
Efficient Anonymous Multicast and Reception
(EXTENDED ABSTRACT)

Shlomi Dolev 1. Rafail Ostrovsky 2

Department of Mathematics and Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel. Emaih dolev@cs .bgu. ac. i l .

2 Bell Communications Research, 445 South St., MCC 1C-365B, Morristown, NJ
07960-6438, USA. Email: rafailQbellcore.com.

Abstract. In this work we examine the problem of efficient anonymous
broadcast and reception in general communication networks. We show an
algorithm which achieves anonymous communication with O(1) amor-
tized communication complexity on each link mad low computational
complexity. In contrast, all previous solutions require polynomial (in the
size of the network and security parameter) arnortized communication
complexity.

1 I n t r o d u c t i o n

One of the primary objectives of an adversary is to locate and to destroy
command-and-control centers - that is, sites that send commands and data to
various stations/agents. Hence, one of the crucial ingredients in almost any net-
work with command centers is to conceal and to confuse the adversary regarding
which stations issue the commands. This paper shows how to use standard off-
the-shelf cryptographic tools in a novel way in order to conceal the command-
and-control centers, while still assuring easy communication between the centers
and the recipients.

Specifically, we show efficient solutions that hide who is the sender and the
receiver (or both) of the message/directive in a variety of threat models. The pro-
posed solutions are efficient in terms of communication overhead (i.e., how much
additional information must be transmitted in order to confuse the adversary)
and in terms of computation efficiency (i.e., how much computation must be
performed for concealment). Moreover, we establish rigorous guarantees about
the proposed solutions.

1.1 The p rob lem cons idered

Modern cryptographic techniques are extremely good in hiding all the c o n t e n t s

of data, by means of encrypting the messages. However, hiding the contents of
the message does not hide the fact that s o m e message was sent from or received
by a particular site. Thus, if some location (or network node) is sending and/or

* Part of this work was done while this author visited Bellcore with the support
of DIMACS. Partially supported by the Israeli ministry of science and arts grant
#6756196.

396

receiving a lot of messages, and if an adversary can monitor this fact, then even
if an adversary does not understand what these messages are, just the fact that
there are a lot of outgoing (or incoming) messages reveals that this site (or a
network node) is sufficiently active to make it a likely target. The objective of
this paper is to address this problem - - that is, the problem of how to hide,
in an efficient manner, which site (i.e. command-and-control center) transmits
(or receives) a lot of data to (or from, respectively) other sites in the network.
This question was addressed previously in the literature [6, 20] at the price of
polynomial communication overhead for each bit of transmission per edge. We
show an amortized solution which after a fixed pre-processing stage, can transmit
an arbitrary polynomial-size message in an anonymous fashion using only (9(1)
bits over each link (of a spanning tree) for every data bit transmission across a
link.

1.2 General sett ing and threat model

We consider a network of processors/stations where each processor/station has
a list of other stations with which it can communicate (we do not restrict here
the means of communication, i.e. it could be computer networks, radio/satellite
connections, etc.) Moreover, we do not restrict the topology of the network - -
our general methodology will work for an arbitrary network topology. One (or
several) of the network nodes is a command-and-control center that wishes to
send commands (i.e. messages) to other nodes in the network. To reiterate,
the question we are addressing in this paper is how we can hide which site
is broadcasting (or multicasting) data to (a subset of) other processors in the
network. Before we explore this question further, we must specify what kind of
attack we are defending against.

A simple attack to defend against is of a restricted adversary (called outside
adversary) who is allowed only to monitor communication channels, but is not al-
lowed to infiltrate/monitor the internal contents of any processor of the network.
(As a side remark, such weak attack is very easy to defend against: all proces-
sors simply transmit either noise or encrypted messages on each communication
channel - if noise is indistinguishable from encrypted traffic this completely hides
a communication pattern.) Of course, a more realistic adversary, (and the one
that we are considering in this paper) is the (internal) adversary that can moni-
tor all the communication between stations and which in addition is also trying
to infiltrate the internal nodes of the network.

That is, we consider the adversary that may mount a more sophisticated
attack, where he manages to compromise the security of one or several inter-
nal nodes of the network, whereby he is now not only capable of monitoring
the external traffic pattern but is also capable of examining every message and
all the data which passes through (or stored at) this infiltrated node. Thus, we
define an internal Ic-listening adversary, an adversary that can monitor all the
communication lines between sites and also manages to monitor (the internal
contents of) up to k sites of the network. (This, and similar definitions were con-
sidered before in the literature, see, for example [20, 5] and references therein).
We remark, though, that in this paper we restrict out attention only to listening
adversary, that only monitors traffic, but does not try to sabotage it, similar to

397

[10, 14], but with different objectives. Before we proceed, let us turn to a simple
example, to better explain what are the issues that must be addressed.

1.3 A simple example

In this subsection, we examine a very simple special case, in order to illustrate
the issues being considered and a solution to this special case. We stress, though,
that we develop a general framework that works for the general case (e.g. the
case of general communication graph, unknown receiver, etc.) as well.

Suppose we are dealing with a network having 9 nodes:

where R is the "receiver" node and one of the Pi is the command-and-control
center which must broadcast commands to R. The other Pj's for j r i are
"decoys" which are used for transmission purposes from Pi to R and also are
used to "hide" which particular Pi is the real command and control center. That
is, in this simplified example, we only wish to hide from an adversary which of
the Pi is the real command and control center which sends messages to R. Before
we explain our solution, we examine several inefficient, but natural to consider
simple strategies and then explain what are their drawbacks.

Communica t ion- inef f ic ient solut ion: One simple (but inefficient!) way to
hide which Pi is the command-and-control center is for every P~ to broadcast
an (encrypted) stream of messages to R. Thus, R receives 8 different streams
of messages, ignores all the messages except those from the real command-and-
control center, and decrypts that one. Every processor Pi forwards messages
of all the smaller-numbered processors and in addition sends its own message.
Clearly, an adversary who is monitoring all the communication channels and
which can also monitor the internal memory of one of the Pi's (which is not the
actual command-and-control center) does not know which Pj is broadcasting
the actual message. Drawback: Notice that instead of one incoming message,
R must receive 8 messages, thus the throughput of how much information the
real command-and-control center can send to R is only ~ of the total capacity!
As the network becomes larger this solution becomes even more costly.

Computa t ion- inef f ic ien t solution: In the previous example, the drawback
was that the messages from decoy command-and-control nodes were taking up
the bandwidth of the channel. In the following solution, we show how this dif-
ficulty can be avoided. In order to explain this solution, we shall use pseudo-
random generators 3 [2, 12, 13]. We first pick 8 seeds s l , . . . , ss for the pseudo-
random generator, and give to processor Pi seed si. Processor Pt stretches its
seed sl into long pseudo-random sequence, and sends, at each time step the
next bit of its sequence to processor P2. Processor P2 takes the bit it got from

3 Pseudo-random generator G(s) -~ rl, r2,.., takes a small initial "seed" of truly
random bits, and determlnistically expands it into a long sequence of pseudo-random
bits. There are many such commercially available pseudo-ra~adom generators, and any
such "off-the-shelf" generator that is sufficiently secure and efficient will suffice.

398

processor P1 and "xors" it with its own next bit from its pseudo-random se-
quence G(s2) and sends it to P3 and so forth. The processor Pj which is the
real command-and-control center additionally "xors" into each bit it sends out
a bit of the actual message mi. Processor R is given all the 8 seeds s l , . . . s s ,
so it can take the incoming message, (which is the message from command-and-
control center "xored" with 8 different pseudo-random sequences.) Hence, R can
compute all the 8 pseudo-random sequences, subtract (i.e. xor) the incoming
message with all the 8 pseudo-random sequences and get the original command-
and-control message m. The advantage of this solution is that any Pj which is
not a command-and-control center (and not R), clearly can not deduce which
other processor is the real center. Moreover, the entire bandwidth of the channel
between command-and-control processor and the receiver is used to send the
messages from the center to the receiver. Drawback : The receiver must com-
pute 8 different pseudo-random sequences in order to recover the actual message.
As the network size grows, this becomes prohibitively expensive in terms of the
computation that the receiver needs to perform in order to compute the actual
message ra.

O u r s o l u t i o n for t h i s s i m p l e e x a m p l e : Here, we present a solution that is
both computation-efficient and communication-efficient and is secure against an
adversary that can monitor all the communication lines and additionally can
learn internal memory contents of any one of the intermediate processors. The
seed distribution is as follows:

- Pick 9 random seeds for pseudo-random generator so, s l , . . . , ss.
- Give to the real command-and-control processor seed so.
- Additionally, give to processor P1 seed {sl,s~}; to processor P2 two seeds

{s2, ss}, to processor Ps two seeds {s3, s4}, and so on. That is, we give to
each processor Pi for i > 1 the seeds {si, si+l}.

- give to receiver, R, one seed so

Suppose processor P4 is the real command-and-control center. Then the distri-
bution of seeds is as follows:

Now, the transmission of the message is performed in the same fashion as
in the previous solution - - that is, each processor receives a bit-stream from its
predecessor, "xors" a single bit from each pseudo-random sequence that it has,
and sends it to the next processor. The command-and-control center "xors" bits
of the message into each bit that it sends out.

Notice, that adjacent processors "cancel" one of the pseudo-random sequences,
by xoring it twice, but introduce a new sequence. For example, processor P2 can-
cels s2, but "introduces" ss. Moreover, each processor must now only compute
the output of at most three seeds. Yet, it can be easily verified that if the ad-
versary monitors all the communication lines and in addition can learn seeds of
any single processor Pi which is not a command and control center, then it can

399

not gain any information as to which other Pi is the real command and control
center, even after learning the two seeds that belong to processor Pi.

Of course, the simplified example that we presented works only provided that
the adversary cannot monitor both the actual command-and-control center and
can not monitor the memory contents of the receiver. (We note that these and
other restrictions can be resolved - we address this further in the paper.) More-
over, it should be stressed that the restricted solution presented above does not
work if the adversary is allowed to monitor more than one decoy processor. We
should point out that in the rest of the paper we show how the above scheme
can be extended to one that is robust against adversaries that can monitor up-
to k stations, where in our solution every processor is required to compute the
number of different pseudo-random sequences proportional to k only (in partic-
ular, at most 2k + 1). Moreover, we also show how to generalize the method to
arbitrary-topology networks/infrastructures. Additionally, we show how initial
distribution of seeds can be done without revealing the command-and-control
center and how the actual location of the command-and-control center can be
hidden from the recipients of the messages as well. At last, we show how commu-
nication from stations back to the command-and-control center could be achieved
without the stations knowing at which node of the network the center is located
and how totally anonymous communication can be achieved.

1.4 Private-key solutions vs. Public-key solutions

The above simple solution is a private-key solution, that is, we assume that
before the protocol begins, a set of seeds for pseudo-random function must be
distributed in a private and anonymous manner. We note that we show how to
distribute these seeds using a public-key solution, that is, a solution where we
assume that all users/nodes only have corresponding public and private keys and
do not share any information a-priori. Thus, our overall solution is a public-key
solution, where before communication begins, we do not assume that users share
any private data. As usual in many of such cryptographic setting, our overall
efficiency comes from the fact that we switch from public-key to private key
solution and then show how to (1) make an efficient private-key implement and
(2) how to set up private keys in a pre-processing stage by using public keys in
an anonymous and private manner.

1.5 Comparison with Previous Work

One of the first works (if not the first one) to consider the problem of hiding
the communication pattern in the network is the work of Chaum [6] where he
introduced the concept of a mix: A single processor in the network, called a mix,
serves as a relay. A processor P that wants to send a message m to a processor Q
encrypts rn using Q's public key to obtain m ~. Then P encrypts the pair (rff, q)
using the public key of the mix. The double encrypted message is sent to the mix.
The mix decrypts the message (to get the pair (m ~, q)) and forwards m ~ to q.
Further work in this direction appear in [15, 17, 18]. The single mix processor is
not secure when this single processor is cooperating with the (outside) adversary;
If the processor that serves as a mix is compromised, it can inform the adversary
where the messages are forwarded to. Hence, as Chaum pointed out, a sequence

400

of "mixes" must be employed at the price of additional communication and
computation. Moreover, the single mix scheme operates under some statistic
assumption on the pattern of communication. In case a single message is sent
to the mix then an adversary that monitors the communication channels can
observe the sender and the receiver of the particular message.

An extension of the mix scheme is presented by Rackoff and Simon [20] who
embedded an n-element sorting network of depth polynomial in log(n) that mixes
incoming messages and requires only polynomially many (in log(n)) synchronous
steps. In each such step every message is sent from one site of the network
to another site of the network. Thus, the message delay may be proportional
to log(n) times the diameter of the network. The statistic assumptions on the
pattern of communication is somewhat relaxed in [20] by introducing dummy
communication: Every processor sends a message simultaneously. However, the
number of (real and dummy) messages arriving to each destination is available to
the traffic analyzer. Rackoff and Simon also presented in [20] a scheme that copes
with passive internal adversaries by the use of randomly chosen committees and
multi-party computation (e.g., [11, 3, 7, 4, 5].)

More generally, secure multi-party computation can be used to hide the com-
munication pattern in the network (see, for example, [11, 8, 19, 3, 7, 4, 5]) via se-
cure function valuation. However, anonymous communication is a very restricted
form of hiding participants' input and hence may benefit from less sophisticated
and more efficient algorithms.

In this work we consider the problem of anonymous communication on a
spanning tree of a general graph communication network. In a network of n
processors our algorithm (after a pre-processing stage) sends O(1) bits on each
tree link in order to transmit a clear-text bit of data and each processor com-
putes O(k) pseudo-random bits for the transmission of a clear-text bit. Multiple
anonymous transmission is possible by executing in parallel several instances
of our algorithm. Each instance uses part of the bandwidth of the communica-
tion links. Our algorithm is secure for both outside adversary and k-listening
internal dynamic adversary. (We remark, though, that we are only considering
eavesdropping "listening" adversary, similar to [10, 14], and do not consider a
Byzantine adversary which tries to actively disrupt the communication, as in
[11].) Our algorithm starts with anonymous seeds distribution. These seeds are
later used for the generation of pseudo-random sequences.

The rest of the paper is organized as follows. The problem statement appears
in Section 2. The anonymous communication (our Xor-Tree Algorithm) which
is the heart of our scheme appears in 3. Section 4 and 5 sketch the anonymous
seeds transmission and the initialization and termination schemes, respectively.
Extensions and concluding remarks appear in Section 6.

2 P r o b l e m S t a t e m e n t

A communication network is described by a communication graph G = (V, E).
The nodes, V = {1, . . . , n}, represent the processors of the network. The edges
of the graph represent bidirectional communication channels between the pro-
cessors. Let us first define the assumptions and requirements used starting with
the adversary models.

401

- An outside adversary is an adversary that can monitor all the communication
links but not the contents of the processors memory.

- An internal dynamic k-listening adversar~ (inside adversary, in short) is an
adversary that can choose to "bug" (i.e., listen to) the memory of up to
k processors. The targeted processors are called corrupted or compromised
processors. Corrupted processors reveal all the information they know to the
adversary, however they still behave according to the protocol. The adver-
sary does not have to choose the k faulty processors in advance. While the
adversary corrupts less than k processors the adversary can choose the next
processor to be corrupted using the information the adversary gained so far
from the processors that are already corrupted.

The following assumptions are used in the first phase of our algorithm which
is responsible for the seeds distribution. Each of the n processors has a public-
key/private-key pair. The public key of a processor, P, is known to all the pro-
cessors while the private key of P is known only to P.

The anonymity of the communicating parties can be categorized into four
c a s e s :

- Anonymous to the non participating processors: A processor P wishes to send
a message to processor Q without revealing to the rest of the processors and
to the inside and outside adversary the fact that P is communicating with
0.

- A n o n y m o u s t o the sender and the non participating processors: P wishes to
receive a message from Q without revealing its identity to any processor
including Q as well as to an inside and outside adversary.

- A n o n y m o u s t o the receiver(s) and the non participating processors: P wishes
to send (or multicast) a message without revealing its identity to any pro-
cessor as well as to an inside and an outside adversary.

- Anonymous to the sender, to the receiver, and the non participating pro-
cessors: A processor P (and Q) wishes to communicate with some other
processor, without knowing the identity of the processor, and without re-
vealing its identity to any processor including Q, as well as to an inside
and outside adversary. (This is similar to the "chat-room" world-wide-web
applications, where two processors wish to communicate with one another
totally anonymously, without revealing to each other or anybody else their
identity.)

The ed~iciency of a solution is measured by the communication overhead which
is the number of bits sent over each link in order to send a bit of clear-text
data. The efficiency is also measured by the computation overhead which is the
maximal number of computation steps performed by each processor in order to
transfer a bit of clear-text data.

The algorithm is a combination of anonymous seeds transmission, initial-
ization, communication and termination. In the anonymous seeds transmission
phase, processors that would like to transmit, anonymously send seeds for a
pseudo-random sequence generators to the rest of the processors. The anonymous
seeds transmission phase also resolves confiiets of multiple requests for transmis-
sion by an anonymous back-off mechanism. Once the seeds are distributed the

402

communication can be started. Careful communication initialization (and ter-
mination) procedure that hide the identity of the sender must be performed.

We first describe the core of our algorithm which is the communication phase.
During the communication phase seeds are used for the production of pseudo-
random sequences. The anonymous seeds distribution is presented following the
description of the anonymous communication phase.

3 Anonymous Communication

3.1 C o m p u t a t i o n - l n e f f i c i e n t O(n) s o l u t i o n

The communication algorithm is designed for a spanning tree T of a general
communication graph, where the relation parent child is naturally defined by
the election of a root. We start with a simple but inefficient algorithm which
requires O(n) computat ion steps of a processor. (This algorithm is similar to
the computation-inefficient solution presented in Section 1, but for the general-
topology graph. We then show how to make it computation-efficient as well.) In
this (computation-inefficient) solution the sender will chose a distinct seed for
each processor. Then the sender can encrypt each bit of information using the
seeds of all the processors including its own seeds. Each such seed is used for
producing a pseudo-random sequence. The details of the algorithm appear in
Figure 1. The symbol ~ is used to denote the binary xor operation.

Seeds Dis t r ibu t ion - - Assign (anonymously) distinct seed to each processor.
In addition assign the receiver(s) with the sender seed and the sender with
every assigned seed.

Upwards C o m m u n i c a t i o n :
P is the sender - - Let d~ be the i'th bit of data. Let bl, b2,. . . , b~ be the

i'th bits received from the children (if any) of P, and let b ~ be the i'th bit
of the pseudo random sequence obtained from the seed of P. The i'th bit
P sends to its parent (if any) is bl ~ b2 ~ . . . bl ~ b~ ~ b~... ~ bln ~ di, where
b~,b~,...,b~ are the i'th bits of the pseudo random sequence obtained
from the seeds of all the processors.

P is n o t t h e sender - - The i'th bit that P communicants to its parent
(if any) is bl ~ b2 ~ " " b~ ~ b I.

Downwards C ommun ica t i on - - The root processor calculates an output as
if it has a parent and sends the result to every of its children. Every processor
which is not the root, sends to its children every bit received from its par-
ent. The receiver(s) decrypts the downward communication by the use of the
senders' seed.

Fig. 1. O(n) Computation Steps Algorithm.

Note that the i ' th bit produced by the root is a result of xoring twice every of
the i ' th bits of the pseudo-random sequences except the senders' sequence: once
by the sender and then during the communication upwards. Each encrypted bit
of data will be xored by the receiver(s) using the senders' seed to reveal the

403

clear-text. Note that the scheme is resilient to any number of colluding proces-
sors as long as the sender and the receiver(s) are non-faulty. This simple scheme
requires a single node (the sender) to compute O(n) pseudo-random bits for each
bit of data. (We remark that in contrast, our Xor-Tree Algorithm, requires the
computation of only O(k) pseudo-random bits to cope with an outside adversary
and an internal dynamic k-listening adversary.) The next Lemma state the com-
munication and computation complexities of the algorithm presented in Figure
1.

L e m m a l . The next two assertions hold for every bit of data to be transmitted
over each edge of the spanning tree:

- The communication overhead of the algorithm is 0(1) per edge.
- The computation overhead of our algorithm is O(n) pseudo-random bits to

be computed by each processor per each bit of data.

Proof. In each time unit two bits are sent in each link: one upwards and the
other downwards. Since a bit of data is sent every time unit (possibly except the
first and last h t ime units, where h < n is the depth of the tree) the number
of bits sent over a link to transmit a bit of data is O(1). The second assertion
follows from the fact that the sender computes the greatest number of pseudo
random bits in every time unit, namely O(n) pseudo-random bits in every t ime
units. 0

3.2 T o w a r d s o u r O(k) s o l u t i o n : T h e cho i ce o f s eeds

For the realization of the communication phase of our O(k) solution we use
n(k + 1) distinct seeds where k is less than Ln/2 - lJ. Each processor receives
2(/r + 1) seeds. To describe the seeds distribution decisions of the sender we use
k + 1 levels each consists of two layers of seeds.

T he first level - - Let s = 8~, s~, 8~,.. . , 81 be the seeds that the sender (rlan-
domly) chooses for the first level. The sender uses the sequence of seeds s =

1 1 1 1 1 1 1 1 1 81,82, 8z,"", 8. for the first layer of the first level aad s = 82, s3 , " " , 8,, 81
for the second layer. Note that s = 1; 1 and that s is obtained b_y 1 rotat~g
s once. Pi, 1 _~ i < n, receives the seeds 81 and 8~+a. P , receives 8n and 8a.

The l ' th level - - Similarly, for the l'th level 1 < I < k + 1 the sender (ran-
domly) chooses n distinct seeds for this level s = 81,82,'~ l . . ,8~ to be
the seeds of the l'th level and uses two sequences s = s and s =

l ~ ~ l ~ s is obtained by rotating s ! times. P~ 1 < $ | + l J 8 l + 2 , " " " ~ 8 n , 8 1 , " " " , 8 / ;

i _< n - l receives the seeds 8~ and 81,+t and P~ n - l < j _< n receives the seeds
l l 8j and sj_(,_l).

Thus, at the end of this procedure every processor is assigned by 2k+2 distinct
seeds.

Fig. 2. The choice of seeds.

404

The seeds distribution procedure appears in Figure 2. An example for the
choice of seeds for the processors appears in Figure 3.

Seeds of P1 /)2 P0 P4 P5 Po P1 P8 P0
89 Sl 82 83 84 85 86 81 $8

Levell sz s2 s3 84 S5 S0 Sl S8 80
8 ~ , ~ , ; 8' ' s ' 283 8~ 5 s~ s~

Level 2 s~ s~ ,'
�9 ~' s~' ,~' .~' 8~' 8"3 ~ ' 8~' 8~'

Level 3 s;' s"2 Sz" s~,' s"5 8~' s-~' ,~' s~'

Fig. 3. An example for the distribution of seeds, where n = 9 and k = 2.

The choice of seeds made by the sender has the following properties:

- Each seed is shared by exactly two processors.
- For every processor P , P shares a (distinct) seed with every of the k + l pro-

cessors that immediately follow P, (if there are at least such/c+ 1 processors),
or with the rest of the processors including Pn, otherwise.

3.3 T h e X o r - T r e e A l g o r i t h m

Here, we present out main algorithm, the Xor-Tree Algorithm. The Xor-Tree
Algorithm appears in Figure 4.

Seeds D i s t r i b u t i o n - Assign seeds to the processors as described in Figure
2. Assign the sender with one additional seed. Assign the receiver(s) with this
additional seed of the sender.

Upwards C o m m u n i c a t i o n :
P is the sender - - Let d~ be the i'th bit of data. Let bi,b2,... ,b~ be the

b 1,b2, .,b2k§ i'th bits received from the children (if any) of P, let ' ' .. ' be
the i 'th bits of the pseudo-random sequences obtained from the seeds of
P, and let b2k+8' be the i 'th bit of the pseudo-random sequence obtained
from the additional seed of the sender. The i'th bit P sends to its parent
(if any) is bz (B b2 ~ . . . bl (~ b~ ~ b~... ~ b~k+2 �9 b~k+3 �9 d,.

P is not the sender - - The i'th bit that P communicants to its parent
(if any) is bz (B b2 ~ - . . b~ ~ b~ ~ b~... ~ b~k+2.

Downwards C o m m u n i c a t i o n - The root processor calculates an output as
if it has a parent and sends the result to every of its children. Every non
root processor send to its children every bit received from its parent. The
receiver(s) decrypts the downward communication, to obtain the clear-text,
by the use of the senders' additional seed.

Fig. 4. The Xor-Tree Algorithm.

405

3.4 A n abs t rac t gRme

In this subsection we describe an abstract game that will serve us in analyzing
and proving the correctness of the Xor-Tree Algorithm presented in the previous
subsection.

Seeds Ass ignment - - Assign seeds to the processors as described in Figure 2.
Assign the sender with one additional seed.

C o m p u t a t i o n - - Each processor, P, uses its seeds to compute pseudo-random
sequences. At the i'th time unit the sender S computes the i'th bit of every
of its pseudo-random sequences, xors these bits and the i'th bit of data and
outputs the result. At the same time unit every other processor P computes
the i'th bit of every of its pseudo-random sequences xors these bits and outputs
the result.

Fig. 5. The Abstract Game.

The adversary get to see the outputs of all the players. The adversary can
pick k out of the players and see their seeds. We claim, and later prove, that
when the adversary does not pick the sender then every one of the remaining
(n - k) processors that are not picked by the adversary is equally likely to be
the sender for any poly-bounded adversary 4.

We proceed by showing that the above assignment of seeds yields a special
seed dsp for each processor P . We choose dsp out of the seeds assigned to each
non-faulty processor P . We order the processors by their index in a cyclic fashion
such that the processor that follows the i ' th processor, i ~ n, is the processor
with the index i + 1 and the processor that follows the n ' th processor is the
first processor. Then we assign a new index for each processor such that the
sender has the index one, the processor that follows the sender has the index
two and so on and so forth. These new indices are used for the interpretation
of next, follows, prior and last in the description of the choice of special seeds
that appears in Figure 6. Recall that with overwhelming probability every two
processors share at most one seed.

Note that by our special seeds selection, described in Figure 6, the special
seeds are not known to the k faulty processors.

T h e o r e m 2. In the abstract game any of the (n - k) non-faulty processors is
equally likely to be the sender for any poly.bounded internal b-listening adversary.

Proof. We prove that the i ' th bit produced by any non-faulty processors is
equally likely to be 0 or 1 for any poly-bounded adversary. Let P be the first
non-faulty processor that follows the sender (P is among the first k + 1 processors
that follow the sender). Let b be the special seed of the sender that is shared
only with (the non-faulty processor) P . The i ' th bit that the sender outputs is a

4 If the a~lversary can predict who is the sender then we can use this adversary to
break a pseudo-random generator.

406

T h e sender P1 - - Each of the k + 1 processors that immediately follows the
sender shares exactly one seed with the sender. Since there are at most k
colluding processors, one of these k + 1 processors must be non-faulty. Pick,
P, the first such non-faulty processor. Assign dspx, the special seed of the
sender, to be the seed that the sender shares with P.

A processors P that is not a m o n g the k + 1 last p rocessors - - If P is
not among the k § 1 last processors then P is assigned by 2k § 2 seeds k + 1
seeds of these seeds are from the first layers of the k + 1 seed levels. These
k + 1 seeds are new - - they do not appear in any processor prior to P. Since
there are at most k colluding processors, one of the next k + 1 processors is
non-faulty. Let Q be the first such non-faulty processor and assign dsp by the
seed that P shares with Q. Repeat the procedure until you reach a non-faulty
processor that is among the last k + 1 processors.

A processors Q that is Among the k + 1 last p rocessors - - Note that Q
does not introduce k + 1 new seeds since some of its seeds are assigned to
the first processors (at least the one in the k + l ' th level). Fortunately, Q
shares a single seed with every of the last processors. This fact allows us to
continue the special seed selection procedure, by choosing the seed shared
with the next non-faulty processor.

Fig. 6. Choice of special seeds.

result of a xor operation with the i ' th bit of the pseudo-random sequence (among
other pseudo-random sequences) obtained from b. Thus, it is equally likely to be
0 or 1 for any poly-bounded internal k-listening adversary. A similar argument
hold for the output of P and in general the output of every non-faulty processor.
The same argument holds if any of the n - k non-faulty processors is the sender.
Thus, for any polynomial ly-bounded k-internal and external adversary, the dis-
t r ibution of the output is indistinguishable of the identity of the sender. []

3.5 R e d u c t i o n t o t h e a b s t r a c t g a m e

In this subsection we prove tha t if there is an algori thm tha t reveals information
on the identity of the sender in the tree then there exists an algori thm tha t
reveals information on the identity of the sender in the abstract game. The
above reduction together with Theorem 2 yields the proof of correctness for the
Xor-Tree algorithm.

Assume tha t the adversary reveals information on the sender in a tree 7" of n
processors. Then an abstract game of n nodes is mapped to the tree as follows:

T h e o r e m 3 . In the Xor-Tree Algorithm any of the (n - k) non-faulty proces-
sors is equally likely to be the sender for any poly-bounded internal k-listening
adversary.

Proof. If there exists an adversary .,4 tha t reveals information on the identity of
the sender in a tree 7" then there exists an abstract game with the same number
of processors and the same seeds distribution, such tha t the application of the

407

1.
2.

Each processor of the abstract game is assigned to a node of the tree T.
The output of every processor to its parent is computed as follows: Let the
hight of a processor P in T be the number of edges in the longest path
from P to a leaf such that ~ does not traverse the root. We start with the
processors that are in hight 0 i.e. the leaves. The output of the processors that
were assigned to the leaves of the tree is not changed i.e. it is identical to their
output in the abstract game. Once we computed the output of processors in
hight h we use these computed outputs to compute the outputs of processors
in hight h-t-1. Let Q be a processor in hight h + 1, let bl,b2,...,b~ be the
i'th computed bits that are output by the children of Q, and let bQ be the
original i'th output bit of Q in the abstract game. The computed output of
Q is bl ~b2 @...bz ~bQ.

Fig. 7. The Reduction.

reduction in Figure 7 yields the communication pattern on T and reveals infor-
mation on the sender identity in the abstract game. This contradicts Theorem
2 and thus contradicts the existence of A. []

The next Lemma states the communication and computat ion overheads of
the anonymous communication algorithm.

L e m m a 4 . The next two assertions hold for every bit of data to be transmitted
over each edge of the spanning tree:

- The communication overhead of the algorithm is 0(1) per edge.
- The computation overhead of our algorithm is O(k) pseudo-random bits to

be computed by each processor per each bit of data.

Proof. In each t ime unit two bits are sent in each link: one upwards and the
other downwards. Since a bit of data is sent every time unit (possibly except the
first and last h time units, where h < n is the depth of the tree) the number of
bits send over each link to transmit a bit of data is O(1). The second assertion
follows from the fact that in each t ime unit each processor generates at most
2k + 3 pseudo-random bits. 0

4 A n o n y m o u s S e e d s T r a n s m i s s i o n

The details of the anonymous seeds transmission are omit ted from this extended
abstract, here we only sketch the main ideas. Every processor has a public-key
encryption, known to all other processors. A virtual ring defined by the Euler
tour on the tree is used for the seeds transmission. Note that the indices of the
processor used in this description are related to their location on the virtual ring.
First all processors send messages to P1 over the (virtual) ring. Those processors
that wish to broadcast send a collection of seeds, and those processors that do
not with to broadcast, send dummy messages of equal length. To do so in an
anonymous fashion (so that P1 does not know which message is from which
processor), k + 1 of Chaum's mi~es [6] are used, where k + 1 (real) processors

408

just before P1 in the Euler tour are used as mixes. Hence, P1 can identify the
number of non-dummy arriving messages but not their origin. In case more than
one non-dummy message reaches Pl, a standard back-off algorithm is initiated
by P1. Once exactly one message (containing a collection of seeds) arrives to
P1 the seed distribution procedure described above (for sending a collection of
seeds to P1) is used to send the seeds to P2 and so on. (At this point processors
know that only one processor wishes to broadcast.) This procedure is repeated
n times in order to allow the anonymous sender to transmit a collection of seeds
to every processor. Notice that this process is quadratic in the size of the ring,
the number of colluding processors k, and the length of the security parameter,
(i.e., let g be a security parameter and k as before, then we send O((gkn) 2) bits
per edge.) Thus, as long the message size i0 to be broadcasted is greater than
O((gkn) ~) we achieve O(1) overall amortized cost per edge, and otherwise we
get O((gkn)2/p) amortized cost.

5 Initialization and Termination

When the seed distribution procedure is over, then the transmission of data may
start. P, broadcasts a signal on the tree that notifies the leaves that they can
start transmitting data. The leaves start sending data in a way that ensures that
every non-leaf processor receives the / ' th bit from its children simultaneously.
Thus, the delay in starting transmission of a particular leaf i is proportional to
the difference between the longest path from a leaf to the root and the distance
of I from the root. Each non leaf processor waits for receiving the i'th bit from
each of its children, uses these bits and its seeds to compute its own / 'th bit
and sends the output to its parent. Note that buffers can be used in case the
processors are not completely synchronized.

The sender can terminate the session by sending a termination message that
is not encrypted by its additional seed. This message will be decrypted by the
root that will broadcast it to the rest of the processors to notify the beginning
of a new anonymous seeds transmission.

6 Extensions and Concluding Remarks

Our treatment so far considered the anonymous sender case, which is also anony-
mous to the non participating processors. A simple modification of the algorithm
can support the anonymous receiver case: The receiver plays a role of a sender
of the previous solution in order to communicate in an anonymous fashion an
additional seed to the sender. Then the sender uses the same scheme for the
anonymous sender case with the seed the sender got from the receiver.

To achieve anonymous communication in which both the sender and the
receiver are anonymous, do the following: The two participants, P and Q, that
would like to communicate (each) send anonymously distinct seeds to P1, �9 Pk+l
(again, if there are several parties that are competing, a back-off mechanism is
used). P1 will encrypt and broadcast the two seeds it got, each seed encrypted
(using distinct intervals of the pseudo-random expansions of the two seeds) by
the other seed. Hence, each of the two processors will use its seed to reveal the

409

seed of the other processor. The same procedure (after back-off protocol termi-
nated in case of competing requests) continues fo r / '2 , P3, P4 "'" Pk+z. At this
stage P has a set of k + 1 seeds that are used for encryption of messages sent
to Q and Q has k + 1 seeds used for encryption messages send to P. Moreover,
this is resilient against any coalition of size k and we are done.

A c k n o w l e d g m e n t : We thank Oded Goldreich and Ron Rivest for helpful re-
marks.

References

1. M. Blum and S. Goldwasser, "An efficient probabilistic public-key encryption
scheme which hides all partial information", CRYPTO 84.

2. M. Blum, and S. Micali "How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits", FOCS 82 and SIAM J. on Computing, Vol 13, 1984, pp.
850-864.

3. M. Ben-or, S. Goldwasser, and A. Wigderson, "Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation", STOC 88.

4. R. Canetti, U. Feige, O. Goldreich, and M. N~r , "Adaptively Secure Multi-Party
Computation", STOC 96.

5. R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros4n, "Randomness vs. Fault-
Tolerance", PODC 97.

6. D. Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms", Communication o] the ACM, vol. 24, no. 2 (1981), pp. 84-88.

7. D. Chanm, C. Cr4peau, and I. DamgArd, "Multiparty Unconditionally Secure Pro-
tocols', STOC 88.

8. D. Chanm, "The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability", Journal of Cryptology, vol. 1 (1988), pp. 65-75.

9. D. Chaum, "Achieving Electronic Privacy", Scientific American, vol. 267, no. 2
(1992), pp. 96-101.

10. M. Franklin, Z. Galil and M. Yung "Eavesdropping Games: A Graph-Theoretic
Approach to Privacy in Distributed Systems," FOCS 93.

11. O. Goldreich, S. Micali and A. Wigderson, "How To Play Any Mental Game",
STOC 87.

12. J. Hastad, "Pseudo-Random Generators under Uniform Assumptions", STOC 90.
13. R. Impagliazzo, L. Levin, and M. Luby "Pseudo-Random Generation from One-

Way Functions," STOC 89.
14. E. Kushilevitz, S. Mica]i, and R. Ostrovsky, "Reducibility and Completeness in

Multi-Paxty Private Computations", FOCS 94.
15. A. Pfitzmxnn, "How to Implement ISDNs Without User Observability - - Some

Remarks", Ti t 14/85, Fakultat fur Informatik, Universitat Karisruhe, 1985.
16. A. Pfitzmann, M. Waidner, "Network without User Observability," Computer

Security 6 (1987) 158-166.
17. A. Pfitzmann, B. Pfitzmann and M. Waidner, "ISDN-MIXes - - Untraceable Com-

munication with Very Small Bandwidth Overhead," Proc. Kommunikation in
verteilten Systemen (1991), pp. 451-463.

18. P. F. Syverson, D. M. Goldsclag, M, G. Reed, "Anonymous Connections and Onion
Routing" Proc. of the Symposium o n Security and Privacy 1997.

19. M. Waidner and B. Pfitzmann, "The Dining Cryptographers in the Disco: Uncon-
ditional Sender and Recipient Untraceability with Computationally Secure Ser-
viceability Eurocrypt 89.

20. C. Rackot~ and D. Simon, "Cryptographic Defense Against Traffic Analysis", STOC
93

