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Abstract. An interactive proof is transferred if a person, while inter- 
acting with the prover, convinces a (second) verifier of the statement. 
Divertible proof systems, first introduced by Desmedt et al., offer a more 
subtle way of transferring a proof: the messages are blinded such that  
neither the prover nor the second verifier can ever discover what is going 
on. While the ability to transfer (and divert) interactive proofs is useful 
in many situations it also has the disadvantage that the prover has less 
control over the use of the proofs. This paper investigates (and limits) 
the possibilities of transferring and diverting certain interactive proofs. 
In particular it is shown that zero-knowledge proof systems based on a 
polynomial number of sequential iterations of a three-move protocol can- 
not be transferred (and hence diverted) to two independent third parties 
even with just a very small (polynomial fraction) probability of success 
unless the proof is insecure for the prover. Furthermore, if the three 
move protocol in itself constitutes a witness hiding proof of knowledge 
it is shown that it cannot be diverted to two independent third parties 
simultaneously with overwhelming probability. This result rules out one 
possible attack on the blind signature scheme suggested by Ohta and 
Okamoto. 

1 Introduction 

Even though the prover in zero-knowledge proofs (see [GMR89]) does not re- 
veal any information but the validity of the claim, the receiver (verifier) can 
easily transfer such proofs to another person online. This observation was used 
in [DGB88] to construct a so called mafia fraud against the Fiat-Shamir iden- 
tification scheme ([FS87]). [DGB88] also showed how a warden by modifying 
(blinding) the messages sent forth and back between prover and verifier in this 
scheme can prevent these two persons from using it as a subliminal channel (see 
[SimS4]). Later, in [0090], this was generalized to interactive proofs of knowl- 
edge (see [FFS88] and [TW87]), and the term "divertible interactive proofs" was 
adopted. For historical reasons the intermediary was still called a warden. Hence, 
a divertible proof system constitutes a three-party protocol involving the prover, 
P, the warden, W and the verifier V as illustrated in Figure 1. 

[0090] presented divertible proofs of knowledge for commutative, randomly 
self-reducible languages (a restriction of the class of randomly self-reducible lan- 
guages including quadratic residuosity and group membership but excluding 
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Fig. I. Transferring a proof on-line. 

graph isomorphism, see also [TW87]). These interactive proofs are also proofs 
of language membership and the divertible protocols work in that case as well 
with the notable difference that for the proofs of knowledge both warden and 
verifier are convinced, whereas in the proof of membership the warden is only 
convinced under a computational assumption (and the verifier unconditionally). 

However, this does not mean that the warden in general cannot be convinced 
unconditionally in divertible proofs of membership: In Section 8 a two round 
(four move) divertible, perfect zero-knowledge proof of membership is presented 
in which both warden and verifier are convinced unconditionally. 

Further work on divertible proofs in [BD91] has resulted in divertible proofs 
for graph isomorphism and (given a probabilistic encryption homomorphism) for 
every language in NP (more precisely for SAT). Recently, [ISS93] constructed 
divertible proofs for graph non-isomorphism and a general protocol for every 
language in IP. However, these constructions seem to use a weaker definition 
of divertibility, and furthermore, the result for ]P allows the verifier to send 
information to the necessarily unbounded prover. 

All divertible proofs in [DGB88], [0090] and [BD91] deal with specific in- 
stances of a three move protocol in which on common input x, the prover sends 
the first and the third message, while the message from the verifier is a ran- 
dom challenge from a finite set E (this protocol may be repeated in order to 
constitute a proof system). The prover is either convincing the verifier that the 
common input, x, belongs to some given language, or that he knows a witness 
z# such that 7)(x,~n) = 1, where 7 ) is a poly-time predicate. 

The Fiat-Shamir identification protocol, for example, which was considered in 
[DGB88] consists of t  sequential iterations of the basic protocol with E = {0, 1} 4, 
while the signature scheme is based on a single iteration with E = {0, 1} tk, where 
t and k are security parameters. 

While the ability to divert zero-knowledge proofs is very useful (e.g., to con- 
struct blind signatures and prevent subliminal channels), it also has the effect 
that the prover can never be sure who will be convinced by his proof. Thus the 
prover loses control over his proof. It is therefore important to investigate to 
which extent it is possible to transfer and divert interactive proofs. 

The primary goal of this paper is to do this for the basic protocol described 
above when used in proofs of knowledge. It will be assumed that the protocol is 
secure for the prover in the sense that a polynomially bounded verifier cannot 
find a witness after a single execution (it is witness hiding, see [FS9012). This 
notion of security comprises all zero-knowledge protocols ([GMR89]). 

2 This is only defined for proofs of knowledge, but it extends to any protocol in which 
the prover's secret input and the common input satisfy a poly-time predicate. 
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First we consider the case where the cardinality of E is polynomial in Ixl 
and the protocol is repeated a polynomial number of times (e.g., resulting in 
a zero-knowledge proof). If a witness can be computed from the replies to two 
different challenges (see Property I in Section 4), it is shown that the warden 
cannot trar~fer the proof to two verifiers and succeed with non-negligible prob- 
ability. This remains true if Property I is weakened (see Section 4.2). Next, if 
the cardinality of E is super-polynomial in Ixl (e.g., in parallel executions of 
the basic protocol), it is shown that the warden cannot divert the proof to two 
independent verifiers and succeed with "overwhelming probability ~. This second 
result can be used to rule out a possible attack on the blind signature scheme 
suggested in [0090]. 

The paper is organized as follows. Section 2 introduces parallel divertibility 
and Section 3 the notation. The following two sections contain the main re- 
sults: Section 4 for polynomiaUy small challenge sets E, and Section 5 for larger 
challenge sets. Then the application to blind signatures and some extensions are 
described. Section 8 presents a divertible proof of language membership in which 
both warden and verifier are convinced unconditionally. Due to space limitations 
the proofs in this paper are only sketched. The complete proofs can be found in 
[Che94]. 

2 T r a n s f e r a b i l i t y  a n d  D i v e r t i b i l i t y  

This section first defines parallel transferability and divertibility and then it is 
shown that the ability to transfer (and hence divert) a proof can be decreased 
by repeating the protocol. Each participant will formally be modeled by an 
interactive, probabilistic (poly-time) Turing machine (see [GMR89]). 

Divertible proofs of knowledge were defined formally in [0090]. In the follow- 
ing this definition is extended to divertibility to many verifiers. First, however, 
the notion of parallel ~ranaferability is needed. Here~ W is trying to transfer the 
proof to many verifiers, Vle V2, �9 �9 Va (n E IN) given only one interaction with P 
(see Figure 2). Thus (n + 1) pairwise protocols are involved. Extending [0000], 
denote by (P, W vl ..... v , )  the two party protocol between prover and wardens and 
by (W P, V~) that between warden and the i ' th verifier (i = 1, 2 , . . . ,  n). 

Defini t ion 1. Let (P, V) denote a two-party protocol in which V ends up in one 
of two possible states: accept or reject. A (poly-time) warden W is said to n- 
transfer such a protocol with probability lr, if the following holds. Let V1, �9 �9 ~ Vn 
denote the n verifiers and let the common input to P, W, V1,..., Vn be denoted 
by x. Whenever P runs his part of (P, V) correctly (perhaps given an auxiliary 
input) and all V~s run the protocol of V independently, each V~ will accept with 
probability at least ~(x) over the random coins of P, W and 1~. 

- W is said to n-transfer a protocol if for every c > 0 and for ]x I sufficiently 
large It(x) _> 1 - Ixl -~. 

- W is said to weakly n-transfer the protocol if ~r(x) >_ Ixl -c for some c > 0 
and Ixl sufficiently large. 
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Fig. 2. Parallel transferability. 

W 

- The protocol (P, V) is called (weakly) n-transferable if there is a polynomial 
time warden, W, which (weakly) n-transfers it. 

This definition encompasses "proof-systems", which satisfy completeness but not 
necessarily soundness. Every such proof is 1-transferable, because the warden can 
just forward P~s messages to V and vice versa. 

In a divertible proof the warden hides the relation between the messages, 
which the prover and the verifiers see - -  even if these deviate from the protocol. 
However, it will be required that the prover is able to send correct answers to 
the warden (it is not reasonable to expect the warden to transfer a proof, if he 
does not receive one). 

Thus the notion of view is needed (see [GMR89]). Let A denote a possibly 
cheating participant having secret input s. Then viewA,B(x, s) denotes the ran- 
dom coins used by A and the messages, which A receives during an execution of 
a two-party protocol with B on common input, x. Furthermore, View,4,B(x, s) is 
the corresponding random variable whose distribution is induced by the random 
coins of B. 

Defini t ion 2. Let (P, V) be a proof of knowledge. (P, V) is said to be r#-divertible 
if there is a polynomial time warden, W, such that 

1. W n-transfers (P, V); 
2. For any prover P and any n verifiers ~ ( i - -  1, 2 , . . . ,  n) for which there is 

a c > 0 such that for Ixl sufficiently large P convinces an honest verifier in 
(P, V) with probability at least 1 - Ixl -a the following holds: 

(we ,p,w (=, vie ,r ,w (=, ) , '",  ) 

has the same distribution as 

(View~,,v (X, s), Viewq~,e(x, Sl), . .  �9 View~.,p(x, s,~) ) 

for Ix] sufficiently large. 
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Using [GMR89], this definition extends to statistical and computational n-diver- 
tibility (however, in the case of computational n-divertibility the cheating provers 
and verifiers must be polynomially bounded). 

The definition puts no restraints on the order of the messages which W sends 
to the n verifiers. For example, in one extreme, W first diverts the proof to V1 
and then, afterwards, to 1/~ and so forth. In an other extreme W computes 
the messages to ~ depending on the messages from not only P, but the other 
verifiers as well. 

Furthermore, it is an immediate consequence of the definitions that if a proof 
cannot be transferred then it cannot be diverted. 

The following proposition shows that sequential iterations of a protocol can 
decrease the warden's chances of being successful. 

P ropos i t i on  3. Let (P, V) be an accept/reject protocol as in Definition 1, and 
let (P', V') denote the protocol consistin 9 of K sequenti~ iterations. Let n E IN. 
1/there is a ~arde~ ~hich can n- t~nsfer  (P' ,  V') ~ t h  prob~baU u p(k) on i~put 
x of length k, then there is a warden which after executing (P, V) with the prover 
expected o (  g / p (  k ) ) times can n-~ransfer (P, V) with probability at least p( k ) V K. 

Furthermore, if  ( P, V) is zero-knowledge these initial iterations are not nee- 
essary. 

3 N o t a t i o n  f o r  t h e  P r o t o c o l s  

As mentioned in the introduction, this paper only deals with three move proofs 
of knowledge of the poly-time predicate, 9 .  On common input x the prover 
has an auxiliary input, w, satisfying P(x,  w) = 1. The prover initially sends 
the message, a, to the verifier, and given the challenge c E E the prover sends 
the reply r. The verifier will accept if p(x, a, c, r) -- 1, where p is a poly-time 
predicate. 

The literature contains many examples of such three round protocols (e.g. the 
Fiat-Shamir scheme, proofs for graph isomorphism, group membership, equality 
of discrete logarithms, quadratic residuosity, see [FFS88, TW87, CEvdG87]). 

The length of the common input, x, will often be denoted by k and called 
the security parameter. If IEI is polynomial in k the basic protocol is usually 
repeated t times, where t is polynomial in k in order to obtain a proof system s. 
If these iterations are sequential, the resulting proof can be zero-knowledge, and 
if they are in parallel it is sometimes possible to obtain a witness-hiding proof 
(Re [FSa0]). 

3.1 Transferr ing t he  Basic  Protoco l  

As previously mentioned a warden can transfer proofs by just forwarding the 
messages between P and V. However, as the warden generally has many other 
possibilities the messages between W and V will he denoted by al, ci and rl. 

3 [~[ denotes the cardinality of the finite set S. 
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Thus, the warden sends al and rl to V and c to P.  If p denotes the random bits 
of the warden, these messages are computed as 

al = f ( z , a , p ) ,  c =  g(~c,a, Cl,p) and r l  = h ( x , a ,  c l , r , p ) ,  

where f ,  9 and h are poly-time computable functions. When the protocol is 
iterated, the warden may also use information from previous rounds when com- 
puting these messages. This extra input is omitted in this paper as it only shows 
up in the proof of Proposition 3. 

We shall often consider the set of challenges from the verifier for which the 
warden can answer correctly given a correct reply from the prover. In general, 
the prover might choose between several such replies and it could be that the 
warden can only use some of these. Thus the set of challenges which the warden 
can answer may depend on both a and r chosen by the prover and p. It will be 
denoted by Sma,r (8 for success, the common input z is omitted): 

Defini t ion 4. Given three functions jr, g, h as above. Then 

Sp,a,r = {Cl E SIp (~, a ,  g (x ,  s C l , p ) , r )  -~- 1 A 

When considering the possibility of transferring the basic protocol to two 
verifiers (Va and V~) in parallel the messages to and from ~ are denoted by 
(a~, c~, r~) for i -- 1, 2 and the warden uses the functions fa, f2, g and h: 

s = fa(z, a, p) 
a2 --'-- f2(z, a, CI, p) 
c = g(z, a, ca, ~, p) 

(ra, rs) = h(=, a, ca, c~, r, p) 

We allow the warden to compute the initial value as to V2 depending on the 
challenge ca from V1. This is necessary as it is unreasonable to require any 
synchronization between the two independent verifiers V1 and V2 (Va may not be 
aware that there is another verifier). We also require that W receives a challenge 
from both verifiers before computing the challengel c, to P. This makes the 
warden most general as the function g can always ignore some of its inputs. 

Alternatively, the warden could postpone computing as until it has received 
r from the prover. But, then the warden would be able to prove knowledge of a 
witness (and hence knowing one) after one execution of the protocol with P.  

4 Polynomial Size E 

This section considers the situation, where E is small. The infeasibility of 2- 
transferring the protocol will first be shown under the assumption that from 
correct answers to two different challenges it is possible to find a witness: 
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P r o p e r t y  I. 
There exists a polynomial time Turing machine, M, which given (x, a, c, r, d, r') 
satisfying 

p(x, a, c, r) = 1 and p(x, a, c ~, r') = 1 and c # d 

as input, outputs w' such that P(x,  w') = 1. 

The protocols in [0090] with E = {0, 1} and all protocols in [BD91] have this 
property. In section 4.2 this requirement will be relaxed. 

4.1 T h e  Basic P r o t o c o l  Satisfies P r o p e r t y  I 

It will be shown that no warden can transfer the basic protocol to two veri- 
tiers and succeed for a large fraction of the possible challenges (Lemma 7). From 
this and Proposition 3 it follows that (zero-knowledge) proofs obtained by se- 
quential iterations cannot be weakly 2-transferred (and hence, cannot be weakly 
n-transferred for n >_ 2). This is done in Theorem 8. We first need a lemma 
which links Property I to the following 

P r o p e r t y  II. 
For any three functions (f, g, h) used by the warden to transfer the basic proto- 
col to a single verifier the following holds. If for some d > 0 and k sufficiently 
large with probability at least k -d there exist ci, di E Sp,a,r (el ~ di) such that 

g(=, a, cl, p) = g(=, a, 4 ,  p) 

(the probability is over the choices of (a, r) by the prover and p), then there 
is an e > 0 and a probabilistic polynomial time verifier which can compute w' 
satisfying 7)(x, w') = 1 with probability at least k -6 after one execution of the 
basic protocol. 
This property says that no warden can compute correct responses to two different 
challenges from one execution of the basic protocol with P. Property II is an 
immediate consequence of Property I when ]El is polynomial in k: 

L e m m a  5. If  the basic protocol satisfies Property I and [E] <_ k d for some inte- 
ger d, then it satisfies Property II. 

Proof sketch. Assume the protocol satisfies Property I and let (f, g, h) be three 
poly-time functions as in Property II. 

We will construct a polynomial time verifier, M, which extracts P 's  witness 
after one execution of the protocol. M computes, given a from the prover, its 
challenge as follows: 

I. Choose a random string, p, of the proper length. 
2. Choose a random pair (cl,di) E E 2 such that g(m,a, ci,p) = 9(x,a,d,p) 

and let c denote this value. 
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Given r from the prover, M computes 

rl ---- h(x, a, Cl, r, p) and r~ ----- h(x, a, C/l, r, p). 

Let al --- f (x ,a ,p) .  If p(x, al,cl ,  rx) = p(~,al,dl,  rl ) = 1 then the machine 
guaranteed by Property I can be used to extract the witness. It is easy to see that 
M runs in polynomial time and it succeeds if and only if M guesses cl, dl E Sp,a,r 
as required by Property II. Thus the witness can be extracted with probability 
at least a polynomial fraction. [] 

For the proof of our main result, we also need the following simple lemma. 

Lemma 6. Let E be a finite set, D C E x E, IDI > IEI + 1, and a a function 
from D to E. If  a has the property that 

then'there exist (x, yl), (z, y2) E D, such that Yl ~ Y2 and a(z, yl) = a(x, yg.). 

L e m m a  7. I f  the basic protocol satisfies Property I, is witness hiding and IEI < 
k d for some integer d, then no polynomial time warden can transfer it to two 
verifiers, 111 and Vz, in parallel and answer more than 1/IEI o! the posable pairs 
of challenges with non-negllgible probability. 

Proof sketch. The idea is that if a warden can avower more than 1/IEI of the 
possible pairs of challenges then, by Lemma 6 it can answer two different chal- 
lenges from V1 or V9 using the same challenge to the prover. By Property I and 
Lemma 5 this contradicts the security of the prover in the basic protocol. [] 

The following theorem extends this lemma to cope with the application of 
the basic protocol to zero-knowledge proofs of knowledge. 

T h e o r e m  8. Assume no polynomial time algorithm on input z can find w such 
that 79(x,w) = 1. Let (P,V) be a zero-knowledge proof of knowledge, in which 
the basic protocol is repeated t times where 1 < IEI < k d for some d and IEI t 
grows faster than any polynomial in k. If  the basic protocol satisfies Property I 
then ( P, V) is not weakly $-transferable. 

Proof sketch. The assumption implies that the basic protocol is witness hiding. 
By Lemma 7, for any warden the probability of success in transferring the proof 
in one iteration to two verifiers V1 and V2 is at most 1/IEI. Thus the probability 
of success in t iterations is at most (1/IE[) ~ which by assumption is smaller than 
the inverse of any polynomial for k sufficiently large. [] 

4.2 Weaken ing  P r o p e r t y  I 

Although Property I is satisfied by most known proofs of knowledge, it is quite 
restrictive. For example, it excludes proofs of knowledge in which IEI = 5 and a 
prover without knowing the witness can answer correctly on any two challenges, 
whereas answers to any three challenges allow a witness to be computed. 
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Defini t ion 9. The basic protocol is called an/-proof of knowledge (1 <_ l < [E]), 
if there exists a polynomial time Turing machine, M, which given (z, a) and 
(c r r(#))j=x ..... 1+1 satisfying 

p(z,a,c(J),r(J))=l for j = I,...,/+I 

and 
c o) # c O') for 1 <_ j < j '  _< l + 1 

outputs a witness, w', satisfying 7)(z, w') = 1. 

By extending the previous proofs the following generalization to/-proofs can be 
obtained. 

T h e o r e m  10. Let n E 71 be a constant (independent of k), and let 1 < l < IEI. 
If  IEI < k d for some integer d, no warden can answer more than In[El of the 
IEI" possible tuples of challenges with non-negligible probability, when trying to 
transfer the protocol to n verifiers. 

Proof sketch. The proof of this theorem follows that of Theorem 8 given the 
following observation. If the warden can answer more than lnlEI of the possi- 
ble challenges, then he can answer two tuples of challenges, (cl ,c2, . . .  ,c~) and 
(~, 4 , - . - ,  c/n), for which there is an i (1 < i ~_ n) such that e~ r ~ and 

c j = ~  for ff -- 1 , 2 , . . . , i -  1. 

13 

Example I. For n, l -- 2 and IEI = 5 the probability of success is at most 4/5. 
Hence, in this case the proof cannot be 2-transferred with very high probability. 

Ezample~. For n,l  = 2 and IE I = 4 this fraction is 1 - -  hence the theorem 
does not exclude 2-transferability in this case. However, the protocol cannot be 
3-transferred: the probability of success is 234/43 = 1/2. 

5 T h e  B a s i c  P r o t o c o l  is a P r o o f  S y s t e m  

While the previous section assumed that [E I is polynomial in k, this section 
considers the case where a single execution of the basic protocol constitutes a 
proof system. Hence, IEI is larger than any polynomial for k sufficiently large. It 
will be shown that this protocol is not 2-divertible if it is witness hiding. In par- 
ticular, this shows that the usual ways (e.g., as in [OO90]) of diverting instances 
of this protocol to a single verifier cannot be extended to parallel divertibility, if 
the warden still wants to be successful with overwhelming probability. 

The proof in the previous section depends on E being of polynomial cardi- 
nality and we see no way to modify it to cope with larger E's. Therefore this 
section will use another technique, which neither seems to work for transferabil- 
ity nor seems to extend to weak divertibility (as will be pointed out). However, 
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on the positive side the result in this section does not require the protocol to be 
an/-proof.  

First, two lemmas are needed. Consider the situation where W tries to divert 
the proof to a single verifier, V. Lemma 11 below shows tha t  W cannot use the 
same c in order to answer too many challenges from V. This lemma can be 
regarded as an extension of Lemma 5 to the case of large E. 

L e m m a  11. For any warder, given by (f, g, h) the following holds. I f  the protocol 
is a witness hiding proof of knowledge, then for all d, e > 0 the probability that 
there is an c E E such that 

I{cl e S.,.,,. Ig(x,a, cl, p) = c}l > IEl/k d 

is at moss k -e for k sufficiently large. This probability is over the choices of 
(a,r) and p. 

Proof. Let (f ,  g, h) be given and assume there are d, e > 0 such tha t  for infinitely 
many values of k the cardinality of the above set is larger than  ]E]/k d with 
probability larger than k -e. A verifier will be described which on input x of 
length such a k can find a witness after one execution of the protocol. As the 
protocol is a proof of knowledge it is sufficient to construct a verifier, M, which 
after a single execution can convince an honest verifier with probability at least 
k -(e+2d). M works as follows 

1. Given a from the prover, compute al = f ( z ,  a, p). 
2. Choose cl E E at random and compute c - - g ( z ,  a, el, p). 
3. Get r from the prover and compute rl = h(z, a, el, r, p). 
4. I fp(x,  al,  el, r l )  = 0 then stop. 

Afterwards M, when acting as a prover, chooses al in the first move, and given 
a challenge ~ from the honest verifier returns r~ -- h(x, a, all, r, p). 

Clearly, M runs in polynomial time. In the following it will be shown tha t  
M convinces the verifier with probability at least k -(e+2d). Let for c E E 

Ee = {Cl e Sp,a,r l ~(~, a, c1, p) -~- c}, 

and let A denote the event tha t  there is a c such tha t  

IEol > IEl/k d. 

Now 

Prob[V accepts] ~_ Prob~/accepts m A, Cl E Ec]Prob[cl E Ec I A]Prob[A] 

~_ Prob[V accepts m A, Cl E Ec]k-dk -e 

~_ Prob[c/1 E Ec]k -(8+d) 
b -(e+2d) 
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Fig. 3. Diverting a proof to many verifiers 

The next lemma shows tha t  if W can divert the proof to two persons in 
parallel, then she can divert it to any polynomial number of verifiers. This lemma 
fails in the case of weak divertibility. 

L e m m a  12. If  an interactive proof system is ~-divertible then it is also n- 
divertible for any n which is polynomial in k. 

Proof sketch. Let n -- n(k) be polynomial in k. The method for W to divert the 
proof to two verifiers can be used in a tree-like way to divert it  to n verifiers as 
shown in Figure 3. The analysis of this can be found in [Che94]. 1:3 

Using these two lemmas the following can be proven 

T h e o r e m  13. If the protocol is a witness hiding proof of knowledge then it is 
not ~-divertible. 

Proof sketch. As each element of E can be represented by a polynomial num- 
ber of bits, the cardinality of E can be assumed to be at most 2a(k) for some 
polynomial q. By Lemma 12 the proof is q(k)-divertible. 

Let A~ denote the event tha t  there is an c E E such tha t  for more than ]E]/3 
of the possible challenges from the i ' th  verifier W can find an answer to this 
verifier given the prover's response to c. By Lemma 11 the probability of A~ is 
super-polynomially small. Hence, the probability of the event A = A1V...V Aq(k) 
is super-polynomially small as well (over the choice of a, r and p). Let Acc denote 
the event tha t  all verifiers accept (distributed according to the random coins of 
all parties). Then 

Prob[Acc] = Prob[Acc ] A]Prob[A] + Prob[Acc [ -,A]Prob[-,A] 
< Prob[A l + Prob[Acc I -~A] 

Now if -~A occurs then a given c cannot be used to answer more than  a third of 
the possible questions from the i~h verifier. Hence, the probability tha t  there is 
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a c which can be used to answer all verifiers is at most 

[Ej3-q(k) ~ ( 2 )  q(k) " 

This is also an upper bound on Prob[Acc [ -~A]. Thus the probability that all 
verifiers accept is super-polynomially small. Therefore, at least one verifier will 
not accept with probability polynomially close to 1. 

[] 

6 B l i n d  S i g n a t u r e s  

This section applies the result in the previous section to the blind signatures 
suggested in [0090]. 

Consider the situation where the basic protocol constitutes a proof of knowl- 
edge. Then the protocol can be used to construct a signature scheme by using 
the technique of Fiat and Shamir ([FS8?]). Let H be a hash function as in that 
paper. 

The public key is �9 and the secret key is the witness ~u. The signature on a 
message, n~ E {0, 1}*, is 

= r )  

and it is correct if p(x, a, c, r) - 1 where c--  H(a, m). 
If the basic proof is divertible, a blind signature can be constructed in an 

interactive protocol between signer and receiver as follows. The prover first com- 
putes a. The receiver finds cl --- h(m, al) and then computes c. Given r from the 
prover, the receiver finds rz. The resulting signature on m is u(rn) -- (az, rl). 

This blind signature scheme is very difficult to analyze (its security depends 
very much on H). However, it would be easy to get two blind signatures from 
one execution of the protocol, if the proof could be diverted to two verifiers in 
parallel. It follows immediately from Theorem 13, that such an attack cannot 
succeed with probability close to 1. 

7 E x t e n s i o n s  

In some divertible proofs the warden is not interested in proving that he knows a 
witness to x, but rather to some transformation of x (e.g., in the case of square 
roots, the warden may want to prove that he knows a square root of r2x for 
some number, r). The proofs in Section 4 and 5 also work in this more general 
scenario. More precisely, it can be shown that the warden cannot transform x to 
two other input values, xz and ~2 and use the prover's proof, unless he knows a 
witness to either ~z or x2. The details of this can be found in [Che94]. 



152 

8 C o n v i n c i n g  t h e  W a r d e n  U n c o n d i t i o n a l l y  

This section presents a divertible Zero-knowledge proof of membership, in which 
both warden and verifier are convinced unconditionally. The original proof sys- 
tem was suggested by Chaum and used to verify undeniable signatures in [Chagl]. 

Let p and q be primes such that q divides p - 1. The common input is 
(9, h, m, z) E Z; ,  each of order q. The prover knows x = log s h and wants to 
show that logg h --- logm z. The divertible proof system is shown in Figure 4. 

P ropos i t i on  14. The protocol in Figure ~ is  a divertible proof. 

The proof is omitted. More interesting is the following 

P ropos i t i on  15. Even  i f  P and V cooperate, the ~arden  will n o ~  accept a false 
s ta tement  with probability larger than (q - 1) -1 (over his own coins). 

Proof  sketch. In [Cha91] it is shown that if log s h ~ logm z then the prover can 
only convince the warden if he can guess the value of a before sending hi and 
h~. 

Thus it is sufficient to show that if W chooses r, t ' ,  a",  b" uniformly at random 
then given d , c ,  h l , h ~ , h ~ , h ~ , a ~ , U  all values of a but one can occur (and with 
the same probability). 

Given a pair (a, b) such that c ffi gamb. Le t  rn = gd, h i  -- gdl and h~ = gd2. 
Similarly, let z = h e, h2 ---- h el and h~ -- h e~. Then all information about the 
secret choices of the warden is contained in the following four equations: 

(d2 - t " ) r  = dt - (a n + db") 

(e2 - t " ) r  = e l  - (a"  + eb")  

a n -~  a - -  ~ S r  

b" = b - b%. 

It has to be shown that these equations always have at least one solution for 
r, t" ,  a", b #. Subtracting the second from the first gives 

(d2 - ez )r  = dl - el  - (d - e)b". 

This implies 
(42 - eg)r = dl - e l  - (d - c)(b - b'r) 

and thus 
((/2 - c2 - (d - e)bl)r = dl - el  - (d - e)b ( , )  

We now distinguish two cases. First, if d2 - e~ - (d - e)U = O, then for any 
r e Y/q, a", b ' ,  g '  can be determined by 

- t " ) r  = d l  - Ca" + db") 
a t t  ~-~ a - -  a t r  

b" = b - bit. 
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W 

t ET~ 7q 
hi = cg ~ 
h2 = h~ 

< ,, C 

) 

aH,b II Eg Z e 
r e  Z ;  

c--  ( ~ ) " f m  b'' 

~ll E ~  Zq 
[ al I b ~ l / r  ttt I,;= {,h,/9 ) 9  

_ (h,/h-".+") h," 

? a ~ b  c = g  

a,b 
( 

AI hi 
d f f i g - m -  

b = b% + b" 

hi ~ g~162 

ffi + t / '  

Fig. 4. Convincing verifier and warden unconditionally. 

c' 
( 

I I hi, h~ 
~ s  b t 

,I 

t '  

V 

a ~, b ~ E~  Zq  
o ~ b s d - - g  m 

| 

h'~ s f ' + " m  b' 
h'2 ~= h"+t 'P ' 

It follows immediately, tha t  also the equation 

(e2 - t " ) r  = el - (a" + eb") 

will be satisfied. Secondly, if d2 - e2 - ( d -  r I ~ 0, then r is determined by (,).  
As the warden chooses r ~ 0 the prover and verifier know tha t  

b -- dl - el 
d - e  



154 

(and the corresponding value of a) is not  possible. But  for all other values 
t ' ,  a ' ,  b" can be determined as in the first case. 

As the prover chooses dl and el,  he can always make sure tha t  one of the q 
possible (a, b) pair will not occur. 1:3 

9 Conclusion and Open Problems 

An example of a divertible proof has shown that it is possible to make divertible 
proofs in which the warden cannot be cheated into accepting a false statement. 

We have shown that zero-knowledge proofs based on the basic three round 
protocol cannot be transferred to two independent verifiers simultaneously. If the 
basic protocol constitutes a witness hiding proof in itself, it cannot be diverted 
to two independent verifiers with overwhelming probability. 

It would be interesting to improve the analysis of the latter case and obtain 
a result just as strong as in the former. Furthermore, it is an interesting open 
problem to extend the results in this paper to general proofs of knowledge (not 
only proofs based on the three round protocol). 
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