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A b s t r a c t .  Secure and authenticated message delivery/storage is one of 
the major aims of computer and communication security research. The 
current standard method to a~hieve this aim is "(digital) signature fol- 
lowed by encryption ' .  In this paper, we address a question on the cost 
of secure and authenticated message delivery/storage, namely, whether 
it is possible to transport/store messages of varying length in a secure 
and authenticated way with an expense less than that required by "s~gna- 
ture followed by encryption". This question seems to have never been 
addressed in the literature since the invention of public key cryptogra- 
phy. We then present a positive answer to the question. In particular, we 
discover a new cryptographie primitive termed as "signcryption" which 
simultaneously fulfills both the functions of digital signature and public 
key encryption in a logically single step, and with a cost significantly 
lower than that required by "signature followed by encryption' .  For typ- 
icM security parameters for high level security applications (size of public 
moduli = 1536 bits), signcryption costs 50% (31~), respectively) less in 
computation time and 85% (91%, respectively) less in message expan- 
sion than does "signature followed by encryption" based on the discrete 
logarithm problem (factorization problem, respectively). 
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1 I n t r o d u c t i o n  

To avoid forgery and ensure confidentiali ty of the  contents  of a letter,  for cen- 
turies it has been a c o m m o n  pract ice  for the  or iginator  of the let ter  to  sign 
his /her  name on it and then  seal it in an envelope, before handing  it over to a 
deliverer. 

* Patent pending (PO3234/96, filed on October 25, 1996). The full version of this 
paper can be obtained from h t tp : / /www-psc i t ,  f e i t  .monash. edu. au / 'yu l iang /  
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Public key cryptography discovered nearly two decades ago [7] has revolution- 
ized the way for people to conduct secure and authenticated communications. It 
is now possible for people who have never met before to communicate with one 
another in a secure and authenticated way over all open and insecure network 
such as Internet. In doing so the same two-step approach has been followed. 
Namely before a message is sent out, the sender of the message would sign it 
using a digital signature scheme, and then encrypt the message (and the signa- 
ture) using a private key encryption algorithm under a randomly chosen message 
encryption key. The random message encryption key would then be encrypted 
using the recipient's public key. We call this two-step approach signature-then- 
encryption. 

Signature generation and encryption consume machine cycles, and also intro- 
duce "expanded" bits to an original message. Hence the cost of a cryptographic 
operation on a message is typically measured in the message expansion rate and 
the computational time invested by both the sender and the recipient. With the 
current standard signature-then-encryption, the cost for delivering a message 
in a secure and anthenticated way is essentially the sum of the cost for digital 
signature and that  for encryption. 

In this paper, we address a question on the cost of secure and authenticated 
message delivery, namely, whether it is possible to transfer a message of arbitrary 
length in a secure and authenticated way with an expense less than that required 
by signature-then-encryption. This question seems to have never been addressed 
in the literature since the invention of public key cryptography. We then present 
a positive answer to the question. In particular, we discover a new cryptographic 
primitive termed as "signcryption" which simultaneously fulfills both the func- 
tions of digital signature and public key encryption in a logically single step, and 
with a cost significantly smaller than that  required by signature-then-encryption. 
The saving in cost grows proportionally to the size of security parameters. Hence 
it will be more significant in the future when larger parameters are required to 
compensate theoretical and technological advances in cryptanalysis. 

2 T h e  T r a d i t i o n a l  S i g n a t u r e - T h e n - E n c r y p t i o n  A p p r o a c h  

As we mentioned earlier, public key cryptography invented by Diffie and Hell- 
man [7] makes it a reality for one (1) to digitally sign a message, and (2) to 
send a message securely to another person with whom no common encryption 
key has been shared. Currently, the standard approach for a user, say Alice, 
to send a secure and authenticated message to another user Bob is signaturc- 
then-encryption. The best example that  follows the two-step approach is PEM, 
a standard for secure e-mail on Internet [15]. 

To compare the efficiency of two different methods for secure and authen- 
ticated message delivery, we examine two types of "cost" involved: (1) compu- 
tational cost, and (2) communication overhead (or storage overhead for stored 
messages). The computational cost indicates how much computational effort has 
to be invested both by the sender and the recipient of a message. We estimate 
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the computational cost by counting the number of dominant operations involved. 
Typically these operations include private key encryption and decryption, hash- 
ing, modulo addition, multiplication, division (inversion), and more importantly,  
exponentiation. In addition to computational cost, digital signature and encryp- 
tion based on public key cryptography also require extra bits to be appended 
to a message. We call these extra "redundant" bits the communication over- 
head involved. We say that  a message delivery method is superior to another if 
(the aggregated value of) the computational cost and communication overhead 
required by the former is less than that  by the latter. 

The firs.t part  of Table 2 indicates the computational cost and coinlnuni- 
cation overhead of "Schnorr signature-then-E1Gamal encryption" against that  
of "DSS-then-E1Gamal ene13rption" and "RSA signature-then-RSA encrypt ion ' .  
Note that ,  although not shown in the table, other combinations such as "Schnorr 
signature-then-RSA encryption" and "RSA signature-then-EIGamal encryption" 
may also be used in practice. As discussed in [21], with the current state of the 
art,  computing discrete logarithm on GF(p)  and factoring a composite n of the 
same size are equally difficult. This simplifies our comparison of the efficiency of 
a cryptographic scheme based on RSA against that  based on discrete logarithm, 
as we can assume that  the moduli n and p are of the same size. 

We close this section by examining the increasingly disproportionate cost for 
secure and authenticated message delivery in the currently standard signature- 
then-encryption approach, with an example text of 10000 bits (which corre- 
sponds roughly to a 15-line email message). For current and low security level 
applications, when RSA is used, the computational cost is centered around the 
execution of four (4) exponentiations modulo 512-bit integers, and the commu- 
nication overhead is 1024 bits. When Schnorr signature and E1Gamal encryption 
are used, the computational cost consists mainly of six (6) exponentiations mod- 
ulo 512-bit integers, and the communication overhead is about  750 bits. 

However, if the contents of the text  are highly sensitive, or a text  of the 
same length will be t ransmit ted in 2010, then very large moduli, say of 5120 
bits, might have to be employed. In such a situation, if RSA is used, four (4) 
exponentiations modulo (very large!) 5120-bit integers have to be invested in 
computation z, and the communication overhead is 10240 bits, which is now 
longer than the original 10000-bit text ! If, instead, Schnorr signature and E1Ga- 
mal encryption is used, then the computational cost is six (6) exponentiations 
modulo (again very large!) 5120-bit integers, and the communication overhead 
of about  5560 bits is more than half of the length of the original message. From 
this example, one can see that  in the signature-then-encryption approach, the 
cost, especially comnmnication overhead, for secure and authenticated message 
delivery, is becoming disproportionately large for future, or current but  high- 
level security, applications. This observation serves as further justification on 
the necessity of inventing a new and more economical method for secure and 
authenticated inessage delivery. 

2 The number of bit operations required by exponentiation modulo an integer is a 
cubic function of the size of the modulo. 



168 

3 D i g i t a l  S i g n c r y p t i o n  - -  A M o r e  E c o n o m i c a l  Approach 

Over the past two decades since public key cryptography was invented, signature- 
then-encryption has been a standard method for one to deliver a secure and 
authenticated message of arbi t rary length, and no one seems to have ever ques- 
tioned whether it is absolutely necessary for one to use the sum of the cost for 
signature and the cost for encryption to achieve both contents confidentiality 
and origin authenticity. 

Having posed a question that  is of fundamental importance both fi'om a the- 
oretical and a practical point of view, we now proceed to tackle it. We will show 
how the question can be answered positively by the use of a new cryptographic 
primitive called "signcryption" whose definition follows. 

Intuitively, a digital signcryption scheme is a cryptographic method that  
fulfills both the functions of secure encryption and digital signature, but  with a 
cost smaller than that required by signature-then-eneryption. Using the (informal) 
terminology in cryptography, it consists of a pair of (polynomial time) algorithms 
(S, U), where S is called the signeryption algorithm, while U the uusigneryption 
algorithm. S in general is probabilistic, but U is most likely to be deterministic. 
(S, U) satisfy the following conditions: 

1. Unique unsigncryptability - -  Given a message m, the algorithm S signcrypts 
m and outputs a signcrypted text c. On input c, the algorithm U unsigncrypts 
c and recovers the original message un-ambiguously. 

2. Securi ty--  (S, U) fulfill, simultaneously, the properties of a secure encryption 
scheme and those of a secure digital signature scheme. These properties 
mainly include: confidentiality of message contents, unforgeability, and non- 
repudiation. 

3. Ej~iciency - -  The computational cost, which includes the computational time 
involved both in signcryption and unsigncryption, and the communication 
overhead or added redundant  bits, of the scheme is smaller than that  re- 
quired by the best currently known signature-then-encryption scheme with 
comparable parameters. 

A direct consequence of having to satisfy both the second and third require- 
ments is that  "signcryption # signature-then-encryption". These two require- 
ments also justify our decision to introduce the new word sigucryption which 
clearly indicates the ability for the new approach to achieve both the functions 
of digital signature and secure encryption in a logically single operation. 

The rest of this section is devoted to seeking for concrete implementations of 
signcryption. We first identify two (types of) efficient E1Gamal-based signature 
schemes. Then we show how to use a common property of these schemes to 
construct signcryption schemes. 

3.1 Shortening EIGamal-Based Signatures 

E1Gamal digital signature scheme [9] involves two parameters public to all users: 
(1) p - -  a large prime, and (2) g - -  an integer in [ 1 , . . . , p -  1] with order 
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p - 1 modu lo  p. User  Alice 's  secret  key is an integer  xa chosen r andomly  froin 
[1 , . . .  , p -  1] wi th  xa X ( p -  1) (i.e., x~ does not  divide p -  1), and  her public key 
is y~ = g~o m o d  p. 

Alice 's  s igna ture  on a message  m is composed  of two numbers  7' and  s: 

r = gZ rood p 

s --  ( h a s h ( m )  - x o - T ) / x  rood (p - 1) 

where h a s h  is a one-way hash function,  and  x is chosen independen t ly  a t  r a n d o m  
from [ 1 , . . . ,  p - 1] wi th  x *  (p - 1) every t ime  a message  is to be signed by Alice. 
Given (m,  r, s), one can verify whe ther  (r, s) is Alice 's  s ignature  on m by  checking 
w h e t h e r  ghash(m) ---- yar. v s Inod p is satisfied. 

Since its publ ica t ion  in 1985, E1Galnal s igna ture  has received extensive scrut iny  
by the  research communi ty .  In addi t ion,  it has been  general ized and a d a p t e d  to 
numerous  different forms (see for ins tance [23, 4, 18, 20] and especial ly [11] 
where an exhaus t ive  survey of some 13000 E1Gamal  based s ignatures  has  been 
carr ied out .)  T w o  notable  var ian ts  of E1Galnal s ignature  are Schnorr  signa- 
ture  [23] and  DSS or Digital  Signature  S t anda rd  [18]. W i t h  DSS, g is an integer  
in [1 , . . .  ,p  - 1] wi th  order  q nmdulo  p, where  q is a large pr ime factor  o f p  - 1. 
Alice 's  s ignature  on a message m is composed  of two numbers  r and  s which are 
defined as 

r = (g= m o d  p) m o d  q 

s = (hash(m) + Xa" r ) / x m o d  q 

where  x is a r a n d o m  n u m b e r  chosen f rom [ 1 , . . . , q  - 1]. Given  ( m , v , s ) ,  one 

accepts  (r, 8) as Alice 's  valid s ignature  on m if (gh~sh(m)/~. y~/8 rood p) rood q = r 
is satisfied. 

For mos t  E1Gamal  based schemes,  the size of the  s igna ture  (r, s) on a message  
is 2[p[, [q[ + [p[ or 2[q[, where p is a large pr ime and q is a p r ime factor  o f p  - 1. 
The  size of an E1Gamal  based s ignature ,  however,  can be reduced by  using a 
modif ied "seventh general izat ion" m e t h o d  discussed in [11]. In  par t icular ,  we 
can change the  calculat ions of r and s as follows: 

1. Calcula t ion  of r - -  Set r = hash(k,m), where k = g= rood q (k = g= nmd  
(p - 1) if the  original r is ca lcula ted  nmdulo  (p - 1)), x is a r a n d o m  n u m b e r  
f rom [1 , . . .  ,q] (or f rom [1 , . . .  , p -  1] wi th  xX ( p -  1)), and  hash is a one-way 
hash  funct ion such as Secure Hash  S t anda rd  or SHS [19]. 

2. Calcula t ion  of s - -  For an efficient E1Gamal  based s ignature  scheme,  the 
calculat ion of ( the original) s f rom xa,  x, V and optionally,  hash(m) involves 
only simple a r i thmet ic  opera t ions ,  including modu lo  addi t ion,  subt rac t ion ,  
mul t ip l ica t ion  and  division. Here we assume t h a t  Xa is the  secret key of Alice 
the  message  originator .  Her  ma tch ing  public key is y~ = gX. m o d  p. We can 
modi fy  the calculat ion of s in the  following way: 
(a) I f  hash(m) is involved in the  original s, we replace hash(m) with a 

n u m b e r  1, bu t  leave r intact .  The  o ther  way m a y  also be  used, namely  
we change r to  1 and then  replace hash(m) with r.  
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(b) If  s has the form of s -- ( - - - ) /x ,  then changing it to s - x/( . . . )  does 
not add additional computat ional  cost to signature generation, but  may 
reduce the cost for signature verification. 

To verify whether  (r, s) is Alice's signature on m, we recover k = g* rood p 
from r,  s, g, p and Ya and then check whether hash(k, m) is identical to r. 

To illustrate how to shorten E1Gamal based signatures, now we consider DSS. 
It  should be stressed tha t  many  other E1Gamal based signature schemes, in par- 
ticular those defined on a sub-group of order q (see for example [11, 20]), can be 
shortened in the same way and are all equally good candidates for signcryption. 
Table 1 shows two shortened versions of DSS, which are denoted by SDSS1 and 
SDSS2 respectively. Here are a few remarks on the table: (1) the first letter "S" 
in the name of a scheme stands for "shortened", (2) the parameters  p, q and g 
are the same as those for DSS, (3) x is a random number  from [1 , . . . ,  q], xa is 
Alice's secret key and Ya = g ~  mod p is her matching public key, (4) Itl denotes 
the size or length (in bits) of t, (5) the schemes have the same signature size 
of ]hash(.)] + ]q], (6) SDSS1 is slightly more efficient than  SDSS2 in signatnre 
generation, as the lat ter  involves an extra  modulo multiplication. 

Recently Pointcheval and Stern [22] have proven tha t  Schnorr signature is 
unforgeable by any adapt ive at tacker  who is allowed to query Alice's signature 
generation algorithm with messages of his choice [10], in a model where the 
one-way hash function used in the signature scheme is assumed to behave like 
a random function (the random oracle model). The core idea behind the un- 
forgeability proof by Pointcheval and Stern is based on an observation tha t  the 
signature ha.~ been converted from a 3-move zero-knowledge protocol (for proof 
of knowledge) with respect to a honest verifier. With  such a signature scheme, 
unforgeability against a non-adaptive at tacker  who is not allowed to possess valid 
message-signature pairs follows from the soundness of the original protocol. Fur- 
thermore,  as the protocol is zero-knowledge with respect to a honest verifier, the 
signature scheme converted from it can be efficiently simulated in the random 
oracle model. This implies tha t  an adaptive at tacker  is not more powerful than 
a non-adaptive a t tacker  in the random oracle model. 

Turning our a t tent ion to SDSS1 and SDSS2, both  can be viewed as being 
converted frmn a 3-move zero-knowledge protocol (for proof of knowledge) with 
respect to a honest verifier. Thus Pointeheval and Stern 's  technique is applicable 
also to SDSS1 and SDSS2. Summarizing the above discussions, both SDSS1 
and SDSS2 are unforgeable by adaptive attackers,  under the assumptions tha t  
discrete logari thm is hard and tha t  the one-way hash function behaves like a 
random function. 

3.2 Implementing Signcryption with Shortened Signature 

An interesting characteristic of a shortened E1Gamal based signature scheme ob- 
tained in the method described above is that  although g~ mod p is not explicitly 
contained in a signature (r, s), it can be recovered from r, s and other pub- 
lic parameters .  This motivates  us to construct a signcryption from a shortened 
signature scheme. 
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Shortened Signature (r,s) Recovery of Length of 
schemes on a message m k = g* rood p signature 

SDSS1 r = hash(g ~ mod p, m) 
s = x / ( r  + xa)mod q k = (y , .  g' )~ rood p ]hash(.)] + ]q] 

SDSS2 r = hash(g ~ rood p, m) 
s = x / ( l  + x~ . r ) m o d  q k = (g .y~)"  mod p ]hash(.)] + ]q] 

p: a large prime (pubhc to all), 
q: a large prime factor of p - 1 (public to all), 
g: a (random) integer in [1,...  , p -  1] with order q modulo p (public to all), 
hash: a one-way hash function (public to all), 
x~: Alice's secret key, 
y~ : Alice's public key (y, = g ' "  mod p). 

Table  1. Examples of Shortened and Efficient Signature Schemes 

We exemplify our construction method using the two shortened signatures 
in Table 1. The same construction method is applicable to other shortened sig- 
nature schemes based on E1Gamal. As a side note, Schnorr 's  signature scheme, 
without being further shortened, can be used to construct  a signcryption scheme 
which is slightly more advantageous in computa t ion  than other signcryption 
schemes from the view point of a message originator. 

In describing our method,  we will use E and D to denote the encryption and 
decryption algorithms of a private key cipher such as DES [17] and SPEED [25]. 
Encrypt ing a message m with a key k, typically in the cipher block chaining or 
CBC mode, is indicated by E k ( m ) ,  while decrypting a ciphertext c with k is 
denoted by Dk(c) .  In addition we use K H k ( m )  to denote hashing a message m 
with a key-ed hash algorithm K H  under a key k. An impor tan t  proper ty  of a 
key-ed hash function is that ,  just  like a one-way hash function, it is computa-  
tionally infeasible to find a pair of messages tha t  are hashed to the same value 
(or collide with each other). This implies a weaker proper ty  tha t  is sufficient 
for signcryption: given a message m l ,  it is computat ional ly  intractable to find 
another  message m 2  that  collides with ml .  In [2] two methods for constructing a 
cryptographically strong key-ed hash algorithm from a one-way hash algorithm 
have been demonstrated.  For most practical applications, it suffices to define 
g H k ( m )  = h a s h ( k , m ) ,  where hash  is a one-way hash algorithm. 

Assume tha t  Alice also has chosen a secret key Xa from [1 , . . . ,  q], and made 
public her matching public key Ya = g~" rood p. Similarly, Bob's  secret key is xb 
and his matching public key is Yb = g~b nmd p. 

The signcryption and unsigncryption algorithms constructed from a short- 
ened signature are remarkably simple. For Alice to signcrypt a message m for 
Bob, she carries out the following: 



172 

Signcryption by Alice the Sender 

1. Pick x randomly from [1 , . . . ,  q], and let k = y~ rood p. Split k into kx and 
k2 of appropriate length. (Note: one-way hashing, or even simple folding, 
may be applied to k prior splitting, if kl or k2 is too long to fit in E or 
K H ,  or one wishes kl and k2 to be dependent on all bits in k. ) 

2. r = K H k 2 ( m ) .  

3. s = x / ( r  + x~)mod q if SDSS1 is used, or 
s = x / ( 1  + x ~ .  r )mod  q if SDSS2 is used instead. 

4. c = Ek~ (m). 
5. Send to Bob the signcrypted text  (c, r, s). 

The unsigncryption algorithm works by taking advantages of the property 
that  g=mod p can be recovered from r,  s, g, p and ya by Bob. On receiving 
(c, r, s) from Alice, Bob unsigncrypts it as follows: 

Unsigncryption by Bob the Recipient 

1. Recover k fi'om r, s, g, P, Ya and Xb: 
k = (Ya �9 gr) s'=b nmd p if SDSS1 is used, or 
k = (g- yar) 8"*b rood p if SDSS2 is used. 

2. Split k into kx and kz. 
3. m = Dkx (c). 
4. accept m as a valid message originated from Alice only if K H k ~  (m)  is iden- 

tical to r. 

In the following, the two examples of signcryption schemes will be denoted 
by SCS1 and SCS2 respectively. For the purpose of a detailed comparison, the 
cost of these signcryption schexnes has been analyzed and listed, along with other 
signature-then encryption schemes, in Table 2. 

Finally two remarks follow: (1) signcryption schemes can also be derived from 
shortened signature schemes based on the discrete logarithm problem on elliptic 
curves [13]. (2) the functions, especially non-repudiation and unforgeability, of 
signcryption may not be fiflly implemented by the use of a shared key between 
Alice and Bob, such as 9 z-'=b rood p or a key obtained via a Key Pre-distribution 
Scheme [16], unless tamper-resistant devices and/or  trusted third parties are 
involved. 

3.3 Working with Signature-Only and Encryption-Only Modes  

Not all messages require both confidentiality and integrity. Some messages may 
need to be signed only, while others may need to be encrypted only. For the 
two digital signcryption schemes SCS1 and SCS2, when a message is sent in 
clear, they degenerate to signature schemes with verifiability by the recipient 
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only. As will be argued in Section 6, limiting verifiability to the recipient only 
still preserves non-repudiation, and may represent an advantage for some appli- 
cations where the mere fact tha t  a message is originated from Alice needs to be 
kept secret. Furthermore,  if Alice uses g instead of Bob's  public key Yb in the 
calculation of k, the schemes becomes corresponding shortened E1Gainal based 
signature schemes with universal verifiability. 

To work with the encryption-only mode, one may simply switch to the E1- 
Gamal  encryption, or any other public key encryption scheme. 

Various 
schemes 

Computational 
cost 

Communication 
overhead (in bits) 

signature-then-encryptionEXP=2, HASH=l,  ENC=I  In~l + Inb[ 
based on RSA EXP=2, HASH=l,  DEC=l] 
signature-then-encryption 
based on 
DSS + 
E1Gamal encryption 

EXP=3, MUL=I,  DIV=I 
ADD=l,  HASH=l,  ENC=I  
[EXP=3, MUL=I,  DIV=2 
ADD=0, HASH=l,  DEC=l] 
EXP=3, MUL=I,  DIV=0 signature-then-encryption 

HASH=l,  ENC=I 
MUL=I,  DIV=0 
HASH=l,  DEC=l] 

based on ADD=l,  
Schnorr signature + EXP=3, 
E1Gamal encryption ADD=0, 

signcryption EXP=I ,  MUL=0, DIV=I  
SCS1 ADD=l ,  HASH=l,  ENC=I 

EXP=2,  MUL=2, DIV=0 
ADD=0, HASH=l,  DEC=l] 
EXP=I ,  MUL=I,  DIV=I  
ADD=l ,  HASH=l,  ENC=I  
[EXP=2, MUL=2, DIV=0 
ADD=0, HASH=l,  DEC=l] 

signcryption 
SCS2 

21ql-4-Ipl 

IKH.(-)I+ Iql -4-lpJ 

IKH.(-)I + Iql 

IKH.(')J + Iql 

where 
EXP = the number of modulo exponentiations, 
MUL = the number of modulo multiplications, 
DIV = the number of modulo division (inversion), 
ADD = the number of modulo addition or subtraction, 
HASH = the number of one-way or key-ed hash operations, 
ENC = the number of encryptions using a private key cipher, 
DEC = the number of decryptions using a private key cipher, 
Parameters in the brackets indicate the number of operations involved in 
"decryption-then-verifieation" or "unsigncryption'. 

Table 2. Cost of Signature-Then-Encryption v.s. Cost of Signcryption 
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4 Cost  of S igncrypt ion  v.s. Cost  of S igna ture -Then-  
Enc ryp t i on  

The nmst significant advantage of signcryption over signature-then-encryption 
lies in the dramatic reduction of conlputational cost and conlinunication over- 
head which can be symbolized by the following inequality: 

Cost(signcryption) < Cost(signature) + Cost(encryption). 

With SCS1 and SCS2, this advantage is shown in Tables 3 and 4. 
Note that  when comparing with RSA based signature-then-encryption, we 

have assumed that  a relatively small public exponent e is employed for en- 
cryption or signature verification, although cautions should be taken in light 
of recent progress in cryptanalysis against RSA with an small exponent (see for 
example [6]). Therefore the main computational cost for RSA based signature- 
then-encryption is in decryption or signature generation which generally involves 
a modulo exponentiation with a full size exponent d. We have fnrther assumed 
that  the Chinese Remainder Theorem is used, so that  the computational expense 
for RSA decryption can be reduced, theoretically, to a quarter of the expense 
with a full size exponent. 

security parameters saving in saving in 
IPl, Iqh IKH-(')I( = Ihash(')l) comp. cost comm. overhead 
768, 152, 80 50% 76.8% 
1024, 160, 80 50% 81.0% 
2048, 192, 96 50% 87.7% 
4096, 256, 128 50% 91.0% 
8192, 320, 160 50% 94.0% 
10240, 320, 160 50% 96.0% 

3 modulo exponent ia t ions  50~0 saving in comp. cost = 6 modulo exponentaat ions ~-" 

saving in comm. cost = Ihash(')l+lql+lPl--(IKH'(')l+lelD 
Ihash(')l+lql+lPl 

Table 3. Saving of Signcryption over Signature-Then-Encryption Using Schnorr Sig- 
nature and E1Gamal Encryption 

4 . 1  H o w  t h e  P a r a m e t e r s  a r e  C h o s e n  

Advances in fast computers help an attacker in increasing his capability to break 
a cryptosystem. To compensate this, larger security parameters, including Inal, 
[nbl, IPl, Iql and IKH.(.)I must be used in the future. From an analysis by 
Odlyzko [21] on the hardness of discrete logarithm, one can see that  unless there 
is an algorithmic breakthrough in solving the faztorization or discrete logarithm 
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security parameters advantage in advantage in 
IPI(--[n~l = Inbl),lqh IKH.(')I comp. cost comm. overhead 
768, 152, 80 0% 84.9% 
1024, 160, 80 6.25% 88.3% 
2048, 192, 96 43.8% 93.0% 
4096, 256, 128 62.0~ 95.0% 
8192, 320, 160 77.0% 97.0% 
10240, 320, 160 81.0% 98.0~0 

advaaltage in comp. cost = 0.a75(I-.l+l-bl)--4.51ql 
0.a75(l-a I+l,*bl) 

advantage in comm. cost = I,*~l+l-bl-(IKH.()l+lql) 
I,,. I+l,~bl 

Table  4. Advantage of Signcryption over RSA based Signature-Then-Encryption with 
Small Public Exponents 

problem, Iql and IKH.(.)I can be increased at a smaller pace than can Inal, Inbl 
and Ipl- Thus, as shown in Tables 3 and 4, the saving or advantage in computa- 
tional cost and communication overhead by signcryption will be more significant 
in the future when larger parameters must be used. 

The selection of security parameters IPl, Iql, I~ol and I'~ol in Tables 3 and 4, 
has been partially based on recommendations made in [21]. The parameter values 
in the tables, however, are indicative only, and can be determined flexibly in 
practice. We also note that  choosing IKH.(-)I ~ Iql/2 is due to the fact that  
using Shank's baby-step-giant-step or Pollard's rho method, the complexity of 
computing discrete logarithms in a sub-group of order q is O(v~)  (see [14]). 
I~ence choosing IKH.(')I ~ Iql/2 will minimize the communication overhead 
of the signcryption schemes SCS1 and SCS2. Alternatively, one may decide to 
choose KH.(.)  E [1 , . . .  ,q] which can be ~h ieved  by setting IKH.()I = Iql- 1. 
This will not affect the computational advantage of the signcryptiou schemes, 
but slightly increase their communication overhead. 

5 A p p l i c a t i o n s  o f  S i g n c r y p t i o n  

As discussed in the introduction, a major motivation of this work is to search for 
a more economical method for secure and authenticated transactions/message 
delivery. If digital signcryptions are applied in this area, the resulting benefits 
are potentially significant: for every single secure and authenticated electronic 
transaction, we may save 50% in computational cost and 85% in conmmnication 
overhead. 

The proposed signcryption schemes are compact and particularly suitable 
for smart  card based applications. We envisage that  they will find innovative 
applications in many areas including digital cash payment systems, EDI and 
personal heath cards. Of particular importance is the fact tha t  signcryption 
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may be used to design more efficient digital cash transaction protocols that  are 
often required to provide with both the functionality of digital signature and 
encryption. 

In the full paper we also show how to adapt  a signcryption scheme into one for 
broadcast communication which involves multiple recipients. Such an adapted 
scheme shares a comparable computational cost with a broadcast scheme pro- 
posed in RFC1421. The communication overhead required by the scheme based 
on signcryption, however, is multiple times lower than that  required the schenm 
in RFC1421. 

Another surprising property of the proposed signcryption schemes is tha t  
it enables us to carry out fast, secure, unforgeable and non-repudiatable key 
transport  in a single block whose size is smaUer than IPI" In particular, using 
either of the two signcryption schemes, we can transport  highly secure and au- 
thenticated keys in a single ATM cell (48 byte payload + 5 byte header). A 
possible combination of parameters is IPl -> 512, Iql = 160, and IKH.( . ) I  = 80, 
which would allow the transport  of an unforgeable and non-repudiatable key of 
up to 144 bits. Advantages of such a key t ransport  scheme over interactive key 
exchange protocols such as those proposed in [8] are obvious, both in terms of 
computational efficiency and compactness of messages. Compared with previous 
at tempts  for secure, but  un-authenticated,  key t ransport  based on RSA (see for 
example [1, 12]), our key t ransport  scheme has a further advantage in that  it of- 
fers both unforgeability and non-repudiation. In a similar way, a multi-recipient 
signcryption scheme can be used as a very economical method for generating 
conference keys among a group of users. 

6 U n f o r g e a b i l i t y ,  N o n - r e p u d i a t i o n  a n d  C o n f i d e n t i a l i t y  o f  

S i g n c r y p t i o n  

Like any cryptosystem, security of signcryption in general has to address two 
aspects: (1) to protect what, and (2) against whom. With the first aspect, we 
wish to prevent the contents of a signcrypted message from being disclosed to 
a third party other than Alice, the sender, and Bob, the recipient. At the same 
time, we also wish to prevent Alice, the sender, from being masquerade by other 
parties, including Bob. With the second aspect, we consider the most powerful 
attackers one would be able to imagine in practice, namely adaptive attackers 
who are allowed to have access to Alice's signcryption algorithm and Bob's 
unsigncryption algorithm. 

We say that  a signcryption scheme is secure if the following conditions are 
satisfied: 

1. Unforgeability - -  it is computationally infeasible for an adaptive attacker 
(who may be a dishonest Bob) to masquerade Alice in creating a signcrypted 
text.  

2. Non-repudiation - -  it is computationally feasible for a third party to settle a 
dispute between Alice and Bob in an event where Alice denies the fact that  
she is the originator of a signcrypted text  with Bob as its recipient. 
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3. Confidentiality - -  it is coinputationally infeasible for an adaptive at tacker  
(who may be any par ty  other than  Alice and Bob) to gain any partial  infor- 
mation on the contents of a signcrypted text.  

A detailed description of the proofs /arguments  of the security of the sign- 
cryption schemes SCS1 and SCS2 can be found in thc full paper.  Here are the 
key ideas used in the proofs /arguments :  

1. Unforgeability - -  this can be done using the technique of Pointcheval and 
Stern [22]. 

2. Non-repudiation - -  A dispute between Alicc and Bob can be settled by 
a trusted third par ty  (say a judge), by the use of a zero-knowledge proof 
protocol between the judge and Bob. In particular,  they can use a very simple 
4-move zero-knowledge interactive proof protocol proposed by Chaum in [5]. 

3. Confidentiality - -  We achieve our goal by reduction: we will reduce the con- 
fidentiality of another  encryption scheme called Ckn, whose confidentiality 
is relatively well-understood, to the confidentiality of a signcryption scheme 
(say SCS1). With  the encryption scheme Ckh, the ciphertext  of a message 
m is defined as ( u = g~ rood p, c = Ekl (m), r = KHk: (m))  where kl and 
k2 are defined in the same way as in SCS1. Ckh is a slightly modified version 
of a scheme tha t  has received special a t tent ion in [24, 3] (see also earlier 
work [26].) 
Now assuine that  there is an at tacker  for SCS1. Call this a t tacker  Ascsi.  
We show how Ascsl  can be translated into one for Ckh, called Arch- Note 
tha t  for a message m,  the input to Ascsl includes q, p, g, Ya = gZ~ rood p, 
Yb = g~b rood p, u = g~ rood p, c = Ekl (m), r = KHk~ (m). With the at tacker 
Ac~h for Ckh, however, its input  includes: q, p, g, Yb - ~  g~bmod p, u = 
g~ rood p, c = Ekl (m), and r = KHk2 (m). One immediately identifies that  
two numbers tha t  correspond to ya and s which are needed by Ascsa as 
part  of its input are currently missing from the input to Ac~h. Thus,  in 
order for Ae~h to "call" the at tacker  Ascsl  "as a sub-routine",  Ac~h has to 
create two numbers corresponding to Ya and s in the input to Ascsa. Call 
these two yet- to-be-created numbers yr a and s r. y~ and s ~ have to have the 
right form so tha t  Ac~ can "fool" Asesl.  It  turns out that  such y~ and s '  
can be easily created by Ac~h as follows: (1) pick a random number  s ~ from 
[1 , . . . ,  q]. (2) let yl a = "ll, 1Is'. g--V mod p. 

A final note on signcryption follows. Unlike signature-then-encryption,  the 
verifiability of a signcryption is in normal situations limited to Bob the recipient, 
as his secret key is required for unsigncryption. At the first sight, the limited 
verifiability of a signcryption, namely the direct verifiability by the sender only 
(and indirect verifiability by a judge with the cooperation of Bob), may  be seen 
as a drawback of signcryption. Here we argue that  the limited direct verifiability 
will not pose any problem in practice and hence should not be an obstacle to 
practical applications of signcryption. In the real life, a message sent to Bob in 
a secure and authenticated way is meant  to be readable by Bob only. Thus  if 
there is no dispute between Alice and Bob, direct verifiability by Bob only is 
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precisely what  the two users want.  In other words, in normal  situations where 
no disputes between Alice and Bob occur, the full power of universal verifiability 
provided by digital signature is never needed. (For a similar reason, tradit ionally 
one uses signature-then-encryption,  ra ther  than encryption-then-signature !) In 
a situation where repudiation does occur, interactions between Bob and a judge 
would follow. This is very similar to a dispute on repudiation in the real world, 
say between a complainant  (Bob) and a defendant (Alice), where the process 
for a judge to resolve the dispute requires in general interactions between the 
judge and the complainant,  and furthermore between the judge and an expert  
in hand-wri t ten signature identification, as the former inay rely on advice from 
the la t ter  in correctly deciding the origin of a message. 

7 C o n c l u s i o n  

We have introduced a new cryptographic primitive called signcryption for secure 
and authent icated message delivery, which fulfills all the functions of digital sig- 
nature  and encryption, but with a far smaller cost than tha t  required by the cur- 
rent s tandard  signature-then-encryption methods.  Security of the signcryption 
schemes has been proven, and extensions of the schemes to multiple recipients 
has been carried out. We believe tha t  the new primitive will open up a number  
of avenues for future research into more efficient security solutions. 

The signcryption schemes proposed in this paper  have been based on E1Ga- 
mal signature and encryption. We have not been successful in searching for a 
signcryption scheme employing RSA or other public key cryptosystems.  There- 
fore it remains a challenging open problem to design signcryption schemes based 
factorization or other computat ional ly hard problems. 
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