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A b s t r a c t .  Linear cryptanalysis, introduced last year by Matsui, will 
most certainly open-up the way to new attack methods which may be 
made more efficient when compared or combined with differential crypt- 
analysis. 
This paper exhibits new relations between linear and differential crypt- 
analysis and presents new classes of functions which are optimally resis- 
tant to these attacks. In particular, we prove that linear-resistant func- 
tions, which generally present Bent properties, are differential-resistant 
as well and thus, present Perfect Nonlinear properties. 

1 Introduct ion 

Matsui has introduced last year a new cryptanalysis method for DES-like cryp- 
tosys tems  [Mat94]. The  idea of  the me thod  is to  approximate  the non-linear S- 
boxes with linear forms. Beside, the performances of  linear cryptanalysis  seems 
next  to differential cryptanalysis  ones, though  a little better.  These similitudes 
seem to  m e a n  t h a t  the two me thods  are based on c o m m o n  fundamenta l  princi- 
ples. 

Each type  of  cryptanalysis  measures the resistance of  functions. In  this re- 
por t ,  we investigate funct ions F : K p --~ K q ,  where K is the Galois field with 
two elements,  and p and q are two integers. Using well known results on Bent 
funct ions we will show tha t  linear resistant functions are also differential resis- 
tant .  

1 .1 N o t a t i o n s  

- We call "characterist ic funct ion of  F" and denote OF the boolean funct ion 

OF : K P  x K q  -+ K 

1 if y = F(~), 
0F(x,  y) ~-~ 0 otherwise. 
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- Let f : KP --+ ]~ be a function, we denote by ] the Hadamard-Walsh trans- 
form (discrete Fourier transform): 

vw e ] (w)  = S(=)(-1)  =.=, 
xEKP 

where z.w is the dot-product  over K and where the sum is evaluated over 
the reals. 

- Let f and g be two functions over K p, we denote f | g the convolutional 
product  

Va e g p ( f  | g)(a) = E f (x)g(a ~ x), 
xEKP 

where ~ is the sum over K p (bit-wise Xor). 
- Let f : KP --+ K be a boolean function, we denote by Xj(X) = (_1)I(=) the 

-t-l-representation of f .  

1.2 C r y p t a n a l y s i s  o b j e c t s  

Let F : Kp --. Kq be the function we want to cryptanalyze. I f  we use the 
differential cryptanalysis method,  we will need non empty  sets 

OF(a,b) = {z e K p / F(z  @ a) ~ F(z)  = b}, 

where a E K p - { 0 }  and b E Kq. The efficiency of differential cryptanalysis based 
upon a set DF(a, b) is measured by its cardinality 

t~r(a, b) = #OF(a,  b). 

Similarly, if we use the linear cryptanalysis method,  we will take advantage of 
sets 

LF(a, b) -- {z E K p / a.z + b.F(z) - 0}, 

where a E g p and b e gq  - {0}, such that  #LF(a ,  b) r KI~. The efficiency of 
linear cryptanalysis tha t  uses the set LF(a, b) is measured by the discrepancy 
between the cardinality of LF(a, b) and the average cardinality 

~F(a, b) = #LF(a ,  b) IKPl 
2 

Hence the resistance of the function F can be measured by: 

A F  = sup $F(a,  b) for the differential cryptanalysis. 
a~O,b 

A F  -- sup I ) t f (a ,  b)] for the linear cryptanalysis. 
b~O,a 

The lower these values are, the more resistant the function F will be against the 
corresponding cryptanalysis method.  

N o t e  1 I f  A F -" 6, then F is said differentially 6-uniform [Nyb94]. 

D e f i n i t i o n  1 For a given set :7: of functions, we will say a function F E 3= is 
differential resistant in 3: if  AF is minimal. As the same, we will say F is linear 
resistant in :1: if  AF is minimal. 
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1.3 B e n t  f u n c t i o n s  

We just  recall here the definitions of Bent functions. 

D e f i n i t i o n  2 Let p be an even integer. A boolean function f over K p is called 
Bent i f  and only if 

Vs e K P ~ ( s )  -- •  p/2. 

In fact, 2 p/2 is an absolute lower bound for supseKp I~(s ) l .  Hence, the Bent 
functions are exactly those which reach this bound. This definition has been 
extended by Nyberg [Nyb91]: 

D e f i n i t i o n  3 A function F : K p ~ Kq is Bent if and only if, for all c E K q 
the boolean function x ~ c .F(x)  is Bent. 

This is equivalent to 

Vc # 0Vs OF(S, c) = 4-2 ~/2, 

as X~.F(s) = 0F(s, c). Thus, 2 p/2 is a lower bound for sup,eg,,r  IOF(S, e)l. 
Hence, the vectorial Bent functions are exactly those which reach this bound. 

2 R e s i s t a n c e  t o  c r y p t a n a l y s i s  

In the following, we still consider the set yr of the functions F : K p --+ Kq with 
p and q fixed integers. 

2.1 D i f f e r e n t i a l  r e s i s t a n t  f u n c t i o n s  in  :~- 

Resistance to differential cryptanalysis have already been studied. We just recall 
here a few results. 

L e m m a  1 For all (a, b) in g p x gq ,  we have ~F(a, b) = (OF ~ OF)(a, b). 

Proof. We have: 

(OF | OF)(a, b) = 
xEKP ,yEKq 

: Z OF(a @x,b@ f ( x ) )  
xEKP 

= • { x E  K p/ /  b ~  f ( x ) =  f ( a @ x ) }  

= 6F(a, b). 

T h e o r e m  1 For any mapping F, we have AF >_ 2 p-q. 

Proof. It is easy to see that  for all fixed a E K p, we have ~beKq 6F(a, b) = 2 p, 
which ensures the result. 

Note tha t  this bound cannot be reached if p < q as this is not an integer. We 
still define: 

D e f i n i t i o n  4 A function F is called Perfect Nonlinear if and only if AF = 2 p-q. 
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2.2 Linear resistant functions in 

L e m m a  2 For all (a, b) in K p • Kq, we have )~F(a, b) = �89 b). 

Proof. We have: 

OF(a, b) = E o(x, y)(-1) ~'~b'y 
~EKP,yEK~ 

= ~ ( -1)  " '~b'F(y) 
~EK~ 

= ILF(a, b)l - (2P - ILF(a, b)l) 

---- 2)~F(a, b). 

The theory of Bent functions shows that  2 p/2 is an absolute lower bound 
for sup IOF(a,b)l (see section 1.3). The functions which reach this bound are 
precisely vectorial Bent functions. Hence, when p and q are such that  this bound 
can be reached, the linear resistant functions are the vectorial Bent functions. 

2.3 Links between the a b s o l u t e  b o u n d s  

T h e o r e m  2 ( [Nyb91,  MS90]) A function is Perfect Nonlinear i f  and only if  
it is Bent. 

Proof. Let F : KP --. Kq be a Perfect Nonlinear function. Then AF = 2P-q, and 
so for all a r O, 6F(a, b) = (OF | OF)(a, b) = 2 p-q. Besides, 5F(0, 0) = 2 p, and 
for all a 5s 0 6F(a, O) = O. Hence, we get 

(OF)2(a, b) = (oF | O, 
= ~-~(OF | OF)(X, y)(--1) a'x~b'y, 

= 2p + 2p-q ( - 1 ) ~  
x~O,y 

{ 2PifbTtO, 
= 0 if b = 0 and a r 0, 

2 2p i f a  = b = 0. 

So F is Bent as/~F(a, b) = :1:2 v/2 for all (a, b), b ~ 0. The converse can be proved 
similarly using the classical Walsh transform formulas: 

T h e o r e m  3 ([Nyb91])  Bent functions exist only for p > 2q and p even. 
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Proof. If F is Bent, then for all b # O, OF(a, b) = -4-2~. Hence, p is even. We 
denote S the sum 

s = b). 
b;~0 

If r0 is the cardinality of the set {b ~ 0 / 0F(0, b) = +2p/2),  then 

S = ro - (2 q - 1 - to), 

= 2ro - 2 q + 1. 

Hence, S is an odd integer. Besides, we have 

OF(O,b) = ~ 0~(0, b ) -  0F(0, 0), 
br b 

:  (-llb - 2 ,  
b x 

= E E (- l lb 'F(~) - 2p 

x b 

= 2qao - 2 p 

where ao is the cardinality of the set {x / F ( x )  = 0}. Hence, as S = 2-  ~ (2qao - 
2 p), we have 

ao = 2~-q (S  + 2~). 

As a0 is an integer and S is an odd integer, 2~-q must be an integer. Hence 
p_> 2q. 

So, differential-resistance is equivalent to linear-resistance when p is even and 
greater than 2q. With these dimensions, such functions are well studied. We can 
build an instance with construction similar to those of boolean Bent functions. 

E x a m p l e  1 Similarly to the construction of Maiorana-McFarland's class of 
boolean Bent  functions, for  all permutation ~r : K p ~ K p, and all function 
f : K p ~ K p, the mapping F : K p • K p ~ Kp defined as 

F ( z ,  y) = x • r (y)  + f ( y )  

where • is the multiplication over GF(2P), is Bent. 

For p < 2q, we have to look for other bounds. 

3 A l m o s t  P e r f e c t  F u n c t i o n s  

3.1 A l m o s t  P e r f e c t  N o n l i n e a r  f u n c t i o n s  

D e f i n i t i o n  5 ( [NK93] )  We have A F >_ 2. The functions such that AF  = 2 are 
called Almost  Perfect Nonlinear (APN).  

As AF > 2 p-q, the APN functions can exist only when q > p (the ease 
(p, q) = (2, 1) is trivial). In this case, the differential resistant functions are the 
APN functions. 
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3.2 Almost  Bent  f u n c t i o n s  

Similarly, we can get a lower bound for AF. 

L e m m a  3 For all mapping F, we have 

y~  O~,(a,b) > 22P(3 • 2 p+q - 2 q+l - 22P), 
b~O,a 

with equality if and only if F is Almost Perfect Nonlinear. 

Proof. For all function f over K n , let us recall these classical properties of Walsh 
transform: 

(])2 = f | f ,  

(f) ---- 2nf, 

and ]f0). 
a 

From the definition of XF we have 

2p-I if a = 0, 
he(a, 0) = 0 otherwise, 

and from the definition of 6F, we have also ~le(O, 0) = 2P. Hence, we have for 
any mapping F: 

Z 04F(a'b)= Z (O-~"OF)2(a'b)' 
b~O,a br 

= E(O~'OF)2(a,b)--  E ( O ~ F ) 2 ( a , O ) ,  
a,b a 

= 0 ) -  0), 
a 

= 2P+q[*F | ~F](0, 0) -- 24 Z ( A F ) 4 ( a ,  0). 
a 

From the definition of convolutional product we have 

[@ | @1(0, 0) = ~ @(a,  b)@(a, b), 
ajb 

= ~ 6~(a,b)+6~(O,O). 
ar 

Collecting these results, we have 

Z 04F(a'b)= 2P+q Z 6~(a,b)+23"+q- 24p. 
bT~O,a aT~O,b 
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For all even number n >_ 0, we have n 2 > 2n, and n 2 = 2n if and only if 
n = 2 or n -- 0. Hence, for all a • 0 and all b, we have 6~,(a, b) > 26F(a, b), and 
we have the equality if and only if F is Almost Perfect Nonlinear. Beside, we 
have 

Z ~fF(a,b) = Z Z 6F(a,b), 
a~O,b a~O b 

a#o 

= 2'  x (2'  - 1). 

Hence, we have 

O~.(a, b) > 2 '+q • 2 • 2 '  • (2 '  - 1) + 2 3'+q - 2 4',  
b#O,a 

> 22"(3 x 2 "+q - 2 q+l - 2~'). 

with equality if and only if F is Almost Perfect Nonlinear. 

We can now prove the following bound on AF: 

T h e o r e m  4 For all mapping F, we have 

1 ( 2" 2 ( 2 ' -  1 ) ( 2 ' - 1 - 1 ) )  1/2 AF>~ 3•  - 2 -  ~ 7 - T  

When the bound is reached, we will say the function Almost Bent. Moreover, an 
Almost Bent function F is Almost Perfect Nonlinear as well. 

Proof. First, we notice that  

Z~ = sup A~(a,b), 
a,br 

= sup ~(0F)2(a,b), 
a,br 

and that  for all mapping N(a, b) over ~,  

M = sup NZ(a, b) > Y~a,br N4( a, b) 
a,br - ~.,b#O N2( a, b)" 

with equality if and only if 

{ N ( ~ ,  b) = 0,  

Va, b # 0  o r U ( a , b ) = - v / - M ,  
or N(a, b) = +V"-"M. 
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We will now evaluate the sum 

t~-(a, b) = 
b # O , a  

~-~b#0,~ 0~(a, b). For all mapping F,  we have 

~_, (Or | O--~F)(a, b), 
b~O,a  

= E 6F(a,b), 
b r  

= Z 6 F ( a , b ) -  Z ~ F ( a , O ) ,  
a,b a 

= [ ~ 1 ( o ,  o) - 4 ~ ) i ~ ( a ,  o) ,  
a 

= 2 p + ~ ( o ,  0) - 4 ) i~ (o ,  o),  
= 22P(2 q -- 1). 

Hence, using lemma 3 we have 

4A2F = sup (0F)2(a, b) > 22v(3 • 2P+q - 2 q t - 1  - 22p) 
a,b~:O 

22p(2q _ 1) ' (1) 

3 X 2 p+q - 2 q+1-22p 
>-- 2q--1 ' (2) 

3 • 2 p - 2 -  2 (2p-1)(2p-1  - 1) 2 q - 1  ' (3)  

with equality if and only if F is Almost Perfect Nonlinear, and 

)it(a,  b) = 0, 
Va,b # 0 or )iF(a, b) = -AF, 

or )iF(a, b) ----- WAr.  

N o t e  2 For Almost Bent Functions, the function )iF(a, b) for b ~s 0 takes at 
most three different values that is to say O, --AF or A t .  This looks like Bent 
functions for which )iF(a, b) for b # 0 takes at most two different values --AF or 
AF. 

L e m m a  4 I f  F : K p --* Kq is Almost Bent and not Bent, then p <_ q. 

Proof. We already have the absolute bound of the Bent functions 

AF >_ 12~. 

Hence, if F is Almost Bent and not Bent, then using expression 2 we have 

-1213 x 2P+q - 2q+1-  22P 1 2 q  - 1 > ~ x / ~ ,  

3 • 2 p+q - -  2 q+l  --  2 2p 
> 2 p, 

2q - 1 
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3 x 2 v+q - 2 q+l - 22P > 2 p+q - 2 P, 

2 p + q + l  - -  2 q + l  - -  22p + 2 p > O, 

2q+i(2 p - 1) - 2v(2 v - 1) > 0, 

q + l > p .  

L e m m a  5 ( [ C a s 9 4 ] )  For all q > p, the amount 

(2 p - 1 ) ( 2 P - l - i )  

2q - 1 

is not an integer. 

Proof. We have 

(4) 

- 1 ) ( 2  - 1 )  = - m - ( 3  • 2 - 2 - i ) ,  

= A x (2 q - 1 ) -  B .  

As q > p, we have - 2  2p - l -q  > - 2  p - l ,  hence 3 • 2 p - i  - 2 2p - l -q  > 2 p > 1 and 
the remainder  B is s tr ict ly positive. Besides, we have 

B < 2  q - 1  ~ 3 x 2  p - i - 2  2 p - l - q - l < 2  q - l ,  

r  2 P - 1 ( 3  - 2 P - q )  < 2q. 

As q > p +  1, 2 < 3 - 2 p-q < 3, hence 2P- i (3  - 2 P-q) < 3 x 2 P - i ,  and besides 

2q > 2p+lg 2(~). Consequently,  we have 

(2 p - 1 ) (2  p - x  - 1) = A x (2 q - 1) - B ,  

with 0 < B < 2 q - 1, and  the amoun t  4 cannot  be an integer if q > p. 

T h e o r e m  5 I f  F : K p ---* Kq is Almost Bent and not Bent, then p = q, p is 
odd. The above bound then turns in 

1 ~  
AF = ~2 . (5) 

Proof. The  bound  3 cannot  be reached if the fract ion 4 is not  an integer. Hence, 
using l emmas  4 and 5 we get p = q. The  bound  3 then gives 5, and so p mus t  
be odd.  

E x a m p l e  2 Let F ( z )  = z 2k+1 be a power polynomial in G F ( 2 " ) .  I f  n is odd, 
1 < k < n and gcd(n,k) = 1, then F is an Almost Bent permutation [Nyb94, 
proposition 3]. 

E x a m p l e  3 (C. Carlet) Let F ( z )  = z - i  be the inversion mapping in G F ( 2  n) 
completed in 0 by F(O) = O. I f  n is odd, then F is an Almost Perfect Nonlin- 
ear Permutation [Nyb94, proposition 6]. Yet, it is not an Almost Bent function 
(consequence of [ t w g o ,  theorem 3.4I). 
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4 C o n c l u s i o n  

To sum up the results, we have : 

- When p _> 2q and p even, differential-resistant is equivalent to linear-resistant 
and to vectorial Bentness. We have in this case AF = 12P/2 and A F  = 2 p-q .  

-- For p = q and p odd, differential-resistance is equivalent to Almost Per- 
fect Nonlinearity (where AF = 2), linear-resistant is equivalent to Almost 
Bentness (where AF = �89 (p+1)/2) and linear-resistance implies differential- 
resistance. 

- For q > p, 2 is a lower bound for AF, and we have : 

1 ( 2P 2 ( 2 p -  ~=~l)(2p-1- 1))  1/2 
AF>_~  3x - 2 -  

Results in the other cases are still open. Particularly, if p = q and ]9 even, 
there is no simple characterization of linear-resistant functions. Similarly, for 
q < p < 2q, there exists functions such that AF = �89 2~- , but we ignore whether 

there exists functions such that  322 < AF < 32 ~ in this case. 
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