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A b s t r a c t .  It has become increasingly common to implement discrete- 
logarithm based public-key protocols on elliptic curves over finite fields. 
The basic operation is scalar multiplication: taking a given integer mul- 
tiple of a given point on the curve. The cost of the protocols depends on 
that of the elliptic scalar multiplication operation. 

Koblitz introduced a family of curves which admit especially fast ellip- 
tic scalar multiplication. His algorithm was later modified by Meier and 
Staffelbach. We give an improved version of the algorithm which runs 
50% faster than any previous version. It is based on a new kind of repre- 
sentation of an integer, analogous to certain kinds of binary expansions. 
We also outline further speedups using precomputation and storage. 
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1 I n t r o d u c t i o n  

It  has become increasingly common to implement discrete-logarithm based pub- 
lic-key protocols on elliptic curves over finite fields. More precisely, one works 
with the points on the curve, which can be added and subtracted. If  we add the 
point P to itself n times, we denote the result by nP. The operation of computing 
nP  f rom P is called scalar multiplication by n. Elliptic public-key protocols are 
based on scalar multiplication, and the cost of executing such protocols depends 
most ly  on the complexity of the scalar multiplication operation. 

Scalar multiplication on an elliptic curve is analogous to exponentiation in 
the multiplicative group of integers modulo a fixed integer m. Various techniques 
have been developed [1] to speed modular  exponentiation using memory  and 
precomputat ions.  Such methods,  for the most part ,  carry over to elliptic scalar 
multiplication. 

There are also efficiency improvements available in the elliptic case tha t  have 
no analogue in modular  exponentiation. There are three kinds of these: 

1. One can choose the curve, and the base field over which it is defined, so as to 
optimize the efficiency of elliptic scalar multiplication. Thus, for example, one 
might  choose the field of integers modulo a Mersenne prime, since modular  

* This paper presents the results of cryptographic research conducted at NSA a~d 
does not necessarily represent the policies of the NSA or U.S. Government. 
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reduction is particularly efficient [2] in that  case. This option is not available 
for, say, RSA systems, since the secret primes are chosen randomly in order 
to maintain the security of the system. 

2. One can use the fact that  subtraction of points on an elliptic curve is just 
as efficient as addition. (The analogous statement for integers (rood m) is 
false, since modular division is more expensive than modular multiplication.) 
The efficient methods for modular exponentiation all involve a sequence of 
squarings and multiplications that  is based on the binary expansion of the 
exponent. The analogous procedure for elliptic scalar multiplication uses a 
sequence of doublings and additions of points. If we allow subtractions of 
points as well, we can replace [3] the binary expansion of the coefficient n 
by a more efficient signed binary expansion (i.e., an expansion in powers of 
two with coefficients 0 and +1). 

3. One can use complex multiplication. Every elliptic curve over a finite field ~ 
comes equipped with a set of operations which can be viewed as multiplica- 
tion by complex algebraic integers (as opposed to ordinary integers). These 
operations can be carried out efficiently for certain families of elliptic curves. 
In these cases, they can be utilized in various ways [5] to increase the effi- 
ciency of elliptic scalar multiplication. 

It is the purpose of this paper to present a new technique for elliptic scalar 
multiplication. This new algorithm incorporates elements from all three of the 
above categories. The new method is 50% faster than any method previously 
known for operating on a non-supersingular elliptic curve. 

2 F i e l d  a n d  E l l i p t i c  O p e r a t i o n s  i n  F 2 ~  

We begin with a brief survey of the various operations we will need in the field 
IF2,- and on elliptic curves over this field. 

Squa r ing .  We will assume that  the field IF2-~ is represented in terms of a normal 
basis: a basis over IF2 of the form 

{0,02, 02~,. . . ,02~-~} 

The advantage of this representation is that  squaring a field element can be 
accomplished by a one-bit cyclic shift of the bit string representing the element. 
This property will be crucial in what follows. If m is not divisible by 8, then one 
can use Gaussian cyclotomic periods to construct easily [6] an efficient normal 
basis for IF2,~. (Since our application will require rn to be prime, we can always 
use the Gaussian method.) 

Our emphasis in this paper will be the case in which the field arithmetic is be 
implemented in hardware. Although the algorithms that  follow will be efficient 

2 We restrict our attention to elliptic curves that are not supersingular, since such 
curves are cryptographically weak. (See [4].) 
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in software as well, the full advantage of our method occurs in hardware, where 
the bit shifts (and therefore field squarings) are virtually free. 

A d d i t i o n  a n d  M u l t i p l i c a t i o n .  We may neglect the cost of additions in IF2-, 
since they involve only bitwise XORs. A multiplication (of distinct elements) 
takes about m times as long, just  as in the case of integer arithmetic. The cost 
of an elliptic operation depends mostly on the number of field multiplications it 
USES. 

Inve r s ion .  Multiplicative inversion in IF2-, can be performed in 

L(m-  1) q- W ( m -  1 ) -  2 

field multiplications using the method of [7]. Here L(k) represents the length of 
the binary expansion of k, and W(k) the number of ones in the expansion. This 
fact may be a consideration when choosing the degree m. (Alternatively, one 
can use the Euclidean algorithm [8], but one must first convert from the normal 
basis representation to the more familiar polynomial basis form, and then back 
again after the inversion.) 

Elliptic A d d i t i o n .  The standard equation for an elliptic curve over IF~- is the 
Weierstrass equation 

E: y2+=y:x3+a=2+b (1) 

where b r 0. Public key protocols based on this curve work on the group con- 
sisting of the points (x, y) on this curve, along with the group identity O. (The 
element (9 is called the point at infinity, but it is most convenient to repre- 
sent it 3 by (0, 0).) The following algorithm inputs the points P0 = (=0, Y0) and 
P1 = (=1, Yl) on E and returns their sum P~ = (z2, Y2). 

A l g o r i t h m  1. (Elliptic Group Operation) 

If P0 : 0 then output P2 ~- PI and stop 

If P1 =(9 then output P2~-P0 and stop 

If =0 = =1 
then 

else 

if Y0 + Yl----=1 then output O and stop 
else 

A ~- =I + YI/=I 
x2 ~A2+A+a 

=2 ~'- ~2 .~_ )t ..[_ =0 "~-=1 -~-a 

3 This does not cause confusion, because the origin is never on E. 
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y2 ~--(Xl+X2) A + x 2 + y l  
Output P2 '--- (x2,y2) 

To subtract the point P = (x, y), one adds the point - P  = (x, x + y). 
Except for the special cases involving O, the above addition and subtraction 

operations each require 1 multiplicative inversion and 2 multiplications. 4 (As 
always, we disregard the cost of adding and squaring field elements.) 

E l l i p t i c  Sca l a r  M u l t i p l i c a t i o n .  The basic technique for elliptic scalar multi- 
plication is the additwn-subtractwn method. This begins with the nonadjacent 
form (NAF) of the coefficient n: a signed binary expansion with the property 
that  no two consecutive coefficients are nonzero. For example, 

NAF(29) = (1, 0, 0, - 1 ,  0, 1) (2) 

since 29 -- 32 - 4 + 1. 
Just as every positive integer has a unique binary expansion, it also has a 

unique NAF. Moreover, NAF(n) has the fewest nonzero coefficients of any signed 
binary expansion of n (see [1]). There are several ways to construct the NAF of 
n from its binary expansion. We present the one that  most resembles the new 
algorithm we will present in w 

The idea is to divide repeatedly by 2. Recall that  one can derive the binary 
expansion of an integer by dividing by 2, storing off the remainder (0 or 1), and 
repeating the process with the quotient. To derive a NAF, one allows remainders 
of 0 or 4-1. If the remainder is to be +1, one chooses whichever makes the quotient 
even. 

A l g o r i t h m  2. (NAF) 

Inpu t  n 
Set k ~--- n 
set  S , - -  ( )  
While k > 0 

If k odd 
then set u~-2--(k (mod 4)) 
else set u~-O 

S e t  k ~ k  - u 

P r e p e n d  u t o  S 

Set k ~ - k / 2  
EndWhile 

Output S 

For example, to derive (2), one applies Alg. 2 with n --- 29. The results are shown 
in Fig. 1. 

4 There does exist a faster algorithm for doubling a point, but we relegate it to the 
Appendix since it does not fit well with the best hardware implementations of normal 
bases. 
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Fig. 1. Computing a NAF. 

k u S 

29 () 
28 1 
14 O) 
14 0 
7 (0, 1) 
8 - 1  
4 (--1, 0, 1) 
4 0 
2 (0, --1, O, 1) 
2 0 
1 (0,0,-1,0,1) 
0 1 
0 (1,0,0,--1,0, 1) 

Note that,  although we have phrased the algorithm in terms of integer arith- 
metic, it can be implemented in terms of bit operations on the binary expansion 
of n. No arithmetic operations are needed beyond integer addition by 1. 

In the derivation of the ordinary binary expansion, the sequence k is decreas- 
ing, but that  is not true in general in Alg. 2. As a result, the NAF of a number 
may be longer than its binary expansion. Fortunately, it can be at most one bit 
longer, because 

2 l < 3n < 2 l+1 

where ~ is the bit length of NAF(n). (See [3].) 
We now implement elliptic scalar multiplication using the NAF. Given the 

NAF 
s 

n = Z ci2i ' 
i=0 

the elliptic scalar multiplication Q = nP is performed as follows. 

A l g o r i t h m  3. (Addition-Subtraction Method) 

Input P 

S e t  Q +- P 
For i : g -- 2 downto 1 do 

Set Q ~- 2Q 
I f  ei : 1 t h e n  s e t  Q * - Q  + P 
If ei=--i then set Q ~-Q-P 

Output O 
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The cost of Alg. 3 depends on the bit length s of NAF(n),  which we now 
estimate. It  follows from the Hasse theorem that  the order of an elliptic curve 
over IF2= is 

#E(]F2, , , )  = 2 ~ + 0 ( 2  ' ' ' /2) . (3) 

Most public-key protocols on elliptic curves use a base point of prime order p. 
Since all of the curves (1) have even order, then p must be at most 2 "*-1 + 
0(2m/2). We can assume that  n < p; thus 5 s _< m. 

It follows that  Alg. 3 requires about m doubles at most. The number of ad- 
ditions is (about) the number of nonzero coefficients in NAF(n). The average 
density of nonzero coefficients among NAF's is 1/3 (see [3]). Therefore the av- 
erage cost of Alg. 3 is -~ m doubles and .~ m/3 additions, for a total of ~ 4m/3 
elliptic operations. This is about one-eighth faster than the binary method, which 
uses the ordinary binary expansion in place of the NAF and therefore requires 
an average of .~ m/2  elliptic additions rather than -.- m/3. 

3 A n a m o l o u s  B i n a r y  C u r v e s  

Two extremely convenient families of curves [5] are the anamolous binary curves 
(or ABC's).  These are the curves E0 and E1 defined over IF2 by 

E~ : y2 + xy = x3 + az2 + l . 

We denote by E ~ ( I F ~ )  the group of lF2.~-rational points on Ea. This is the 
group on which the public-key protocols are performed. The group should be 
chosen so that  it is computationally difficult to compute discrete logarithms of 
its elements. Thus, for example, the order #Ea(IF2.-)  should be divisible by 
a large prime (see [9]). Ideally, #Ea(]F2=)  should be a prime or the product 
of a prime and small integer. This can only happen when m is itself prime, 
for otherwise there are large divisors arising from subgroups Ea(]F2a) where d 
divides m. 

Actually, the orders #Ea(IF2,,) are never prime, because they always contain 
the point (0, 1), which is easily seen to have order 2. The best result to be hoped 
for, then, is that  the order is twice a prime. This happens relatively frequently 
for El .  The values of m _< 512 for which #EI(IF2-~) is twice a prime are 

m - 3, 5,7, 11, 17,19, 23,101, 107,109,113,163,283,311,331, 347,359 . 

The curves E0 contain the points (1, 0) and (1, 1), which are easily seen to have 
order 4. The best result to be hoped for among the curves E0, then, is that  the 
order is 4 times a prime. The values of m < 512 for which this happens are 

m = 5, 7, 13, 19, 23, 41, 83, 97,103,107,131, 233,239,277,283,349,409 . 

5 A further one-bit improvement on this bound is possible if we use the identity 

whenver n > p/2. Moreover, if a has trace 0 over ]F~, we save yet another bit since 
the order of E must be divisible by 4. 
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Since the ABC's are defined over IF2, they have the property that,  if P = 
(x, y) is a point on E~, then so is the point (x 2, y~). Moreover, one can verify 
from Alg. 1 that  

(X4, y4) § 2 (X, y) "-- (--1):-"  (X 2, y2) (4) 

for every (x, y) on Ea. This relation can be written more easily in terms of the 
Frobenius (squaring) map over IF2: 

y) = (=2, . 

Using this notation, (4) becomes 

r ( r P )  § 2P = ( - 1 ) : - ~  r P 

for all P E E. Symbolically, this can be written 

(r  2 + 2 ) P - =  (-1):-arP . 

This means that  the squaring map can be regarded as implementing multiplica- 
tion by the complex number r satisfying 

r 2 + 2 = ( - 1 ) l - " r  . 

Explicitly, this number is 

(--1) 1-a + 

2 

By combining the squaring map with ordinary scalar multiplication, we can 
multiply points on Ea by any element of the ring 7)'[7-]. We say that Ea has 
comptex multiplicatio, by r. (See [5].) 

The reason why this property is useful for elliptic scalar multiplication is that 
multiplication by r ,  being implemented by squaring, is essentially free when IF2-~ 
is represented in terms of a normal basis. Thus it is worthwhile, when computing 
uP, to regard n as an element of 7711-] rather than as "just" an integer. More 
precisely, one replaces the (signed) binary expansion of the coefficient with the 
(signed) r-adic expansion. That  is, one represents n as a sum and difference of 
distinct powers of r .  

For example, with a = 0 we have 

9 = r  s - r  3 + 1  . (5) 

Thus, if P = (x,y) is a point on E0, then 

9P : (x 32, y32) __ (X8, yS) + (x, y) . 

The above example gives 9 as what we call a r-adic NAF, since no two 
consecutive terms are nonzero. (Both [5] and [10] use signed r-adic expansions, 
but neither kind has the nonadjacency property.) As we shall see, the use of 
the v-adic NAF gives a significant reduction in the number of terms, just as the 
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NAF gives a significant improvement over the binary expansion in the case of 
integers. 

The r-adic NAF has a property analogous to the NAF for integers, namely 
that  every element o f  the ring Z[r] has a unique r-adic NAF. We shall prove 
the existence by providing the construction. (The proof of uniqueness is similar 
to that  of the NAF for integers.) 

We begin with the observation that  x + yr is divisible by r if and only if x 
is even. One direction of this statement follows from the identity 

( u + v r )  T = - 2 v  + ( u +  ( - 1 ) 1 - % ) r  , 

and the other from the fact that,  if x = 2v, then 

x + yr  = (y + ( - 1 ) l - a v  - vv) 1" . 

We now present the algorithm [11] for computing the v-adic NAF. It is com- 
pletely analogous to Alg. 2, but here we are dividing by r rather than by 2. The 
ring ~'[r] is Euclidean with norm function 

N ( x  + yr) = x 2 + ( - 1 )  1-a x y +  2y 2 . 

Since 1" has norm 2, the possible remainders upon division by v are 4-1. Earlier 
algorithms chose the remainder that  minimized the norm of the quotient; this 
is analogous to the basic division algorithm for generating the binary expansion 
of an integer. What  we shall do instead is to choose the remainder that  makes 
the quotient divisible by r (i.e., having real part even). This is analogous to the 
computation of the NAF for integers. 

A l g o r i t h m  4. (r-adic NAF)  

Input x0, Y0 
Set X ~-- x0, y (-- Y0 
set  S () 
While x#O or y#O, 

If x odd, 
t h e n  s e t  u ~-- 2 -- (x -- 2y (mod 4)) 
else set u ~ 0  

Set z+--z--u 

Prepend u to $ 

Set (x, y) (y + ( -1)  ~ x/2, --x/2) 
EndWhil e 

Output  8 

For example, to derive (5), one applies Alg. 4 with a = 0, x = 9, and y = 0. The 
results are shown in Fig. 2. 

Note that  the implementation of Alg. 4 involves nothing more complicated 
than integer addition. (This is slightly more than is required by Alg. 2, which 
only adds 1 to an integer.) 
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Fig. 2, Computing a generalized NAF. 

x y u s 

9 0 <> 
8 0 1 

4 - 4  O) 
4 -4 o 

- 2  - 2  (0, I) 
- 2  - 2  0 
- 3  1 (0,0,1) 
- 2  1 - 1  

0 I ( -1 ,0 ,0 ,  1) 
0 1 0 
1 0 (0, -1 ,  O, O, 1) 
0 0 1 
0 0 (1,0,--1, 0,0, 1) 

An argument  similar to the one [3] in the NAF case proves that  the average 
density of nonzero terms among r-adic NAF's  is 1/3. There is a drawback to this 
representation, however: the r-adic NAF of an integer n is about  twice as long 
as its ordinary NAF. This is because Alg. 4 begins with n, which is an element 
of Z[v] with norm n 2, and repeatedly divides by r ,  which has norm 2. 

The solution is to adopt  the following modification from [10]. Recall that  
multiplication by r is implemented by a one-bit circular shift of each of the m- 
long bit strings representing the coordinates of P .  Multiplication by r m, then, 
involves m such shifts, returning each coordinate to its original state. In other 
words, r m P = P for all P 6 Ea(]F2,~). I t  follows that ,  if a and ~ are elements 
of Z[r ]  with a - ~ (mod r m - 1), then a P  = ~ P  for all P .  

This  means that ,  to multiply by n, one need not work with n itself, but  rather 
the remainder  obtained f rom dividing n by r m - 1. Since 7/Iv] is Euclidean, this 
remainder  will have norm smaller than that  of r m - 1. The norm of 7" m - -  1 is 
precisely the order of Ea(]F2-,), and this is roughly 2 m by (3). Thus the r-adic 
NAF of the remainder will have length ~ m, only half as long as the r-adic  NAF 
of n itself. Moreover, the average density is still only 1/3. To see this, one must  
examine the distribution of the residues (mod v m - 1) of the integers; see [1]. 

To implement  this improvement,  one needs a division algorithm in Z[r] .  The 
following algori thm inputs the dividend u + v r  and divisor r + s r  and outputs  a 
quotient w + z r  and remainder x + yr ,  the latter having smaller norm than the 
divisor. 

A l g o r i t h m  5. (Division in the Ring 7 [r]) 

Input u, v, r, s 

Set  k ~ ru + su + 2sv ,  
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+--- P V  - -  8 ~  

Set h +---r 2 §  2s 2 

Set  w t /hJ, 
z g / h i  

S e t  x ~--  u - -  r w  + 2 8 z  , 

y +-- V - - S W - -  r z - - s z  

Output  w ,  z ,  z ,  y 

To apply Alg. 5, one needs to express r m - 1 as an expression of the form 
r + s r .  This is done via Lucas sequences. Let U0 = 0, U1 = 1, and 

Uk = ( - 1 )  1-~ U~_I - 2 U~-2 

for k > 2. I t  is easy to prove tha t  

r m = U m r - 2 U m - 1  �9 

Thus we have the following procedure for computing n P  in Ea(IF~-,). 

A l g o r i t h m  6. (Sca lar  M u l t i p l i c a l i o ,  on A B C ' s )  

1. Divide n by Urn r - (2 Urn-1 + 1) via Alg. 5. 
2. Compute  the r-adic NAF 

es e g - 1 ,  �9 �9 � 9  e l ,  e 0 }  

of the remainder via Alg. 4. 

3 .  S e t  Q ~-- e z P  

4. For i from g--i do.nto 1 do 

set Q rQ(= shift[Q]) 
If e l  -- 1 then set Q +--- Q -4- P 
If ei - - - - - - I  then set Q , - Q -  P 

S. Output Q. 

Except for Step 1 (i.e. Alg. 5), the only arithmetic required by Alg. 6 is 
binary field ari thmetic and integer addition. Alg. 5, on the other hand, requires 
several multiplications and divisions involving m-bit  numbers. Thus it is less well 
suited to hardware, and more expensive in software, than the other steps. 6 The 
running t ime of Step 1, however, is negligible compared to the actual elliptic 
scalar multiplication (see [10]). 

Since t ~ m, then Alg. 6 requires ,~ m / 3  additions and no doubles. This is 
at least 50% faster than any of the earlier versions, as is shown in Table 1. 

6 On the other hand, Alg. 5 can be replaced by simpler and more efficient algorithms 
that do much the same thing. For example, one might use a "double-and-acid" 
method of "building up" to the integer n via its binary expansion, reducing when 
needed by suitable multiples of r "  - 1. Such reductions would involve additions 
rather than multiplications and divisions. Details are not available as of this writing, 
but it seems that an efficient implementation could be developed which would yield 
a r-adic NAF of only a few bits over the output of Alg. 5. 
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Table 1. Comparison of Elliptic Scalar Multiplication Techniques. 

Type of 
Curve Method 

General Binary Method 
" Addition-Subtraction (1989) 

ABC Koblitz, Balanced (1991) 
" Meier-St affelbach (1992) 
" r-adic NAF (1997) 

Avg. # of 
Length of Avg. Elliptic 
Expansion Density Operations 

m 1/2 3m/2 
m 1/3 4m/3 

2m 3/8 3m/4 
m 1/2 m/2  
m 1/3 m/3 

The "length" and "density" columns give the approximate length of the 
relevant representation of the number and the average density of nonzero terms. 
The density figure of 3/8 for Koblitz' "balanced" expansions is from experimental 
observation and may be only an approximation. 

4 Precomputation and Memory Speedups 

We can obtain still more dramatic savings by precomputing and storing some 
"small" r-adic multiples of P .  By this we mean the points a P  for which a E Z[r] 
has a short v-adic NAF. These precomputed values can then be used as needed 
when going through the r-adic expansion of n. This is essentially a "r-adic 
window method." We illustrate with a simple example: that  of using windows of 
a fixed width w. 

This method is very similar to the fixed-width version of the window method 
for ordinary NAF's of integers. Consider the following example. We let the width 
w = 4 and n = 22310. Then NAF(n) is given by 

(i, 0,-1, O, -1, O, 0,-1, O, O, 1,0, 1, O, -1,0) . ( 6 )  

We now rewrite (6) by allowing nonzero coefficients to take on the values 4-3, 
+5, 4-7, 4-9 as well as +1. (This choice reflects the fact that  the odd numbers 1 
through 9 are the ones with NAF of length 4 or less.) We go right to left, as in 
Fig. 3. 

As a result, we have the expression 

2 2 3 1 0 _ - 2 1 ~ _ 5 . 2 1 1 _ 7 . 2 5 + 3 . 2  . 

Therefore, we can multiply the point P by 22310 by precomputing 3P,  5P,  7P,  
9P  and calculating 

22310P = 215p - 211(5p) - 25(7P) + 2(3P) 

via the suitable generalization of Alg. 3. 
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Fig.  3. Widening a NAF. 

( 1, O, -1 ,  O, -1 ,  O, O, -1 ,  O, O, 1 ,I o , 1, o,-1 l, o ) 
(1 ,  o,-1,  o,-1,  o, o,1-1, o,o,  ,11, o, o,o,  3,0 > 
1 1 , 1 0 , - 1 , 0 , - 1 1 , 0 , 0 ,  0 , 0 , 0 , - 7 , 0 , 0 , 0 , 3 , 0 )  

1 , 0 ,  0 , 0 , - 5 , 0 , 0 ,  0 , 0 , 0 , - 7 , 0 , 0 , 0 ,  3 , 0 )  

Apply ing  the m e t h o d  for the  general  wid th-w case requires 

C(w) = (2 w - ( - 1 ) w ) / 3  

values to  be  p r e c o m p u t e d  and  stored.  The  result ing wid th-w NAF has the prop-  
e r ty  t h a t  any  w consecutive coefficients include at  mos t  one nonzero entry. T h e  
average  densi ty of  nonzero coefficients among  width-w N A F ' s  is (w + 1) -1 .  

T h e  same  wid th-w NAF calculat ions can be used in the r -ad ic  case. T h e  
exa mple  analogous  to the above is mul t ip l ica t ion  by 

O~ = T 15 -- T 13 -- T II -- T 8-~- T 5 -~- T 3- T , 

since the ~--adic NAF of a is given by (6). To devise a width-w r-adic NAF of 
c~, we allow nonzero coefficients to take on the values 4-/93, +fls, +fiT, q-fl9 as 
well as q-l, where flk is the element of Z[r] whose r-adic NAF is the same as 

the  o rd inary  N A F  of  k. (Explici t  values are given in Fig. 4.) 

Fig.  4. Analogues of the Small Odd Integers. 

NAF(3) = (1, 0, - 1 )  8a = r 2 - 1 /'3 = ( r  2 - 1)P 
NAF(5) = (1, 0, 1) 8s = r ~ + 1 P5 = ( r  2 + 1)P 
NAF(7) = (1, 0, 0, - 1 )  87 = r a - 1 /'7 = ( r  a - 1)P 
NAF(9) = (1, 0, 0, 1) 89 ---- r 3 q" 1 P9 = ( r  3 + 1)P 

T h e  calculat ion shown in Fig. 3 shows tha t  the  width-4 r -ad ic  NAF of  a is 

= r 15 - & "  r 11 - ~ 7 "  r s + / ~ 3 "  r . 

T h u s  one computes  

a P  = r l S p  - f l i p 5  - rSP7 + rP3 

by p recompu t ing  and  storing the points  Pi given in Fig. 4. 
To  pe r fo rm  this procedure  in general requires enough m e m o r y  to  store C(w) 

points ,  including P itself. T h e  p r e c o m p u t a t i o n  requires C(w) - 1 elliptic addi-  
t ions,  and  no m e m o r y  other  t han  t ha t  used to  store the C(w) points .  T h e  ma in  
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computation is the analogue of Alg. 6, performed on a length-m, width-w, r-adic 
NAF with average density (w + 1) -1.  The total  work, then, is 

2 w m 
,~ - ~  + ~ elliptic additions. 

Table 2 gives the performance of this algorithm on the curve El(IF2,63 ) for 
various widths. (Entries are rounded to the nearest integer.) The case w = 2 is 
the ordinary method of w By choosing w = 4 or 5, one saves roughly one-third 
the work. For larger w, the precomputation costs overshadow any savings on the 
real-time computation. 

T a b l e  2. Performance at Various Widths. 

Width 

Number of Elliptic Operations 

Precomp- Real Time Total 
utation 

2 0 
3 2 
4 4 
5 9 
6 20 
7 42 

(~vg) (avg) 

52 52 
39 41 
31 35 
26 35 
23 43 
19 61 

It is remarkable that  one can perform a general elliptic scalar multiplication 
on El(IF2163) using only about 35 multiplicative inversions and 70 field multipli- 
cations. 

One could obtain still further speedups by using more general window meth- 
ods. These would be straightforward adaptations of existing methods such as 
those found in [12]. On the other hand, such methods are less automatic than 
the above fixed-width-window technique, so that  more complicated up-front cal- 
culations are needed. 

Note added during review: the results of [10] have recently been generalized 
to curves defined over fields of 2 a elements for small d. For example, the curves 
with complex multiplication by (-4-1+ ~ / "~ - ) / 2  are defined over lF2~. The results 
of this paper should also carry over to this more general situation. 
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A E l l i p t i c  D o u b l i n g  w i t h  N o r m a l  B a s e s  

The following technique 7 carries out the doubling 

y2) = 2 (=1, y l )  

of a point (for which =1 r 0) on the curve 

y2 + =y = =3 + a=~ + b 

over IF2-,, where the field is represented in terms of a normal  basis. The usual 
algori thm requires 1 multiplicative inversion and 2 multiplications. The method 
given here replaces one of the general multiplications by a multiplication by 
a fixed constant (namely b). The operation of multiplying by a fixed constant 
is comparable in speed to field addition. Therefore the effective cost of this 
algori thm is 1 multiplicative inversion and 1 multiplication. 

One begins by computing 

b 
= =12 + , 

7 This method is of the kind alluded to in [13]. There it is credited to [14], which is 
not so easily available; hence its inclusion in this Appendix. 
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which is easily seen to equal the expression for z2 appearing in Alg. 1. One then 
finds a root /~ of the quadratic equation 

]~2 -[- ]A ~--~ Z 2  -[- a . 

Since the field is being represented in terms of a normal basis, this process can 
be done without  using anything more expensive than  addition [15], so we can 
neglect its cost. The element p will equal A + e, where e -- 0 or 1 and 

A= xi + y l  . 
Z l  

Therefore 
pZl "~-Z 2 Jryl = eZl �9 

This equation allows us to find e and therefore A. Notice tha t  it is not necessary 
to perform the multiplication/~ z l  in full, but  rather to compute one coordinate 
of the product.  (We can choose any coordinate where the corresponding coordi- 
nate of Xl is 1.) Comput ing  one coordinate of a product costs the same as an 
addition, so the derivation of A is virtually cost-free. To complete the doubling, 
one computes 

Y 2 - - x  2 + ( ) ~ + 1 ) x 2  �9 


