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A b s t r a c t .  We propose two RSA-type cryptosystems using n-adic ex- 
pansion, where n is the public key. These cryptosystems can have more 
than one block as a plaintext space, and the decrypting process is faster 
than any other multi-block RSA-type cryptosystem ever reported. Deci- 
phering the entire plaintext of this system is as intractable as breaking 
the RSA cryptosystem or factoring. Even if a message is several times 
longer than a public key n, we can encrypt the message fast without 
repeatedly using the secret key cryptosystem. 

1 I n t r o d u c t i o n  

The RSA cryptosys tem is one of the most  practical public key cryptosystems 
and is used throughout the world [17]. Let n be a public key, which is the product  
of two appropriate  primes, e be an encryption key, and d be a decryption key. 
The algorithms of encryption and decryption consist of the e-th and d-th power 
modulo n, respectively. We can make e small by considering the low exponent 
at tacks [3] [4] [7]. The encryption process uses less computat ion and is fast. 
On the other hand, we must  keep the decryption key d up to the same size as 
the public key n to preclude Wiener 's  a t tack [21]. Therefore, the cost of the 
decryption process is dominant for the RSA cryptosystem. 

If  a c ryptosys tem has more than one block of plaintexts, where each block 
is as large as the public-key n, we call it a multi-block cryptosystem. A lot of 
multi-block RSA-type cryptosystems have been proposed [5] [11] [12] [13] [15] 
[19]. Their  advantage is that  they allow us to encrypt  da ta  larger than the 
public-key at a time, and we can prove their security is equivalent to the original 
RSA cryptosys tem or factoring. However, these algorithms are very slow and 
the at tacks against the RSA cryptosystem are also applicable to them (See, for 
example,  [8] [20].). We cannot find significant advantage over using the original 
RSA cryptosystem for each block. 

In this paper, we propose two methods of constructing fast multi-block RSA- 
type cryptosystems.  We express the plaintext as an n-adic expansion, where n is 
the public key. The features of this method are as follows. We can take an arbi- 
t rary  number  of blocks as a plaintext. To implement the proposed cryptosystems, 
we use only ordinary and elementary mathemat ica l  techniques i.e., the greatest 
common divisor, so the designer can easily make them. Deciphering the entire 
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plaintext of the proposed cryptosystems is as hard as breaking the original RSA 
cryptosystem or factoring. Moreover, the decryption speed is much faster than 
any previously proposed multi-block RSA-type eryptosystems. Decryption time 
of the first block is dominant, because we calculate the modular multiplication of 
the encryption exponent and a greatest common divisor to decrypt blocks after 
the first one. Even if a message is several times longer than a public-key n, we can 
encrypt the message fast without repeatedly using the secret key cryptosystem. 

Nota t ion:  Z is an integer ring. Zn is a residue ring Z / n Z  and its complete 
residue class is {0, 1,2, . . .  , n -  1}. Z x is a reduced residue group modulo n. 
LCM(ml, m2) is the least common multiple of ml and m2. GCD(ml, m2) is the 
greatest common divisor of ml and m2. iCm is permutation theory notation 
meaning the number of ways of choosing m from I. 

2 The n-adic extension of RSA cryptosystem 

In this section, we describe how to extend the RSA cryptosystem using n-adic 
expansion, and discuss its security and running time. 

2.1 Algorithm 

1. Generation of the keys: Generate two appropriate primes p, q, and let n = pq. 
Compute L -- LCM (p - l ,  q - l ) ,  and find e, d which satisfies ed - 1 (mod L), 
GCD (e, L) = 1 and GCD (e, n) = 1. Then e, n are public keys, and d is the 
secret key. 

2. Encryption: Let M0 E Z~ • and M1,. . .  ,Mk-1 E Zn be the plaintext. We 
encrypt the plaintexts by the equation: 

C - (Mo + nM1 + . . .  + n ~ - l M k _ l )  ~ (mod nk). (1) 

3. Decryption: First, we decrypt the first block M0 by the secret key d: 

Uo --- C a (mod n). (2) 

This is the same decryption process as in the original RSA. For the remaining 
blocks M1, M 2 , . . . , M k - 1 ,  we can decrypt by solving the linear equation 
modulo n. 

2.2 Details of  dec ryp t ion  

Assume that we have already decrypted M0 by the decryption method of the 
original RSA cryptosystem, and we write down the process to find M1, M2, . . . ,  

Mk-1 as follows. 
Consider that the encryption function (1) is the polynomial of the variables 

X0, X1, . . .  ,Xk-1 such that 

E(Xo, X1 , . . . ,  Xk-~) = (Xo + nX1 + ...  + nk-~Xk-~) ~. 
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Expand the polynomial E(X0, X I , . . . ,  Xk-1)  by the polynomial theorem: 

e! 
E So!Sl I . sk_l !X~~ " l ' ' ' ( n k - l x k - 1 ) s k - ' "  

O < $ o , $ 1 , . . . , S i _ l < e  " �9 �9 

s O + S l + . - . + s & _  l i n e  

And let 

: =  I s l  + + . . .  + isi = i, 

So + sl + . . . +  si = e,O < So, Sx , . . . , s i  < e}, 

where (0 < i < k - 1). Let Di(Xo, X x , . . . ,  Xi)  be the coefficient of n i (0 < i < 
k - 1). For i = O, 1 , . . . ,  k - 1, we can find Di(Xo, X 1 , . . . ,  Xi)  by calculating 

e[ 
S O  $ 1  �9 * �9 

Di(Xo, X l , . . . ,  Xi)  = E so!s1!.., s, iX~ X1 X~'. (3) 
(s0,st,...,s,)er, 

Here, we write them down with small i as follows: 

Do(Xo) = ML 
DI(Xo,X1) = eM~-IM1, 

- C M e - 2 M 2 - - e  x ' ~ - l * n  D2(Xo,Xl ,X2)- -e  2 0 1 1" 1vl 0 lvJ2, 

,--, ~ , r  ~Ar3 2 e C 2 M ~ ) - 2 M 1 M 2  D3(Xo,XI,X2,X3) = e.....3~w~ 0 ~tvJ 1 + 

D4(Xo, X1 . . . .  , X4) = ,C4M~-4M 4 + 3,C3Mo-3M21M2 

D s ( X 0 ,  X1 . . . . .  X5 )  = ,CsM~-SM 5 + 4,C4M~-4M3M2 

+2eC2M~-2M2M3 + 2eC2M~-2M1M4 + eM~-IMs, 

D 6 ( X o ,  X1 . . . . .  X6)  = eC6M~-6M 6 + 5eC5M~-SM~M2 
e--3 2 e--3 3 C M e - 2  ~12 

+ 3 e C 3 M  0 M1 M4 + e C 3 M  0 M2 + e 2 0 ~v~3 

+2,C2M~-2M2M4 + 2, C2M~-2M1M5 + eM~-IM6, 

D k _ I ( X 0 , X 1 , . . . ,  X k _ l )  = { polynomia l  of Mo, M 1 , . .  

-I- eM(~- 1M3.  

C Me-2M 2 ' eMo-IM4, e 2 0 2 "t" 
3 C M e-3a~r .,,2 e 3 0 i v l  1 lvJ 2 

+ 4eC4M~-4M3M3 

. , M k - 1 } .  

We show the algorithm of decryption. Note that  the terms that  include Xi do 
not appear in Dj (j  < i), and the only term that  includes Xi in Di is eX~-IX~ 
for i = 0, 1 , . . . ,  k - 1. We define 

! 

Di(Xo, X1, .. �9 Xi-1)  = Di(Xo, X 1 , . . . ,  Xi)  - e X ~ - l X i .  

Therefore, the terms D o , D 1 , . . . , D i - I , D ~  are the polynomial of X o , X l , . . .  , 

X i - l ( 0  < i < k -  1). 
From this relation, we can inductively decrypt Mi after decrypting M0, M1, 

�9 . . ,  Mi-1 (0 < i < k - 1). Indeed, M1,312 , . . . ,  Mk-1 are calculated as follows. 
At first, let i = 1. The relations D~(Xo) = 0 and Do(Xo) = X~ hold. So, the 
solution of the linear equation 

e - 1  eM o x - - B 1  ( m o d n ) ,  B1 = E l / n ,  (4) 
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E1 =- C - Do(Mo) (mod n2), 

is M1, because M0 and e are in the reduced residue class modulo n such that 
Z ,  • Provided that we decrypt M1, M 2 , . . . ,  Mi-1, in the same manner we can 
uniquely decrypt Mi by solving the linear equation 

e M ~ - l x -  Bi (mod n), Bi = Ei/n i, (5) 

i - 1  

Zi - C -  Z n i Oi(Mo,M,, .. .,Mj) 
j=0 

-niD~(Mo, M 1 , . . . , M i - 1 )  (rood ni+l). 

Inductively, we can decrypt all plaintexts M1, M 2 , . . . ,  Mk-1. 

Here, we describe the decryption program written in the pidgin ALGOL in 
the following. For x E Z and positive integer N, [X]N will denote the remainder 
of x modulo N, which is in {0, 1 , . . . ,  N - 1}. 

procedure D E C R Y P T I O N :  

I N P U T :  d,n,C(:= [(M0 + nM1 +. . .  + nk-lMk-1)~],~k) 
O U T P U T :  M0, M 1 , . . . ,  Mk-1 

(1) Co :---- [C],; 

M0 := [COd]. ; 

(2) D0 := [M~],~; 

E1 := [C - Do],~ ; 

B1 := E1/n in Z; 

A := [(eCo)-XMo],~; 
ml := [ABt]~; 

(3) F O R i = 2 t o ( k - 1 )  do  

b e g i n  

SUM := 0; 

F O R  j = 0 t o  ( i -  1) do  

b e g i n  

Dj := [Dj(Mo, M1,... ,Mj)] , .+, ;  

SUM := [SUM + nJ Dj]~,+, 

e n d  

D~ := [D~(M0, M 1 , . . . ,  Mi-1)]~.+1; 

Ei := [C - SUM - niD~],~.+, ; 
Bi := E,/n i in Z; 

:= [AB,] .  

e n d  
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2.3 P e r m u t a t i o n  

Let S be a finite set, and let F(x) be a function from S to S. The function F(x) 
is called a permutat ion function if every pair x, y E S that  satisfies F(x) = F(y) 
also satisfies x = y. If the encryption function F(x) is not a permutat ion,  we 
cannot uniquely decrypt a ciphertext. It is known that the encryption function of 
the RSA cryptosystem is a permutation,  if and only if the relation GCD(e, L) = 1 
holds with the same notation as in section 2.1. In the previous section, we showed 
that  if the conditions GCD(e ,L)  = 1 and GCD(e ,n)  = 1 are satisfied, the 
proposed cryptosystem can be uniquely decrypted i.e., it is a one-to-one function. 

Here, the encryption function of the proposed eryptosystem is defined from 
Zn k x to Zn~ x. We can prove this function is a permutat ion if and only if the 
conditions GCD(e, L) = 1 and GCD(e, n) = 1 hold. 

Actually, the reduced residue group modulo n k such that  Z,k x is decomposed 
into two products such that  

i n  kx ~ ZpkX X Zq~X (6) 

Both groups are cyclic groups whose orders are p~- l (p_  1) and qk-l(q _ 1), 
respectively. Therefore, the order of the group Znk • is u k - l ( p -  1)(q - 1). All 
elements in Znk x are expressed by n-adic expansion such that  

M = M o  + nM1 + .. .  + nk- lM~- l ,  

where M0 E Zn x and M1, �9 �9 Mk-  1 E in.  This is the reason that  the plaintext 
must have the form in equation (1). 

Let E(x) - x e (rood n k) be the encryption function of the proposed cryp- 
tosystem. Suppose E(x) =_ E(y) (rood nk), and we get (x/y)  e - 1 (mod nk). 
By Chinese remainder theorem, we reduce the equation into modulo pk. Let g 
be a primitive root of modulo pk, and let x / y  -- g~ (rood pk) for some j .  We get 
gje = 1 (mod pk), and 

je -- 0 (rood p k - l ( p _  1)). 

If E(x) is a permutation,  this equation must be solvable and all solutions are 
different, so GCO(e,p)  = 1 and GCD(e, ( p -  1)) = 1 holds. Therefore, we have 
to choose e such that GCD(e, n) = 1 and GCD(e, L) = 1. The criteria in the key 
generation of the proposed cryptosystem are necessary. 

2.4 S e c u r i t y  

T h e o r e m  1. When plaintexts are umformly dzstributed, find,ng the entire plain- 
text from the ciphertext for the RSA cryptosystem is as intractable as do,ng it 
for the proposed n-adic RSA-type cryptosystem. 

Proof. Using a black-box which can decipher the RSA cryptosystem, we can 
decipher the first block. Moreover, we can also decrypt blocks after the first one 
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by using the decryption algorithm in section 2.2, so the entire plaintext is deci- 
phered. Conversely, we are given ciphertext C, which is the result of encrypting 
a random M (mod n) by the RSA cryptosystem. Let C'  be a random n-adic 
ciphertext, whose plaintext M '  satisfies M ' = M (mod n). All the bits of M ' 
are uniquely distributed since M is random, and we can use the black box for 
the n-adic system to recover M ~. Hence, we can decipher the plaintext M. 

All the attacks against the RSA cryptosystem (See, for example, [14] [9].) 
are also applicable to the proposed system, because if we can decipher the first 
block M0, then we can recover all the following blocks using relationships (4) or 
(5). 

Here, we wonder whether the proposed cryptosystem has extra flaws in terms 
of using a non-square modulo n k . The attacks that  might break it are the message 
concealing [2] and the cycling attacks [22]. In the following two sections, we show 
these attacks never work against the proposed cryptosystem. 

2.5 Message concealing 

A function F(x)  is called unconcealed when F(x)  = x holds for all x. If a 
function of a cryptosystem is unconcealed, then we cannot encrypt any message 
by it. G. R. Blakley and I. Borosh showed that  the encryption function of the 
RSA cryptosystem is unconcealed [2]. Let N be the number of residue classes x 
modulo n ~ such that  x ~ = x (mod nk). They proved 

g = (1 + GCD(e - 1,pk- l (p  - 1)))(1 + GCD(e - 1,qk-l(q - 1))). 

If GCD(e - 1,pq) > 1 holds, then N becomes very large. We have to choose the 
system parameters p, q and e described in section 2.1 to preclude this failure. It 
must be noted that i fe  is selected smaller than p and q, then G C D ( e -  1,pq) = 1 
holds. 

Moreover, they also showed that  if e is an odd integer larger than 2, then 
N = 9 if and only if 

G C D ( e - I , ~ ) = 2 ,  ) ~ = L C M ( ( p - 1 ) p  k - l , ( q - 1 ) q k - 1 ) .  

For example, the RSA cryptosystem has only 9 unconcealed messages if G C D ( e -  
1, L) = 2. For small e, we have GCD(e - 1,pq) = 1, and N for the proposed 
cryptosystem is equal to that  of the RSA cryptosystem. 

2.6 C y c l i n g  attacks 

It is known that  the RSA cryptosystem is broken without factoring n when a 
ciphertext C has a period such that  C P(b) = 1 (mod n), where P(t)  is a polyno- 
mial and t = b is an integer. Actually, if the relation holds, the plaintext can be 
recovered by computing M - C Q (rood n), where Q satisfies eQ ~ 1 (mod P ' )  
and P '  = P(b)/GCD(e, P(b)). Moreover, this analysis is true even if the modulo 
n is changed to n k. To break the proposed n-adic RSA-type cryptosystem, an 
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attacker would have to find the polynomial P(t)  and the value t = b, which have 
the relation C P(b) --_ 1 (mod nk). By decomposing of the group Z.~ like (6), we 
reduce the relations to 

P(t)=_O (modp i ) ,  P ( t ) - O  (modqi )  ( i = 1 , 2 ) ,  (7) 

where Pt = P; P2 = q; and qi is a large prime such that qilpi - 1(i = 1,2). H. 
C. Williams and B. Schmid [22] showed that  the possibility of this polynomial 
satisfying equation (7) is very small, unless P(t)  = t =k 1 and t = e "~. Therefore, 
the designers must make m very large to preclude this attack. One method 
is to have qi - 1 and Pi - 1 be divisible by large primes ri and r~ such that  
r i lP i -  1 and r~lq, - 1; then ri lm and r~lm hold for i = 1,2 and m becomes very 
large. Since pi - 1(i = 1, 2) must be divisible by a large prime to prevent the 
factoring algorithm called Pollard's p -  1 method, we do not need worry about 
the equations e m = +1 (mod Pi). Consequently, the proposed n-adic RSA-type 
cryptosystem is secure against this attack according to the same t reatment  as 
used for the original RSA cryptosystem. 

2.7 Running time 

Here, we discuss the running time of the proposed cryptosystem. In the en- 
cryption process, we have to compute the e-th power modulo nk(k > 2). As k 
increases, the running time becomes longer. However, it is possible to make the 
exponent of the encryption e small, since considering the low exponent attacks 
[3] [4] [7], tile encryption cost is not so expensive. 

Next, we consider the decryption process. The first block is decrypted by the 
same algorithm as in the RSA cryptosystem, and we should make the exponent 
d as large as the public modulus n to avoid Wiener's attack [21]. Therefore, the 
decryption of the first block is the most expensive task. After the first block, we 
have to generate linear equation (4) and maybe also (5), and solve i t / them.  The 
ciphertext Ci(i > 1) is expressed by the polynomial of Mi(i  > 1) and the task 
of computing the polynomial is essentially to calculate M~. Therefore, it costs 
the same as the encryption process to generate the linear equations. Solving a 
linear equation is fast, so the decryption time after the first block also becomes 
as fast as the encryption process. If we choose a very small e, this algorithm 
becomes very efficient. For example, let the number of blocks be two. We can 
generate the linear equation to compute equation (4), which are at most 2 [log 2 eJ 
multiplications modulo n 2 and one division of n 2, and to solve it, which are two 
multiplications modulo n and one inversion modulo n. 

On the other hand, several multi-block RSA-type cryptosystems have been 
proposed [5] [11] [13]. Their  decryption time is I times slower than the original 
RSA cryptosystem, where l is the number of blocks. Our proposed cryptosystem 
is much faster than these cryptosystems, as showed by the above analysis. 1 

a K. Koyama proposed a two-block cryptosystem having fast decryption by using sin- 
gular cubic curves. But it only has two blocks [12]. 
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2.8 Effectiveness 

As we discussed in the previous sections, the proposed n-adic RSA-type cryp- 
tosystem has several effective features. The most significant points are being as 
hard as breaking the original RSA cryptosystem and providing fast decryption 
for messages longer than the public key n. 

By the way, the RSA cryptosystem is slower than the secret-key cryptosys- 
tern, so the RSA cryptosystem is used to encrypt a session key of the secret-key 
cryptosystem to overcome this disadvantage. However, its theoretical security 
level must be estimated from the RSA cryptosystem and the secret-key. We do 
not have to use the secret-key cryptosystem, if the length of the data is shorter 
than a public-key n. 

For a message that is several times longer than the public-key n, our proposed 
n-adic RSA-type cryptosystem is very efficient. We can encrypt such a message 
much faster. 

Moreover, it is expected that the encryption speed of the RSA cryptosystem 
will reach 1 Mbits/second within a year or so [18]. The proposed method can 
contribute to the attainment of the fast encryption speed. 

3 T h e  n - a d i c  e x t e n s i o n  o f  R a b i n  c r y p t o s y s t e m  

In this section, we describe how to extend the Rabin cryptosystem using n-adic 
expansion. The discussion is similar to the extension of the RSA cryptosystem. 

3.1 Algor i thm 

1. Generating keys: Generate two appropriate primes p, q, and let n -- pq. Here, 
p and q are the secret keys, and n is the public key. 

2. Encryption: Let /140 E Zn • and M1, . . . ,Mk-1  E Zn be the plaintext. We 
encrypt the plaintext by 

C - (114o + n i l  + . . .  + n k - l i k - 1 )  2 (mod nk). (8) 

And we send the ciphertext C. 
3. Decryption: We solve the modular quadratic equation 

x 2-- C (mod nk). (9) 

Then the solutions are just plaintext M0, M1, . . . ,  Mk-1. 

3.2 Detai ls  of  decryption 

First, we decrypt the first block M0. We solve the quadratic equation C ~ M02 
modulo primes p and q. Here, several algorithms to solve the quadratic equation 
modulo a prime p are known, and the fastest one can be computed in sub- 
quadratic polynomial time [10]. Next, we decrypt the first block of the plaintext 
M0 by the Chinese remainder theorem. The degree of ambiguity is 4 for the 
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decryption modulo n, because we have two solutions of each quadratic equation. 
And we can eliminate the ambiguousness by adding redundancy bits, and we 
can get the true plaintext. 

Next, we discuss the decryption of the remaining blocks/141, Ms, . . . ,  Mk-1. 
The process is similar to the case in the RSA cryptosystem. For M1, we have 
the linear equation modulo n 2, 

M 2 + 2nMox =- C (mod n2). (10) 

And this equation is solvable because 2M0 E (Z/nZ) x , and the solution is )1//1. 
Here, assume that we already decrypt Mo, M1, . . . ,  Mi-1, and we can uniquely 
decrypt Mi by solving 

I+rn<i 

2niMox - C -  Z nt+mMtMm (mod hi+l), (11) 
O(I,m~i--1 

Therefore, we can decrypt all plaintext blocks M0, M1, M2, . . . ,  Mk-1. 

We describe the decryption program written in the pidgin ALGOL in the 
following. For x E Z and positive integer N, [X]N will denote the remainder of 
x modulo N, which is {0, 1 , . . . , N -  1}. 

procedure D E C R Y P T I O N :  

I N P U T :  p, q, n, C(:= [(M0 + riM1 + . . .  + nk-lMk-1)2]n~) 

O U T P U T :  Mo, M1, . . . ,M~-a  

(1) c0 := I t ] . ;  
decrypt 1140 using p, q, Co; 

(2) F O R i =  1 t o ( k - l )  do 
begin 
SUM := 0; 

F O R l = 0 t o ( i - 1 )  do 

F O R m = 0 t o ( i - 1 )  do 

W H I L E  l + rn < i do 

begin 

D := [nZ+mMiMm],~.+l ; 

SUM := [SUM + D]n,+, 

end 

Ei := [C - SUM]n,+L ; 

Bi := E, /n  i in Z; 

M, := [(2M0)-IB,], 

end  
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3.3 S e c u r i t y  

T h e o r e m  2. Completely breaking the proposed n-adic Rabin-type cryptosystem 
is as intractable as factoring. 

Proof. Let p, q be primes, and let n = pq. The complexities of the following three 
algorithms only differ by polynomial time. 

(I) to factor n = pq 

(II) to find the solution of the quadratic equation modulo n 

(II[) to find the solution of the quadratic equation modulo n k, 

where k is an integer greater than 2. (I) and (II) are clearly equivalent because 
the security of the Rabin cryptosystem is the same as factoring [16]. (III) ::~ (II) 
is true by reducing the solution in (II) modulo n. (II) =~ (III) is true because it 
is just the decryption process after the first block in the previous section, and 
the algorithm only takes polynomial time to generate and solve linear equations. 
Here, (III) is just  the algorithm deciphering the proposed n-adic system. 

The exponent of the l~abin cryptosystem is only 2, so the low exponent 
attacks are applicable to it [3] [4] [7]. However, we can preclude these attacks by 
padding a plaintext with random bits. 

3.4 R u n n i n g  t i m e  and effectiveness 

Here, we discuss the running time of the proposed cryptosystem. In the encryp- 
tion process, we only compute the second power modulo n k ( k  > 2), which is 
very fast. For the decryption process, the first block is decrypted by the same 
decryption method as for the Rabin cryptosystem. The decryption of the first 
block is the most expensive task. After the first block, we have to generate the 
linear equation (10) and maybe also (11), and solve i t / them. These are computed 
very fast, and the cost is very smMl compared with the cost of decrypting the 
first block. Therefore, the total cost of the decryption is essentially the cost of 
the first block. 

On the other hand, several multi-block Rabin-type cryptosystems have been 
proposed [15] [19]. We have to solve a polynomial with more than two degrees 
over the finite field of a prime order. Solving polynomials of higher degree is more 
expensive than solving a quadratic polynomial, and makes the decryption process 
ambiguous and restricts the form of the secret primes. These cryptosystems have 
few advantages. 

From the above analysis, our proposed cryptosystem is much faster than 
these cryptosystems, and easy to implement. Designers do not have to code a 
complicated algorithm and can use only ordinary mathematical tools such as the 
greatest common divisor. 

As we discussed in section 2.8, for messages that  are several times longer 
than the public-key n, our proposal n-adic Rabin cryptosystem is very efficient. 
We can encrypt a message with the running time of the first block. 



382 

4 O p e n  p r o b l e m s  a n d  a p a r t i a l  s o l u t i o n  

A plaintext of the proposed n-adic cryptosystem modulo n k has the form M -- 
Mo + nM1 + . . .  + n k - l M k _ l .  Theorems 1 and 2 show that breaking the entire 
plaintext M is as hard as breaking the RSA cryptosystem or factoring. Here, we 
mention some problems concerning the security of each block M0, M1, .. �9 M~_ 1. 

If we have an algorithm that  breaks the first block M0, we can decipher 
the RSA or Rabin cryptosystem. However, it is an open problem whether you 
can find the blocks after the first one without deciphering the first block. One 
strategy for finding such an algorithm is to seek some algebraic relations between 
a ciphertext and blocks after the first one. Indeed, the most trivial relation is 
linear equation (4) or (5) whose solutions are the remaining blocks after the first 
one. But, we have to compute the value M~ -1 to construct them, which is as 
hard as deciphering the RSA cryptosystem. 

W. Alexi et al. showed that  we can find the whole plaintext by using an 
algorithm that deciphers certain bits of the plaintext [1]. This also means that 
the proposed n-adic system can be broken by an algorithm that  deciphers certain 
bits of the first block of the plaintext. It is an open problem whether there exists 
an algorithm that  can decipher certain bits after first block of the plaintext. 

Against the RSA cryptosystem, D. Coppersmith et al. showed that  we can 
recover the original plaintext by algebraic calculation, if we send two ciphertexts 
whose plaintexts have a polynomial relationship [3]. It might be possible to 
recover the plaintext of the proposed n-adic system using a variation of this 
technique. It is an open problem whether you can recover the plaintext if there 
is a polynomial relationship between some blocks of one plaintext or between 
blocks of two plaintexts. 

4.1 S e c u r i t y  o f  t he  second  b lock  

T h e o r e m 3 .  Consider the n-adic RSA-type cryptosystem. Let 0 be an oracle 
which, given a ciphertext C =- ( M o + n M l  +. . . A-nk-i  M k - t )  e (mod nk), answers 
the second block of the plaintext 1141. The oracle 0 can be used to break the entire 
plaintext ( Mo, M1, . . . , Mk-1) .  

Proof. If we can decipher the first block M0, then we can also do all the remaining 
blocks M 2 , . . . , M k - 1 .  Therefore, we can reduce the attack to the case of the 
two-block cryptosystem with modulo n 2. Let the plaintext M = Mo + nM1 (0 <_ 
Mo,M1 < n), and C = M r (mod n 2) be the ciphertext. For i • 0 , 1 , 2 , . . . , h ,  
expand 

2iM=_114(o i) + nM~ i) (modn2) ,  0 < M ~  i) ,M~ i) < n, 

where h = [log2 nJ. Here, 2ieC = ( M  0)  + nM~i)) ~ (mod n 2) holds, and we can 

get each second block M~ i) = o ( 2 i e c )  by using the oracle O. Here, note that  

M~ i) < n/2  if and only if 2M~ ') (rood n) = U~ i+1) for i =  0 , 1 , 2 , . . . , h .  Hence 

2M~ i) (mod n) = O(2(i+Dec) if and only if M~ i) < n / 2 f o r i = O ,  1 , 2 , . . . , h .  On 
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the other hand, let Co = C (mod n), and we have 2ieCo = (2iM0) r ~ (M~i)) ~ 
(mod n) for i = 0, 1 , 2 , . . . ,  h. This observation means that  we can construct  

the half  bit oracle OH, which computes OH(2ieCo) = 0 if M (0 < n /2  and 

OH(2ieco) = 1 if M~ i) > n/2. Indeed, define that  

on(z .Co) = o, 
L 1, 

(20(2iec) (mod n)) = O(2(i+DeC), 
(20(2ieC) (mod n)) r O(2(i+DeC), 

for i = 0, 1, 2 , . . . ,  h. It  is well-known this half bit oracle OH recovers the plaintext 
M0 such that  Co = M~ (mod n)[6]. Consequently, we can decipher the first block 
M0. 

5 Conclusion 

Our proposed n-adic extensions of the RSA and Rabin cryptosystems perform 
decryption faster than  any other multi-block RSA-type or Rabin- type cryp- 
tosystem~s ever reported.  Deciphering the entire plaintext of this system is as 
intractable as breaking the original RSA cryptosystem or factoring. We also 
showed tha t  the proposed n-adic RSA-type cryptosystem is a permuta t ion  func- 
tion, and showed the criteria for message concealing and cycling at tacks which 
are applicable to the RSA cryptosystem. Even if a message is several t imes 
longer than  a public-key n, we can encrypt it fast without repeatedly using the 
secret-key cryptosystem. 
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