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Abs t rac t .  This paper investigates self-stabilization on hierarchically di- 
vided networks. An underlying theory o f  self-stabilizing systems will be 
briefly exposed and a generic example will be given. The example and 
the theory have been mechanically verified using a general purpose the- 
orem prover HOL. Three issues inherent to the problem, namely self- 
stabilization, concurrency, and hierarchy, can be factored out and treated 
one separately --something which has considerably simplifed our me- 
chanical proof (proof economy is an important issue in mechanical ver- 
ification, even more than it is in the pencil and paper realm as what 
misleadingly appears as a few//nes there may easily become a few hun- 
dreds in the mechanical world). 

1 I n t r o d u c t i o n  

A self-stabilizing program is a program which is capable of converging to some 
pre-defined equilibrium. Such a program is tolerant to perturbations (failures, at- 
tacks) made by the its environment: if some perturbation throws it out of its equi- 
librium then given enough time it s imply  re-converges back to its equilibrium. 
Such a program is obviously useful. Examples include mutual  exclusion proto- 
cols, communication protocols, and graph algorithms [BYC88, AG90, CYH91]. 

Self-stabilization is typically applied in a distributed environment. Most re- 
sults deal with a fiat network of processors though, and one may ask whether 
these results extend to hierarchical networks. Considering that many computer 
networks are organized hierarchically (Internet being an example thereof) the 
issue has practical significance. Work has been laid by Lentfert and Swierstra 
[LS93, Len93] who investigate self-stabilizing computat ion of hierarchical mini- 
mum distance in a hierarchical network. However their proof is lengthy andwil l  
only get worse if mechanized. Significant simplification is achieved by factoring 
out three issues inherent to the problem, namely concurrency, hierarchy, and 
self-stabilization, and then treating them separately. A more general approach 
is also taken here, resulting in a class of self-stabilization on fiat networks which 
can be safely lifted to work on hierarchical ones. 

Another issue to be highlighted here is the use of formal methods. Proving 
self-stabilization is very hard - -see  for example proof in [AB89a, AB89b, CYH91, 
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Len93]. Formal methods were proposed both to manage the complexity and to 
minimize design errors. Arora and Gouda were the first who formalized the 
notion of self-stabilization [AGg0] . However, reasoning is still carried out infor- 
mally. Lenfert and Swierstra were the first who gave a truly formal framework for 
self-stabilizing systems [LS93]. Lenfert and Swierstra's work was later enhanced 
by Prasetya by introducing a more powerful operator to express stabilization in 
general, and providing a whole set of composition laws [Pra94b, Pra94a, Pra95]. 
Like all those people, we also believe in the virtue of formal methods. Through 
an example we will share how such a method helps us. Several most interesting 
laws will be shown to the readers. We urge the reader to take a look at [Pra95], 
where extensive lists of laws and examples of formal calculation can be found. 

The results, and the underlying theory of self-stabilization have been me- 
chanically verified using a general purpose theorem prover HOL-88. The system 
- - m a d e  by Gordon and Melham [GM93]-- is fully ezpar~sive, meaning that  all 
proof strategies are built on (a small number of) axioms and primitive deduc- 
tion rules, and hence there is no way one can introduce inconsistency, something 
which makes fully expansive theorem provers very trustworthy. A very rich col- 
lection of strategies is available, and also a meta  language to let users build 
their own strategies. HOL is based on a higher order logic and therefore is very 
expressive. Each proof step is checked by HOL, but unlike model checkers, proof 
basically has to be hand guided. Despite this obvious disadvantage, the choice 
is dictated by the nature of distributed programs we seeked to investigate: (1) 
they consist of unbounded number of processes, and (2) they are parameterized 
by sophisticated structures (such as a hierarchical network). An integration of 
model checkers and fully expansive theorem provers will indeed b e  beneficial. 
Even now there are on-going researches heading this direction. 

Due to space limitation a full calculation cannot be presented. It is also 
rather difficult (and less exciting) to discuss the verification in detail as it con- 
cerns thousands of lines of proof-code. So we decide not to do this. Major proof 
steps will however be shown, as well as some examples of proof-code and output  
theorems. 

2 A Theory  of Stabil ization 

This section briefly presents a theory we developed for distributed converging 
systems (a generalization of self-stabilizing systems). The theory is based on 
UNITY [CM88], a simple programming logic invented by Chandy and Misra to 
reason about  distributed programs. A more extensive discussion on the topics 
can be found in [Pra95]. 

2.1 P r o g r a m s  

A program is represented by a collection of actions. Only i~finite computa- 
tions will be considered. At every step of a computat ion an action is non- 
deterministicaUy selected and executed. The absence of specific orders in which 
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prog 
read 
write 
init 
assign 

Fizban 

true 

i f z = O t h e n x  :=1 if z # 0  then ~ : = 1  

Fig. 1. The program Fizban 

l] ifm # 0 then y,m : = y + l , 0  

actions are executed means that  the logic does not care whether actions are to 
be executed sequentially or concurrently - - such  is considered an implementat ion 
issue by UNITY.  Weak fairness restriction applies. All actions are assumed to 
be terminating. Guarded actions whose guards are false when executed behave 
as a skip. In other words, actions are continually enabled. 

Figure 1 shows an example of a UNITY program. Our convention will be 
slightly different than in [CM88]. The read and write sections declare, respec- 
tively, the read and write variables of the program; the init section describes 
allowed initial states; the assign section describes the actions that  constitute 
the program. Here read variables simply mean variable that  can be read. They 
include write variables. Actions are listed, separated by ~. An action can be a 
simple assignment such as z := z + l  or a multiple assignment such as z, y := y, z. 
The meaning is as usual. An action can also be a guarded action such as: 

i f z # 0 t h e n  z : = 0  

Multiple guards are allowed, and if several guards evaluate to true one is selected 
non-deterministically. If  no guard evaluates to true the action behaves like a skip. 
We also write, for example,  (~i: i E V :  a.i) which is equal to a.i~a.j~a.k~.., for 
all i, j,  k E V. 

No ta t iona l  convent ion:  a, b, c , . . .  range over actions; P, Q, R , . . .  range over pro- 
grams; z, y, z range over (program) variables; X, Y, Z range over values (of variables); 
and p, q, r, . . .  range over state predicates. We use aP, iniP, rP,  and w P  to denote, re- 
spectively, the set of actions, the initial predicate, the set of read variable, and the set 
of write variables of P. A UNITY program P is basically a tuple (aP, iniP, rP, wP).  

P a r a l l e l  c o m p o s i t i o n  of P and Q is denoted as P~Q in UNITY. It  is defined 
simply as the 'merge '  o f  the component  programs: 

PDQ = ( a P  u aQ,  i n i P  A iniQ, r P  u rQ,  w P  u wQ) (1) 

Things can be quite subtle with parallel composit ion though. For example,  
see again program program Fizban in Figure 1; one of its property is: 

(VY :: eventually Y < y holds) (2) 

I f  we put  it in parallel with the program TikTak below, then (2) can no longer 
be guaranteed even though TikTak never tampers  with y. 
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prog TikTak 
assign if z = 0 then z := 1 ~ if z ~ 0 then z := 0 

E x e r c i s e .  find out why (2) does not hold in Fizban ~ TikTak. 

2.2 B e h a v i o r  

Stabilization consists of two aspects: progress and stability. Let us begin with 
stability since it is easier. A predicate p is called stable in a program P,  denoted 
by p~- stable.p, if p is left invariant by all actions in P: 

vF- stable.p = (Va: a e a P :  {p} a {p}) (3) 

A closely related concept is invarian~, which is a predicate that  always holds 
through out any computation.  Obviously, a stable predicate which holds initially 
is an invariant. However, note that  not all invariants are stable! 

We can generalize the concept of stable predicate by weakening it a bit. 
Consider a program P that  when executed in p, instead of keep returning to p 
may (but does not have to) also step over to q. We call such behavior p unless q: 

vF pun l e s sq  = ( V a : a e a P : { p A - ~ q } a { p V q } )  (4) 

v~- P unless q does not necessarily mean that  P willgo over to q f romp.  However, 
if there exists an action a that  can establish q from p, by our fairness assumption 
P cannot forever stay in p and hence ignoring a. Hence, a will eventually be 
executed and q established. This behavior is called p ensures q: 

pF-pensuresq = (p t -punlessq)  A ( 3 a : a e a P : { p A ~ q } a { q } )  (5) 

ensures, however, only defines one-step progress, that is, progress that can be 
achieved through the act of one action. To include progress achieved through a 
cooperation of several actions, a more general operator can be defined by taking 
the smallest transitive and disjunctive closure of ensures . This operator is called 
leads-$o in UNITY. 

In this paper, a more restricted operator proposed by Prasetya will be used. 
The operator is written J pF- p ~ q which is read "P can reach q from J A p, 
given the s~abiH~y of J". p and q are also restricted to only describe values of 
write variables, whereas assumptions on read-only variables should now be put 
in J. The advantage of this operator is compositionality. Even though progress is 
easily destroyed by parallel composition, there are still many situations in which 
parallel composition does, in a sense, preserve progress made by component pro- 
grams. The traditional leads-to operator is simply too liberal to bc compositional 
in any sense and --+ is better in this respect. Devising a yet more compositional 
operator is possible, though one can expect that this is usually at the expense 
of simplicity. 

The formal definition of --~ is below. A notation that will be used is p E 
Pred.V, meaning that  p is a state-predicate over variables in set V~ For example 

> y is a state predicate over {~, y, z}, but not over {y, z} (because it also says 
something about  ~). Roughly speaking, if V contains all free variables of p, then 
p E Pred.V. 
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D e f i n i t i o n  1. REACH OPERATOIL ~ is the smallest relation satisfying: 

p, q E  Pred.(wP) A (p f -  s tab le . J )  A ( p t -  J A p e n s u r e s q )  (6) 
J pFp---*q 

(Jp~- p ~ q )  A (Jp~- q---,r) (7) 
Jp~- p--*r 

(Vp: p E W :  JpF -  p - - . q )  for all n o n - e m p t y W .  (8) 
Jp l ' -  (3p:  p E W :  p)--*q'  

For example, in program Fizban in Figure 1 we have z = 0 F true -~ Y < y 
and z r 0 ~- true --* Y < y for any Y. These together express (2): 

Properties for leads-to [CM88] also hold analogously for --* [Pra95]. Addi- 
tionally, if J p~- p --* q holds we know not only that  P can progress from J A p to 
q, but  also that  J is stable and that  p and q are predicates over w P .  Typically J 
also describes assumed values of read-only variables (note that  these values are 
stable in P) .  We can also rewrite p and q using J.  In the original UNITY, this 
ability is imposed by an axiom called Substitution Axiom [CM88]. The axiom 
turned out to cause inconsistency. Fortunately, we do not have this problem as 
our theory is purely definitional. 

E x e r c i s e :  find out why t rue I- t rue  -~  Y < y cannot hold in Fizban.  

S e l f - s t a b i l l z a t i o n  is defined as an ability to progress from any initial state to 
some pre-defined set of states (say, q) and to remain there. In temporal  logic ala 
IMP92] this can be expressed as ~>nq. In our theory this is expressed as: 

P self-stabilizes to q : (3q' :: (true pF- true --* q A q') A (p~- stable.q A q')) 

Indeed, we require P to stabilize to a stronger predicate, namely q A q', to 
express that  things may not stabilize the first t ime q holds, but perhaps only after 
several iterations. It turns out to be very useful to generalize self-stabilization 
by allowing arbitrary predicates in the place of the two true's above. 

D e f i n i t i o n  2. CONVERGENCE 

J pl-p.-.~q : 
q e Pred.(wP) A (3q' :: (S pF p --* q' A q) A (,F- stable.(J A q' A q))) 

J p ~" p ~ q is pronounced "P converge8 from J A p to q" and means that 
from J A p the program P will progress to states satisfying q, after-which q will 
continue to hold. Note that  by definition it also follows that  J is stable and 
that  p and q are state-predicates over w P .  Self-stabilization to q is expressed by 
t rue  pl -  t rue  ~ q. " 

2.3 P r o p e r t i e s  o f  C o n v e r g e n c e  

Figure 2 shows a list of basic properties of convergence. A note for notation: we 
often drop the P or the J (or both) from formulas like J p~- p ~ q if it is clear 
from the context which P or J are meant.  
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Theorem 3 is obvious. Theorem 4 states the J -pa r t  can be used to rewrite 
p ~-~ q. This is the analogous of Substitution Axiom [CM88] for convergence. The- 
orem 5 states that  convergence is transitive, but Theorem 6 states a stronger 
sense of transitivity. It  says that  all intermediate predicates in a transitive tra- 
jectory will remain to hold. Theorem 7 states that  convergence are both  disjunc- 
tive and conjunctive. Compare  this to progress operators such as leads-to or --~ 
which are only disjunctive. Theorem 8 states how par t  of J can be moved to 
the pre-condition part.  Theorem 9 and 10 states how ~,~ is preserved by parallel 
composition. Theorem 9 states that  property J F p -,.* q of program P will be 
preserved in P~Q as long as Q respect the stabili ty of J and P and Q do not 
share write variables. Such a composition is called write disjoin~ composition 
and appears  quite often in practice. For example,  distributed systems that  com- 
municate  through channels can be expressed as a composit ion of write-disjoint 
components  [Pra95]. An instance of write-disjoint composit ion (called layerin#) 
in which one program write to the read-only variables of the other has also 
been recognized as an impor tan t  technique in designing self-stabilizing systems 
[Her91, Aro92]. Had we used the leads-to we will not be able to derive Theorem 
9. See [Pra95] for a complete list of composit ional  properties of --* and ~-~. 

Theorem 11 expresses the well known principle of well-founded traversals: if 
P either decreases a metric m or stabilizes to q, it cannot decrease m forever 
and hence must  eventually stabilize q. Theorem 12 is a corollary of Theorems 11 
and 7. It  states tha t  if we can divide executions of P into (abstract)  rounds A, 
and arrange tha t  P converges to q.n at each round n, then we know that  when 
all rounds have been passed P has also stabilized to (Vn : n E A : q.n). 

3 H i e r a r c h i c a l  A l g o r i t h m s  

In a hierarchical network nodes are grouped into domains and the domains are 
structured as a tree (the hierarchy). Many computer  networks are s t r u c t u r e d  
like this (including Internet).  Hierarchy is a useful abstract ion mechanism: while 
domain-wide information may  be visible, its interior may  not - -concea lment  of 
detail may  be enforced by the system, or we may  do it intentionally ourselves to 
simply ignore some lower level detail. 

Take as an example message routing in a world-wide hierarchical network. 
Suppose now Carmen in Jakarta ,  Indonesia wants to send a message to Flips 
in London, UK. Each node in the network has a router and the message will 
be routed f r o m  one node to another according to its destination. Some routers 
know how to direct incoming messages to Flips, others may simply not care to 
know. As a solution, these other routers may  simply route Carmen ' s  message 
to any node in, say, the domain London and assume that  the local network 
in London will further take care of its delivery to Flips. This scheme reduces 
the si~,e or routing tables needed to be kept by the nodes. In addition, if the 
network shrinks and grows during their lifetime, which happen frequently in real 
life, maintaining the routing tables is cheaper (as addition or deletion of nodes 
invisible to a router will not affect the routing table maintained by the router). 
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T h e o r e m  3. p-.~ q 

p ~ q and p,q C Pred.(wP) and pl- stable.J 

T h e o r e m  4. SUBSTITUTION 

[ J A p = ~ q ]  A [ J A r = ~ s ]  A p, sEPred. (wP)  A (q~-*r)  
p ,--~ s 

T h e o r e m  5. TRANSITIVITY 

(p ~ q) ^ (q ~ r )  
p ' - ~ r  

T h e o r e m  6. ACCUMULATION 

(p ~ q) ^ (q ~ ,) 
p--.~qAr 

T h e o r e m  7. DISJUNCTION and CONJUNCTION 

( p ~  q) ^ ( r ~ s )  
( p V ~ ) ~ ( q V , )  and (p A , )  ~ (q ^ s) 

T h e o r e m  8. STABLE SHIFT 

p' E Pred.wP A (stable.J) A (J A p' I- p -~ q) 
J~p~Ap~q 

T h e o r e m  9. TRANSPARENCY 

(QFstable.J)  A (Jpl-p.',.+q) i f w P M w Q = r  
J pIQ~ P ~* q 

T h e o r e m l 0 .  WRITE-DISJOINT CONJUNCTION 

( P ~ ' P " ~ q )  ^ ( ' ~ - r ~ s )  i f w P n w Q =  
p , ~  (p ^ , )  ~ (q ^ s)  

T h e o r e m l l .  BOUNDED PROGRESS Let ~ be a well-founded relation on A andre  be 
some metric function from program states to A: 

p , j :  (q~,~q) A ( V M : : p A ( m = M ) - . - * ( p A ( m - < M ) ) V q )  
p,,.. q 

T h e o r e m 1 2 .  ROUND DECOMPOSITION Let A be finite and non-empty and -q be a 
well-founded relation on A: 

p :  (s table .J)  ^ (V, , :  n e A :  J ^ ( V m :  m -~ n :  q. ,~) ~- t ,ue ~ q.n) 
J }" t r u e ~  (Vn : n E A : q.n) 

Fig.  2. Some basic properties of--~. 
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In a hierarchical network we have a collection of nodes V connected by links, 
and a collection of domains F. The connectivity will be described by a function 
N such tha t  N.a is the set of all neighbors of a. Neighbors are connected with 
physical bidirectional links. Each domain contains nodes; we will use n._a to de- 
note the set of all nodes inside the domain a (also called the interior of a). In 
addition there is also an ordering <3 on the domains which describes the hierarchy 
among  the domains.  Tha t  is, _a <1 b means that  domain _a is a son of domain b 
in the hierarchy, and conversely b is the father of a. Fathers are considered to 
have a higher hierarchy than sons. The transitive and reflexive closure of <1 is 
written ~ and when a <1 b we say that  b is a super domain of _a. A hierarchy 
relation <1 is expected to be irreflezive and such tha t  _ does not contain cycles 
(ant i-symmetric) ,  or in other words __ should be a partial order. 

A hierarchical network is therefore described by a tuple (V, N, F, <~, n) with 
the interpretation as described above. 
N o t a t i o n a l  c o n v e n t i o m  a, b, c , . . .  range over nodes and _a, b,_c,.., range over 
domains.  

For the sake of simplicity let us consider nodes as a special kind of domains.  A 
node, seen as a domain,  contains itself as its only interior. Typically, <1 is expected 
to imply interior inclusion. Tha t  is, the interior of a domain must  be included 
in the interior of a super domain: 

a ~ b  ~ n . a C n . b  (9) 

If  so, then the hierarchy <~ fully defines the interior function n. For a reason 
explained later, we will not require (9). 

Recall the message routing scenario explained a few paragraphs earlier. Ba- 
sically, what  is being proposed is to define some visibility function v from nodes 
to domains.  Sending a message m from a to b constitutes of sending m to the 
domain lowest in the hierarchy which contains b and which is visible from a. 
In other words, we are exploiting a sub-network obtained by restricting the 
original hierarchical network with the visibility function. Let us see first which 
sub-network it is. 

The physical links at the node level define a network at  the domain level: 
let a E A/'.b means that  there is a (bidirectional) link between domain a and b. 
More specifically, _a E 2f.b means that  there exists a link between some node in 
a and some node in b: 

A[._b = { a l ( 3 a ,  b : a E n . _ a  A b E n . _ b : a E N . b ) }  (10) 

Let v.b be the set of domains considered visible f rom b. We can define 2f~ as 
follows: 

A/'~ ._b --  A/'._b r l  v._b (11)  

So, a E AP,.b means tha t  domain a and b are physically connected, and that  
domain  a is visible f r o m  b, meaning that  b can be expected to know something 
about  a (but not necessarily the other way around). 
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3.1 C h o i c e  o f  Visibility Function v 

Each domain  _a may  want to decide which other domains it wants to consider 
as visible. T h e  more domains are visible to a, the bet ter  informed _a is, but 
the information will also take more space and effort to maintain.  Depending on 
applications, there may  be restrictions. For example,  in a hierarchical routing 
program the combined interior of all visible domains f rom _b must  cover all nodes 
physically reachable from b, or else there will be a physically reachable node 
which b does not know how to reach. 

So, basically any relation between domains can be used as a visibility func- 
tion. A suggestion due to Lentfert [Len93] is to consider super-domains and 
brothers (domains sharing one father) of a domain c to be visible to c. Addition- 
ally, Lentfert requires the induced visibility relation to be transitive. Using this 
definition, if a is visible from _c, then either _a is a super domain of _c or it lies at 
most  one level deeper than the shared ancestor between a and c. 

3.2 T h e  H i e r a r c h y  R e m o v e d  

Our distr ibuted hierarchical algori thms will actually run on the network spanned 
by Aft. Typically, we will have one process (possibly distributed) for each domain.  
This process repeatedly does some local computat ion.  It  cooperates with its 
neighbors by regularly informing them the (intermediate) results of its local 
computat ion.  See the program HDP below (read, write, and init sections are 
omitted).  Each HDP._b is the process associated with domain _b. 

Definltlon13. TEMPLATE FOR A HIERARCHICAL DISTRIBUTED PROGRAM 
HDP = (Jib: _b e ]; : HDP.b) where HDP._b is: 

prog HDP._b 
assign do local processing, store the result in y.b 

1 (1-~: I E ~,._~: inform _c of the new value of y.b) 

Notice that  HDP does not directly 'see' the hierarchy-relation <1 but instead it 
relies on Aft. I t  is true tha t  the visibility function v is likely to depend on <3, but 
once v is set the hierarchy <3 is no longer relevant to the behavior of HDP and 
hence can be removed from our concern. 

3.3 Distributing Domaln-level Computation 

The program HDP above is split into components,  each of which does some 
processing associated to a domain.  Such a domain-level component  can be cen- 
tralized in a server; or, it can be part i t ioned and distributed over a number  of 
servers; or, it can simply be duplicated by the servers, which is indeed redundant  
but it does make a more robust system. In the latter option, consistency between 
duplicates need to be maintained.  This paper  restricts itself to this duplication 
scheme. 

Since nodes are the only entities assumed to have computing ability, the role 
of servers is assumed by the nodes, though usually not all nodes are servers. 
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When an ordinary, non-server node needs information from a domain it is in, it 
requests the information from one of the domain 's  servers, the exact mechanism 
of which is considered less relevant to our main topic. For the sake of simplicity 
we will pretend that all nodes in our hierarchical program are servers. Outside 
the program there are non-server nodes, but how the da ta  are distributed from 
server to non-server nodes is put outside the scope of this paper. 

A node acting as a server for domain _a does not have to act as a server for b, 
even though b is an ancestor of_a. As long as each domain has at least one server 
it suffices for our model. It  means that  (9) does not necessarily hold, which is 
exactly why we did not insist on it. Having said all these, f rom this point on we 
do not distinguish between nodes and servers. 

4 Example: Computation of Minimum Cost  

Let cost.a.b denote the min imum cost of going from node a to b in a network. 
The notion is well known. For a fiat network this is defined by the following 
equation. For all distinct nodes a and b: 

cost.a.a = / (12) 

co t. .b = n{cost. .b' e I b' c (13) 

where w.a.b is the weight or the cost of the link between a and b. [7 is the 
min imum operation, _L is the bo t t om  element thereof. A simple instance of above 
is the following definition of distance, which should look more familiar: 

cost.a.a = 0 (14) 

cost.a.b -- min{cost.a.b' + 1 I b' E N.b}  (15) 

In a hierarchical network cost is measured between domains.  The notion of cost 
can be expected to be more sophisticated than (14) and (15), which is why we 
prefer to keep the definition of minimal  cost under-specified as in (12) and (13). 
For example Lentfert [Len93] defines the 'hierarchical '  cost of a pa th  s to be 
a vector v where v.i  is the total  cost of all links in s that  end up at nodes at 
'depth '  i. The hierarchical cost of two paths are to be compared lexicographically. 
This way making a walk through domains closer to the root is considered more 
expensive and hence will be avoided. 

In the sequel, assume a hierarchical network (V, N, V, <l,n) with visibility 
function v. By (10) and (11) the tuple defines Afv (recall that  A/'~.b is the set 
of all those domains physically connected to b and visible from b). We want 
to construct a hierarchical self-stabilizing program, call it mCost, to compute  
minimal  cost between pairs of domains.  However, we do not want to do this for 
all pairs, but  only between pairs (a, b) such that  b are physically reachable and 
visible from a. In other words, the cost is defined relative to the network spanned 
by (Y, Aft) (note that  for the notion of ' reachable '  to make sense, the notion of 
visibility needs to be transitive). The cost function looks in general like this: 

cost.a.a = _L (16) 

cost._a.b = m{cost._a.b' @ w.b'.b I b' e ~' . .b} (17) 
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cost.a.b can however be computed without any knowledge of cost.a' of other a ~ 
unequal to a and hence it can be computed separately. Without  loss of gener- 
alization we will therefore only consider the problem of computing cost._a for a 
given  a_. Let us call that  given a dest (from destination). 

Introduce for each server (node) b serving domain _b a variable y.b.b. Here is 
the specification of rnCost: 

true mCost l- 
true ~-~ (V_b, b: dest E Af*.b A b E ]3 A b E n .b :  y.b.b = cost.dest.b) (18) 

where f* is the standard reflexive and transitive closure of f (pretend for this 
purpose that  the function f is a relation). 

With the space allowed, it is unfortunately impossible to show detail how 
the specification (18) above can be further refined and verified. Three major 
refinement steps will however be shown below. They deal, separately, with three 
key issues, namely hierarchy, parallelism, and self-stabilization. This is done in 
the following way. In Subsection 3.2 it is pointed out that  once the choice of the 
visibility function is determined, hierarchy plays no further role. Subsection 4.1 
will show how self-stabilization can be broken down to round-wise stabilization. 
Subsection 4.2 will show how the responsibility of achieving this round-wise 
stabilization can easily be delegated to a component program if our hierarchical 
program consists of parallel components which are write-disjoint. The last two 
steps can subsequently be repeated until the obtained stabilization sub-goals 
each are simple enough to be implemented by a single component.  

One may note those steps are as one should naturally expect. The fact that  
the original proof in [Len93] overlooked these supposedly natural steps and took 
instead a considerably more complicated approach warns us again about how 
distracting it is in formal methods to think in terms of their machinery rather 
than in terms of the problem at hand, especially in the absence of sufficient 
abstraction tools. 

4.1 R o u n d  D e c o m p o s i t i o n  

As our strategy, we divide any computation of mCost in rounds. Let A be the set 
of all those rounds. Each round n will establish for each domain _b some predicate 
which afterwards is maintained stable. Let us call this predicate Ok.b.n. In the 
end, when all rounds have been visited, the following will hold: 

true H true ~-* (Vn: n E A :  (Vb: dest e Af*._bAb E ~ :  Ok.b.n)) (19) 

We will take the 
stitution Rule) it 

(Vn : n E A : 

above as our new specification for mCost. By Theorem 4 (Sub- 
refines (18) if: 

(y.b.b = cost.dest.b) (20) 

for all b E ~ such that  dest C N~.b and b is a node in _b. (19) is also more general 
than (18) as the goal of each domain-level processing is now abstracted by Ok. 
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The round-wise specification can be obtained by applying Theorem 12 (Round 
Decomposition) to (19). We obtain: 

(vm:  m -< , ,:  ( w :  dest E ~f~._b A b E V:  Ok._b.,~)) 
t- true --~ (Vb: dest E A/'v*.b A _b E V : Ok._b.n)) (21) 

for all rounds n E A. The above specifies the obligation of the program mCost 
at each round. The relation -< on rounds is a well-founded relation, which is 
required by Theorem 12. The fact that  well-foundedness is imposed means that  
any computat ion cannot go back to an already visited round. Assuming A is 
finite, convergence in finite time is guaranteed. 

4.2 D i s t r i b u t i n g  mCost 

Let us call the part  of mCost responsible for establishing Ok._b as mCost._b. Typ- 
ically the work is not done by all nodes (servers) in the network, but only by 
those nodes inside the concerning domain, which is _b. So mCost.b consists of yet 
smaller parts, each doing node level computation.  In any case, what we want is 
to delegate the mentioned task to the component m Cost._b. This is possible by 
applying Write Disjoint Composition law in Theorem 10 to (21) and obtain: 

( V m :  m -4 n :  (Vb: dest E Af~._bA_b E r :  Ok._b.m)) rnCost.bl- true -,-+ Ok.b.n(22) 

for all b such that  dest E A{~._b and b E ];. The law does however require that  all 
those mCost._b's are pair-wisely write-disjoint. 

4.3 I n s t a n t i a t i n g  Ok 

Interestingly, the choice of Ok does not solely depend on the given problem, but 
also on the choice of communication method. The explanation is that  we cannot 
in general guarantee self-stabilization without making sure that  our communica- 
tion devices do not, by design or by accident, keep emitting 'bad'  values. In other 
words, we must guarantee that  all communication devices also self-stabilize. 

Below we give a choice of Ok that  works for the minimum cost problem: 

Ok.b.n = 
(Vb : b E n.b : ok.b, ' , . (~.b.b))  ^ (V~, ~ : _b ~ :V',,.~ ^ ~ E n._~: ok.b.,, .( , ' .~.c.b)) 

where each variable y._b.b maintained by node b is intended to in the end hold the 
value cost.dest.b; each variable r.c.c.b maintained by node c is intended to mirror  
the value of y._b.b's in a neighboring domain _b; and ok is defined as follows: 

ok.b.n.Y = (cost.dest.b r- n => (Y  = cost.dest.b)) A (n IZ cost.dest.b =:> n IZ Y) 

The variable r is introduced because a node c in domain g may not have a 
direct link to any node in a neighboring domain _b. To compute a new value of 
y._c_.c, c may need information from _b. So, this information will have to come from 
other nodes in _c which do have direct links to some nodes in _b (so-called border 
nodes). In our scheme these border nodes regularly broadcast their knowledge of_b 
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to the rest of_c. At node c this information is kept in r.c.c.b. More specifically, the 
broadcast is done by propagating the source information from one r to another. 
So, the role of the r ' s  is to provide communication between two nodes, which as 
argued, cannot be ignored in Ok. Had we a flat network (all domains are actually 
nodes) then there is no need to broadcast and in this case indeed we can drop 
the second conjunct concerning r from the definition of Ok. 

4.4 T h e  A l g o r i t h m  

An algorithm H DP._b satisfying (22) for the choice of Ok as given in Subsection 4.3 
is given below - - b y  the argument given earlier it follows that  the composition of 
all HDP.b's satisfies the original specification (18) stating that  it sclf-stabilizingly 
computes  minimal cost. 

D e f i n i t i o n  1 4 .  

prog 
assign 

HDP._b 
(~b,c : b_ E .hfv.c A b E n._bA b 'bordering' with _c : 

broadcast value of y.b_.b to all r._c.c._b, c E n.c) 
1 (lb: b C n.b_" y.b.b := ~,.~,._b.(r._b.b)) 

where in our case of computing minimal cost, ~ is defined as follow: 

~o.M.dest.f = _J_ (23) 

~o.M.b_.f = n{f.a_@ w.a_.b_la_ E M.b_) i fb  # dest (24) 

Also, for the broadcast part  to work, all interior nodes of any domain c must be 
physically reachable from border nodes between _c and _b. The condition is met, 
for example, if the whole network is physically fully connected. 

The above program is called H DP because it is actually just a more detailed 
formulation of the general template with the same name given in Definition 13. 
By using different ~o's we can adapt HDP to solve other problems. Specification 
(22) is very important as it re-formulates the essence of the original problem 
should we try to solve it by round decomposition. In other words, given any hi- 
erarchical, distributed self-stabilization problem, if the solution can be computed 
by round-wisely approximating it, then (22) tell us what each domain-level pro- 
cessing must do in each round. The whole problem of hierarchical, distributed 
self-stabilization is now reduced to finding an Ok strong enough to imply the 
intended solution (in the sense as in (20)) and a ~o such that (22) can be met. 
In fact, (22) can be sharpen to: 

{(Vm : ra --~ n :  (V b: dest E M*.b A b e V: Ok._b.m))} 
~._b.b := ~.M.b.(,.b_.b) {Ok.~.,~) (2S) 

Notice also that  with a proper instantiation the algorithm HDP also works 
for an ordinary, fiat network. Since (25) does not in principle depend on the 
hierarchy of the given network, any fiat network stabilization satisfying this 
specification will also work on hierarchical networks. 
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Ol 1- 

05 sgF A rO I\ TRANS rO /\ "(A={}) /\ FINITE A /\ CAP_PLa rl /\ CAP_Closed rl I\ 
03 (Top rl) IN (A_bc) /\ dClosed rl A.bc /\ (el = BoZ rl) /\ FINITE A_br /\ 
04 CAP_PLa (r2:*D->*D->bool) I\ CAP_Closed r2 I\ GRAPB(V,I) /\ "(V={}) /\ FINITE V /\ 

05 (!8. 8 IN V ==> FINITE (Nd B)) /\ (!8. B IN V ==> "(~d B = {})) /\ 

06 (!B C c. C IN V /\ B IN (N C) /\ r IN (Nd C) ==> 
O7 
08 
09 ( ! c  
10 
11 (!8 
12 (~B 
13 (~B 

14 
15 ~B 
16 ~8 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
57 
28 

!B 
!B1 bl  B2 
~B1 bl B2 
!B1 C1 cl  
!B1 bl  B2 
!B1 C1 r 
!BI Cl cl  

" ( r  Cl 

DAO 

"(MiCos~ ( \ e l .  {c2 [ c2 IN (Nd C) / \  r IN (Nn r r l  addWbc el  (Border Nn Nd C B) r 
= Top r l ) )  / \  

c ' .  CAP_Distr r l  r l  (addgbc r c ' ) )  / \  ( ! i  c c ' .  " ( i  = T0p r l )  ==> 
I.r rl i (addWbc c r i)) /\ 
n. 8 IN V /\ n IN A ==> s N (A,rO) (Gen (V,N)) ok n B) I\ 
b. B IN V /\ b IN (Nd B) ==> UNITY (gFSA V (Gen (V,N) B) d cp B b)) /\ 
C r C IN V /\ B IN (N C) /% c IN (Nd C) ==> 

UNITY (r Nd In rl r2 addWbc el d r r B C r /\ 

b. 8 IN V /\ b IN (Nd B) ==> STABLE (EFSA V (Gen (V,N) B) d cp B b) J) /\ 
C c. C IN V /\ 8 IN (N C) /\ c IN (Id C) ==> 

STABLE (r162 Nd Nn rl r2 addWbc el d r r B C r J) /\ 
C. C IN V /\ 8 IN (N C) ==> "(Border Nn ~d C 8 ={})) /\ 

Cl e l .  "(d B1 bl = r C1 c l  82)) / \  
Ci r r "(d B1 bl = r Cl B2 c l  c2)) / \  
c2 B2 C2 c3. " ( r  C1 B1 cl c2 = cp C2 c3 B2)) / \  
b2. " ( (B1 ,b1)=(B2 ,b2) )  ==> "(d 81 bl = d 82 b2)) / \  
B2 C2 r " ( ( B 1 , C I , c l ) = ( B 2 , C 2 , c 2 ) )  ==> "(r C1 cl 81 = r C2 c2 B2)) 
r B2 C2 c3 c4. " ( ( B 1 , C t , c l , c 2 ) = ( B 2 , C 2 , c 3 , r  ==> 
B1 r c2 = r C2 82 r c 4 ) )  

(dFSA Nd In (V,N) r l  r2 addWbr el  Gen d r r )  
J Nd (V,N) A ok (cc0K Nd ~n r l  e l  addWbc ok cp r )  d rO 

Fig. 3. The final theorem. 

5 Veri f icat ion  

We can afford to be over-simplistic throughout this presentation because we 
simply want the issues to be easily understood by the reader. Things are very 
different in the mechanical verification world. Correctness is paramount  there. 
The true complexity of the problem has to be confronted and handled with 
ul t imate  detail. Hidden assumptions or parameters  may  leave us unable to prove 
our final theorem. In many  occasions the machine fails to prove things for us 
and hence has to be guided step by step. This can be very laborious. Often: 
manipula t ion which seems simple to an abstract  human ' s  mind turns out to 
be a lengthy piece' of proof-code. In less than  10 pages we have conceptually 
explained how the program H DP works and how it can be derived (and verified). 
Its actual  mechanical verification takes as much as 5500 lines of proof-code. The 
underlying logic is also verified (from UNITY to the convergence logic) and it 
takes 9300 lines of code. In addition to that ,  another  8900 lines of code are 
invested to provide us with various basic mathemat ica l  facts which are used 
(such as theories about  relations and graphs) but not provided by HOL. 

Let us now take a quick look at a small part  of the code. The following code 
proves Theorem 4 (-,~ SUBSTITUTION). The theorem to be proved is listed in lines 
3-6. The proof is quite simple (only two lines) and can be seen calling two other 
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properties of -,-% namely its monotonicity and its anti-monotonicity (at its last 
two arguments) with respect to :~. 

01 le~ CON.SUBST = prove_~hm 
02 ( 'CON.SUBST', 
03 "!(Pr:'Uprog) J p q r s. 
04 (WRITE Pr) CONF r /\ (WRITE Pr) CONF s /\ 

05 i== ((r AND J) IHP p) /\ i== ((q AND J) IMP s) /\ CON Pr J p q 

06 ==> CON Pr J r s", 
07 REPEAT STKIP_TAC 

08 T"EN IMP RES_TAC CON_gMONO T"EN IMP_RES_TAC CON_gANTIMONO) ;; 

Verifying the logic has been relatively easy. Verifying a generic algorithm 
such as HDP is much more difficult. The code displayed in Figure 4 illustrates 
this well. Do not try to understand the code. Suffice to say that  this complicated 
piece of work implements the two major steps mentioned in Subsections 4.1 and 
4.2 (and there are still 5500 lines of code to prove other steps, major or minor, 
to complete the verification). 

Figure 3 displays how our final theorem for HDP looks like. The program 
is called dFSA. Its definition is not shown, but it is more complicated than its 
simplification given in Definition 14 (it spans over 60 lines). Look at the number 
of parameters required by the program and its specification DA0 (12 and 10). 
Most of them are what we as human successfully keep implicit in our unmechan- 
ical reasoning. The final lines(27, 28) state that  the program dFSA satisfies DA0, 
which basically is our initial specification (18). Line 11 expresses requirement 
(25). First conjunct in line 2 requires the well-foundedness of the ordering on 
rounds (r0). Lines 6-8 state that  all participating nodes in a domain must be 
reachable from border nodes (otherwise data  broadcasted from the border will 
not reach them). There are also minor conditions such as the one stated by lines 
12-14, saying that  all component programs are proper UNITY programs, and 
the one stated by lines 19-25, saying that  all variables used in the programs are 
all distinct. 

6 C o n c l u s i o n  

Hierarchical self-stabilizing distributed systems have been described. Especially 
in a large network, it is more economical that  each node only keeps knowl- 
edge of other nodes which are considered 'visible' to that  node. An example -a  
hierarchical algorithm to compute minimum distance- was given. Three major 
refinement steps of its initial specification were shown. Further refinement, which 
is not shown, is done basically by repeating those steps down to a certain level. 
A logic for self-stabilizing systems has also been shown. Both the logic and the 
example have been mechanically verified. Although the number of lines required 
to achieve this goal has been tremendous, and the code as displayed in Figure 4 
does not look all too friendly either, people should not feel discouraged. The tech- 
nology of computer aided verification is progressing steadily. More automation 
and better user interface can be expected in the near future. 

The verified specification for H DP actually makes no reference to a minimal 
distance function. It simply assumes the condition (25), which essentially states 



414 

let dFHA_basic_decom = prove_thm 
('dFSA_basic_decom ~ , 

.., <deleted> ,.. 
STRIP_TAC 
THEN MATCH.MP_TAC D.kound.Decom.l 
THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL 
[~--I--X 

REWRITE_TAC [D_preOK] 
THEN (CONV_TAC o s o RAND_COHV o ABS_CONV o MK_ABS_CONV) "m:*E" 
THEN CONF.TAC THEN BETA_TAC THEN CONF TAC THENL 
[ ~ - -  1.I --X 
REWRITE.TAC [D_daZaOK_ADEF; D_domOK ] 
THEN (CONV TAC o RAND_CONV o RAND_CONV o ABS_CONV o MK_ABS.CONV) "b:*Node" 
THEN CONF_TAC THEN BETA_TAC 
THEN RULE_ASSUM_TAC BETA_RULE 
THEH RULE_ASSUM.TAC (REWRITE_RULE [DAI_DEF] ) 
THEN UNDISCH.ALL.TAC THEN REPEAT STRIP.TAC THEN EES.TAC 
THEN IMP_RES_TAC fla~Uprogs.INSERT.DELETE 
THEN POP_ASSUM SUBSTI_TAC 
THEN MATCH.HP_TAC CONF_PAR THEN DISJI_TAC 
THEN RULE_ASSUM_TAC (REWRITE.~ULE [CDN]) 
THEN ASM_REWRITE_TAC[] ; 
~ - - I . 2 - - Z  
REWKITE_TAC [D_comOK_ADEF] 
THEN (CONY_TAC o RAND.COHV o RAND_CONV o ABS.CONV o MK_ABS_CONV) "H:*D" 
THEN CONF_TAC THEN BETA.TAC 
THEN RULE_ASSUM_TAC BETA.RULE 
THEN RULE_ASSUM_TAC (REWRITE.RULE [DA2.DEF]) 
THEN UNDISCH_ALL_TAC THEN REPEAT STRIP.TAC THEN RES_TAC 
THEN IMP_RES_TAC fla~Uprogs_INSERT.DELETE 
THEN POP.ASSUM SUBSTI.TAC 
THEH MATCH.MP_TAC CONF_PAR THEN DISJI_TAC 
THEN RULE_ASSUM_TAC (REWRITE_RULE [CflN]) 
THEN ASM.~EWEITE TAC[] ] ; 

X-- 2 --X 
MATCH.MP.TAC D.Round_Decom2 THEN CONJ_TAC THENL 
[ ~-- 2.1 --Z 
MATCH_MP.TAC D.s THEN ASM.REWKITE.TAC[] 
THEN REPEAT STRIP.TAC THEN RES_TAC 
THEN IMP.RES_TAC flazUprogs_INSERT.DELETE 

THEN PHP_ASSUM SUBSTI_TAC 
THEN MATCH_MP.TAC D_Kound.Decom5 
THEH REPEAT STRIP_TAC THENL 

[ X-- 4sg --X 
FIRST_ASSUM MATCH.MP_TAC THEN ASM_REWKITE_TAC[] ; 
ASM_CASES.TAC "Pset DELETE ((gP (B:*Dom) (b:*Node)):'AD_Uprog) = {}" 
THENL [ ASM.REWRITE_TAC [flatUprogs_EMPTY]; ALL.TAC ] 
THEN DISJI_TAC THEN MATCH.MP_TAC fla~Uprogs_UNITY 
THEN ASM_REWRITE_TAC [IN_DELETE; FINITE.DELETE] 
THEN REPEAT STKIP_TAC THEN KES_TAC ; 
INP.RES.TAC flazUprogs.INSERT.DELETE 
THEN POP_ASSUH (SUBSTI_TAC o SYM) THEN RES_TAC ; 

ASH.REWRITE.TAC[] ] ; 
Z--2.2--~ 
MATCH_MP.TAC D.Round.Decom4 
THEN ASM_REWRITE_TAC[] THEN REPEAT STEIP_TAC THENL 
[ ~-- 4sg --~ 
MATCH.MP_TAC flatUprogs_UNITY THEN ASM_REWRITE_TAC[] 
THEN REPEAT STRIP.TAC 
THEN UNDISCH.ALL.TAC THEN REWRITE_TAC [SYM (SPEC_ALL MEMBER HOT_EHPTY)] 
THEN REPEAT STRIP.TAC THEN RES_TAC THEN RES_TAC 
o.. <deleted> ,,. 

] ] )  ;; 

F i g .  4.  A s a m p l e  code  of  t he  ver i f icat ion of  HDP.  
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that  each node-level computaion will bring the system closer to its final goal. 
This is very general condition, and also implies self-stabilization on ordinary 
networks, and hence it defines a class of self-stabilization which can safely be 
lifted to work on hierarchical networks. 
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