values —Ap or
Ap.
Lemma 4 If F : K? — K17 is Almost Bent and not Bent, then p < q.
Proof. We already have the absolute bound of the Bent functions
1
Ap > 52‘%.

Hence, if F' is Almost Bent and not Bent, then using expression 2 we have

1 3 x 2p+q — 929+1 _92p 1
5\/ ) >3V,
3 x 9p+e _ 99+l _92p
. > 2F

2¢—1
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3 x pte _9etl _ 9% 5, 9pte _ 9P
optetl _9etl _ 92 4 9p 0,
29+1(22 — 1) — 2P(2? — 1) > 0,
q+1>p.
Lemma 5 ([Cas94]) For all ¢ > p, the amount

P -1 _
@@ -1 @

s not an integer.
Proof. We have

(210 —_ 1)(2p—1 - 1) - (24 - 1)22p—1—q — (3 x 9Pl _9p—1l-q _ 1)’
=Ax(27-1)-B.
As ¢ > p, we have —22P—1-¢ > 2P~ hence 3 x 27~ — 227179 > 97 > 1 and
the remainder B is strictly positive. Besides, we have
B<21—1 ¢ 3x2°"1 _92-1-0_ 1911,
= W3- 27 < 20

Asq¢>p+1,2<3—-2P"9< 3 hence 2°"1(3 — 2P~9) < 3 x 2°~!, and besides
21 > 27+182(3) | Consequently, we have

(2 -1)(2*-1)=Ax(2!-1)-B,
with 0 < B < 29 — 1, and the amount 4 cannot be an integer if ¢ > p.

Theorem 5 If F : K — K7 is Almost Bent and not Bent, then p = q, p is
odd. The above bound then turns in

Ap = 2o (5)
2
Proof. The bound 3 cannot be reached if the fraction 4 is not an integer. Hence,

using lemmas 4 and 5 we get p = q. The bound 3 then gives 5, and so p must
be odd.

Example 2 Let F(z) = £+ be a power polynomial in GF(2"). If n is odd,
1< k < n and ged(n,k) = 1, then F is an Almost Bent permutation [Nyb9{,
proposition 3].

Example 3 (C. Carlet) Let F(z) = z~! be the inversion mapping in GF(2")
completed in 0 by F(0) = 0. If n is odd, then F is an Almost Perfect Nonlin-
ear Permulation [Nyb94, proposition 6]. Yet, it is not an Almost Bent function
(consequence of [LW90, theorem 3.4]).
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4 Conclusion

To sum up the results, we have :

~ When p > 2q and p even, differential-resistant is equivalent to linear-resistant
and to vectorial Bentness. We have in this case Ap = %2”/ 2 and Ap = 2°79.

—~ For p = ¢ and p odd, differential-resistance is equivalent to Almost Per-
fect Nonlinearity (where Ap = 2), linear-resistant is equivalent to Almost
Bentness (where Ap = %2(1“'1)/ 2) and linear-resistance implies differential-
resistance.

— For ¢ > p, 2 is a lower bound for Ap, and we have :

1 (2 - 1)(2r-1 - 1)\ /2
> . P 9 _
AF_2(3><2 22 S

Results in the other cases are still open. Particularly, if p = ¢ and p even,
there is no simple characterization of linear-resistant functions. Similarly, for
¢ < p < 2g, there exists functions such that Ap = %2':2&, but we ignore whether
there exists functions such that %25 < Ap < %2%‘1' in this case.
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