
Mechanically Verified Self-Stabilizing
Hierarchical Algorithms

I.S.W.B. Prasetya 1.

Fac. of Comp. Science, University of Indonesia, Depok 1649.4, Indonesia.
Email: wishnup@caplin.cs.ui.ac.id

Abs t rac t . This paper investigates self-stabilization on hierarchically di-
vided networks. An underlying theory o f self-stabilizing systems will be
briefly exposed and a generic example will be given. The example and
the theory have been mechanically verified using a general purpose the-
orem prover HOL. Three issues inherent to the problem, namely self-
stabilization, concurrency, and hierarchy, can be factored out and treated
one separately --something which has considerably simplifed our me-
chanical proof (proof economy is an important issue in mechanical ver-
ification, even more than it is in the pencil and paper realm as what
misleadingly appears as a few//nes there may easily become a few hun-
dreds in the mechanical world).

1 I n t r o d u c t i o n

A self-stabilizing program is a program which is capable of converging to some
pre-defined equilibrium. Such a program is tolerant to perturbations (failures, at-
tacks) made by the its environment: if some perturbation throws it out of its equi-
librium then given enough time it s imply re-converges back to its equilibrium.
Such a program is obviously useful. Examples include mutual exclusion proto-
cols, communication protocols, and graph algorithms [BYC88, AG90, CYH91].

Self-stabilization is typically applied in a distributed environment. Most re-
sults deal with a fiat network of processors though, and one may ask whether
these results extend to hierarchical networks. Considering that many computer
networks are organized hierarchically (Internet being an example thereof) the
issue has practical significance. Work has been laid by Lentfert and Swierstra
[LS93, Len93] who investigate self-stabilizing computat ion of hierarchical mini-
mum distance in a hierarchical network. However their proof is lengthy andwil l
only get worse if mechanized. Significant simplification is achieved by factoring
out three issues inherent to the problem, namely concurrency, hierarchy, and
self-stabilization, and then treating them separately. A more general approach
is also taken here, resulting in a class of self-stabilization on fiat networks which
can be safely lifted to work on hierarchical ones.

Another issue to be highlighted here is the use of formal methods. Proving
self-stabilization is very hard - -see for example proof in [AB89a, AB89b, CYH91,

* The research was carried out at Utrecht University, the Netherlands.

400

Len93]. Formal methods were proposed both to manage the complexity and to
minimize design errors. Arora and Gouda were the first who formalized the
notion of self-stabilization [AGg0] . However, reasoning is still carried out infor-
mally. Lenfert and Swierstra were the first who gave a truly formal framework for
self-stabilizing systems [LS93]. Lenfert and Swierstra's work was later enhanced
by Prasetya by introducing a more powerful operator to express stabilization in
general, and providing a whole set of composition laws [Pra94b, Pra94a, Pra95].
Like all those people, we also believe in the virtue of formal methods. Through
an example we will share how such a method helps us. Several most interesting
laws will be shown to the readers. We urge the reader to take a look at [Pra95],
where extensive lists of laws and examples of formal calculation can be found.

The results, and the underlying theory of self-stabilization have been me-
chanically verified using a general purpose theorem prover HOL-88. The system
- - m a d e by Gordon and Melham [GM93]-- is fully ezpar~sive, meaning that all
proof strategies are built on (a small number of) axioms and primitive deduc-
tion rules, and hence there is no way one can introduce inconsistency, something
which makes fully expansive theorem provers very trustworthy. A very rich col-
lection of strategies is available, and also a meta language to let users build
their own strategies. HOL is based on a higher order logic and therefore is very
expressive. Each proof step is checked by HOL, but unlike model checkers, proof
basically has to be hand guided. Despite this obvious disadvantage, the choice
is dictated by the nature of distributed programs we seeked to investigate: (1)
they consist of unbounded number of processes, and (2) they are parameterized
by sophisticated structures (such as a hierarchical network). An integration of
model checkers and fully expansive theorem provers will indeed b e beneficial.
Even now there are on-going researches heading this direction.

Due to space limitation a full calculation cannot be presented. It is also
rather difficult (and less exciting) to discuss the verification in detail as it con-
cerns thousands of lines of proof-code. So we decide not to do this. Major proof
steps will however be shown, as well as some examples of proof-code and output
theorems.

2 A Theory of Stabil ization

This section briefly presents a theory we developed for distributed converging
systems (a generalization of self-stabilizing systems). The theory is based on
UNITY [CM88], a simple programming logic invented by Chandy and Misra to
reason about distributed programs. A more extensive discussion on the topics
can be found in [Pra95].

2.1 P r o g r a m s

A program is represented by a collection of actions. Only i~finite computa-
tions will be considered. At every step of a computat ion an action is non-
deterministicaUy selected and executed. The absence of specific orders in which

401

prog
read
write
init
assign

Fizban

true

i f z = O t h e n x :=1 if z # 0 then ~ : = 1

Fig. 1. The program Fizban

l] ifm # 0 then y,m : = y + l , 0

actions are executed means that the logic does not care whether actions are to
be executed sequentially or concurrently - - such is considered an implementat ion
issue by UNITY. Weak fairness restriction applies. All actions are assumed to
be terminating. Guarded actions whose guards are false when executed behave
as a skip. In other words, actions are continually enabled.

Figure 1 shows an example of a UNITY program. Our convention will be
slightly different than in [CM88]. The read and write sections declare, respec-
tively, the read and write variables of the program; the init section describes
allowed initial states; the assign section describes the actions that constitute
the program. Here read variables simply mean variable that can be read. They
include write variables. Actions are listed, separated by ~. An action can be a
simple assignment such as z := z + l or a multiple assignment such as z, y := y, z.
The meaning is as usual. An action can also be a guarded action such as:

i f z # 0 t h e n z : = 0

Multiple guards are allowed, and if several guards evaluate to true one is selected
non-deterministically. If no guard evaluates to true the action behaves like a skip.
We also write, for example, (~i: i E V : a.i) which is equal to a.i~a.j~a.k~.., for
all i, j, k E V.

No ta t iona l convent ion: a, b, c , . . . range over actions; P, Q, R , . . . range over pro-
grams; z, y, z range over (program) variables; X, Y, Z range over values (of variables);
and p, q, r, . . . range over state predicates. We use aP, iniP, rP, and w P to denote, re-
spectively, the set of actions, the initial predicate, the set of read variable, and the set
of write variables of P. A UNITY program P is basically a tuple (aP, iniP, rP, wP).

P a r a l l e l c o m p o s i t i o n of P and Q is denoted as P~Q in UNITY. It is defined
simply as the 'merge ' o f the component programs:

PDQ = (a P u aQ, i n i P A iniQ, r P u rQ, w P u wQ) (1)

Things can be quite subtle with parallel composit ion though. For example,
see again program program Fizban in Figure 1; one of its property is:

(VY :: eventually Y < y holds) (2)

I f we put it in parallel with the program TikTak below, then (2) can no longer
be guaranteed even though TikTak never tampers with y.

402

prog TikTak
assign if z = 0 then z := 1 ~ if z ~ 0 then z := 0

E x e r c i s e . find out why (2) does not hold in Fizban ~ TikTak.

2.2 B e h a v i o r

Stabilization consists of two aspects: progress and stability. Let us begin with
stability since it is easier. A predicate p is called stable in a program P, denoted
by p~- stable.p, if p is left invariant by all actions in P:

vF- stable.p = (Va: a e a P : {p} a {p}) (3)

A closely related concept is invarian~, which is a predicate that always holds
through out any computation. Obviously, a stable predicate which holds initially
is an invariant. However, note that not all invariants are stable!

We can generalize the concept of stable predicate by weakening it a bit.
Consider a program P that when executed in p, instead of keep returning to p
may (but does not have to) also step over to q. We call such behavior p unless q:

vF pun l e s sq = (V a : a e a P : { p A - ~ q } a { p V q }) (4)

v~- P unless q does not necessarily mean that P willgo over to q f romp. However,
if there exists an action a that can establish q from p, by our fairness assumption
P cannot forever stay in p and hence ignoring a. Hence, a will eventually be
executed and q established. This behavior is called p ensures q:

pF-pensuresq = (p t -punlessq) A (3 a : a e a P : { p A ~ q } a { q }) (5)

ensures, however, only defines one-step progress, that is, progress that can be
achieved through the act of one action. To include progress achieved through a
cooperation of several actions, a more general operator can be defined by taking
the smallest transitive and disjunctive closure of ensures . This operator is called
leads-$o in UNITY.

In this paper, a more restricted operator proposed by Prasetya will be used.
The operator is written J pF- p ~ q which is read "P can reach q from J A p,
given the s~abiH~y of J". p and q are also restricted to only describe values of
write variables, whereas assumptions on read-only variables should now be put
in J. The advantage of this operator is compositionality. Even though progress is
easily destroyed by parallel composition, there are still many situations in which
parallel composition does, in a sense, preserve progress made by component pro-
grams. The traditional leads-to operator is simply too liberal to bc compositional
in any sense and --+ is better in this respect. Devising a yet more compositional
operator is possible, though one can expect that this is usually at the expense
of simplicity.

The formal definition of --~ is below. A notation that will be used is p E
Pred.V, meaning that p is a state-predicate over variables in set V~ For example

> y is a state predicate over {~, y, z}, but not over {y, z} (because it also says
something about ~). Roughly speaking, if V contains all free variables of p, then
p E Pred.V.

403

D e f i n i t i o n 1. REACH OPERATOIL ~ is the smallest relation satisfying:

p, q E Pred.(wP) A (p f - s tab le . J) A (p t - J A p e n s u r e s q) (6)
J pFp---*q

(Jp~- p ~ q) A (Jp~- q---,r) (7)
Jp~- p--*r

(Vp: p E W : JpF - p - - . q) for all n o n - e m p t y W . (8)
Jp l ' - (3p: p E W : p)--*q'

For example, in program Fizban in Figure 1 we have z = 0 F true -~ Y < y
and z r 0 ~- true --* Y < y for any Y. These together express (2):

Properties for leads-to [CM88] also hold analogously for --* [Pra95]. Addi-
tionally, if J p~- p --* q holds we know not only that P can progress from J A p to
q, but also that J is stable and that p and q are predicates over w P . Typically J
also describes assumed values of read-only variables (note that these values are
stable in P) . We can also rewrite p and q using J. In the original UNITY, this
ability is imposed by an axiom called Substitution Axiom [CM88]. The axiom
turned out to cause inconsistency. Fortunately, we do not have this problem as
our theory is purely definitional.

E x e r c i s e : find out why t rue I- t rue -~ Y < y cannot hold in Fizban.

S e l f - s t a b i l l z a t i o n is defined as an ability to progress from any initial state to
some pre-defined set of states (say, q) and to remain there. In temporal logic ala
IMP92] this can be expressed as ~>nq. In our theory this is expressed as:

P self-stabilizes to q : (3q' :: (true pF- true --* q A q') A (p~- stable.q A q'))

Indeed, we require P to stabilize to a stronger predicate, namely q A q', to
express that things may not stabilize the first t ime q holds, but perhaps only after
several iterations. It turns out to be very useful to generalize self-stabilization
by allowing arbitrary predicates in the place of the two true's above.

D e f i n i t i o n 2. CONVERGENCE

J pl-p.-.~q :
q e Pred.(wP) A (3q' :: (S pF p --* q' A q) A (,F- stable.(J A q' A q)))

J p ~" p ~ q is pronounced "P converge8 from J A p to q" and means that
from J A p the program P will progress to states satisfying q, after-which q will
continue to hold. Note that by definition it also follows that J is stable and
that p and q are state-predicates over w P . Self-stabilization to q is expressed by
t rue pl - t rue ~ q. "

2.3 P r o p e r t i e s o f C o n v e r g e n c e

Figure 2 shows a list of basic properties of convergence. A note for notation: we
often drop the P or the J (or both) from formulas like J p~- p ~ q if it is clear
from the context which P or J are meant.

404

Theorem 3 is obvious. Theorem 4 states the J -pa r t can be used to rewrite
p ~-~ q. This is the analogous of Substitution Axiom [CM88] for convergence. The-
orem 5 states that convergence is transitive, but Theorem 6 states a stronger
sense of transitivity. It says that all intermediate predicates in a transitive tra-
jectory will remain to hold. Theorem 7 states that convergence are both disjunc-
tive and conjunctive. Compare this to progress operators such as leads-to or --~
which are only disjunctive. Theorem 8 states how par t of J can be moved to
the pre-condition part. Theorem 9 and 10 states how ~,~ is preserved by parallel
composition. Theorem 9 states that property J F p -,.* q of program P will be
preserved in P~Q as long as Q respect the stabili ty of J and P and Q do not
share write variables. Such a composition is called write disjoin~ composition
and appears quite often in practice. For example, distributed systems that com-
municate through channels can be expressed as a composit ion of write-disjoint
components [Pra95]. An instance of write-disjoint composit ion (called layerin#)
in which one program write to the read-only variables of the other has also
been recognized as an impor tan t technique in designing self-stabilizing systems
[Her91, Aro92]. Had we used the leads-to we will not be able to derive Theorem
9. See [Pra95] for a complete list of composit ional properties of --* and ~-~.

Theorem 11 expresses the well known principle of well-founded traversals: if
P either decreases a metric m or stabilizes to q, it cannot decrease m forever
and hence must eventually stabilize q. Theorem 12 is a corollary of Theorems 11
and 7. It states tha t if we can divide executions of P into (abstract) rounds A,
and arrange tha t P converges to q.n at each round n, then we know that when
all rounds have been passed P has also stabilized to (Vn : n E A : q.n).

3 H i e r a r c h i c a l A l g o r i t h m s

In a hierarchical network nodes are grouped into domains and the domains are
structured as a tree (the hierarchy). Many computer networks are s t r u c t u r e d
like this (including Internet). Hierarchy is a useful abstract ion mechanism: while
domain-wide information may be visible, its interior may not - -concea lment of
detail may be enforced by the system, or we may do it intentionally ourselves to
simply ignore some lower level detail.

Take as an example message routing in a world-wide hierarchical network.
Suppose now Carmen in Jakarta , Indonesia wants to send a message to Flips
in London, UK. Each node in the network has a router and the message will
be routed f r o m one node to another according to its destination. Some routers
know how to direct incoming messages to Flips, others may simply not care to
know. As a solution, these other routers may simply route Carmen ' s message
to any node in, say, the domain London and assume that the local network
in London will further take care of its delivery to Flips. This scheme reduces
the si~,e or routing tables needed to be kept by the nodes. In addition, if the
network shrinks and grows during their lifetime, which happen frequently in real
life, maintaining the routing tables is cheaper (as addition or deletion of nodes
invisible to a router will not affect the routing table maintained by the router).

405

T h e o r e m 3. p-.~ q

p ~ q and p,q C Pred.(wP) and pl- stable.J

T h e o r e m 4. SUBSTITUTION

[J A p = ~ q] A [J A r = ~ s] A p, sEPred. (wP) A (q~-*r)
p ,--~ s

T h e o r e m 5. TRANSITIVITY

(p ~ q) ^ (q ~ r)
p ' - ~ r

T h e o r e m 6. ACCUMULATION

(p ~ q) ^ (q ~ ,)
p--.~qAr

T h e o r e m 7. DISJUNCTION and CONJUNCTION

(p ~ q) ^ (r ~ s)
(p V ~) ~ (q V ,) and (p A ,) ~ (q ^ s)

T h e o r e m 8. STABLE SHIFT

p' E Pred.wP A (stable.J) A (J A p' I- p -~ q)
J~p~Ap~q

T h e o r e m 9. TRANSPARENCY

(QFstable.J) A (Jpl-p.',.+q) i f w P M w Q = r
J pIQ~ P ~* q

T h e o r e m l 0 . WRITE-DISJOINT CONJUNCTION

(P ~ ' P " ~ q) ^ (' ~ - r ~ s) i f w P n w Q =
p , ~ (p ^ ,) ~ (q ^ s)

T h e o r e m l l . BOUNDED PROGRESS Let ~ be a well-founded relation on A andre be
some metric function from program states to A:

p , j : (q~,~q) A (V M : : p A (m = M) - . - * (p A (m - < M)) V q)
p,,.. q

T h e o r e m 1 2 . ROUND DECOMPOSITION Let A be finite and non-empty and -q be a
well-founded relation on A:

p : (s table .J) ^ (V, , : n e A : J ^ (V m : m -~ n : q. ,~) ~- t ,ue ~ q.n)
J }" t r u e ~ (Vn : n E A : q.n)

Fig. 2. Some basic properties of--~.

406

In a hierarchical network we have a collection of nodes V connected by links,
and a collection of domains F. The connectivity will be described by a function
N such tha t N.a is the set of all neighbors of a. Neighbors are connected with
physical bidirectional links. Each domain contains nodes; we will use n._a to de-
note the set of all nodes inside the domain a (also called the interior of a). In
addition there is also an ordering <3 on the domains which describes the hierarchy
among the domains. Tha t is, _a <1 b means that domain _a is a son of domain b
in the hierarchy, and conversely b is the father of a. Fathers are considered to
have a higher hierarchy than sons. The transitive and reflexive closure of <1 is
written ~ and when a <1 b we say that b is a super domain of _a. A hierarchy
relation <1 is expected to be irreflezive and such tha t _ does not contain cycles
(ant i-symmetric) , or in other words __ should be a partial order.

A hierarchical network is therefore described by a tuple (V, N, F, <~, n) with
the interpretation as described above.
N o t a t i o n a l c o n v e n t i o m a, b, c , . . . range over nodes and _a, b,_c,.., range over
domains.

For the sake of simplicity let us consider nodes as a special kind of domains. A
node, seen as a domain, contains itself as its only interior. Typically, <1 is expected
to imply interior inclusion. Tha t is, the interior of a domain must be included
in the interior of a super domain:

a ~ b ~ n . a C n . b (9)

If so, then the hierarchy <~ fully defines the interior function n. For a reason
explained later, we will not require (9).

Recall the message routing scenario explained a few paragraphs earlier. Ba-
sically, what is being proposed is to define some visibility function v from nodes
to domains. Sending a message m from a to b constitutes of sending m to the
domain lowest in the hierarchy which contains b and which is visible from a.
In other words, we are exploiting a sub-network obtained by restricting the
original hierarchical network with the visibility function. Let us see first which
sub-network it is.

The physical links at the node level define a network at the domain level:
let a E A/'.b means that there is a (bidirectional) link between domain a and b.
More specifically, _a E 2f.b means that there exists a link between some node in
a and some node in b:

A[._b = { a l (3 a , b : a E n . _ a A b E n . _ b : a E N . b) } (10)

Let v.b be the set of domains considered visible f rom b. We can define 2f~ as
follows:

A/'~ ._b -- A/'._b r l v._b (11)

So, a E AP,.b means tha t domain a and b are physically connected, and that
domain a is visible f r o m b, meaning that b can be expected to know something
about a (but not necessarily the other way around).

407

3.1 C h o i c e o f Visibility Function v

Each domain _a may want to decide which other domains it wants to consider
as visible. T h e more domains are visible to a, the bet ter informed _a is, but
the information will also take more space and effort to maintain. Depending on
applications, there may be restrictions. For example, in a hierarchical routing
program the combined interior of all visible domains f rom _b must cover all nodes
physically reachable from b, or else there will be a physically reachable node
which b does not know how to reach.

So, basically any relation between domains can be used as a visibility func-
tion. A suggestion due to Lentfert [Len93] is to consider super-domains and
brothers (domains sharing one father) of a domain c to be visible to c. Addition-
ally, Lentfert requires the induced visibility relation to be transitive. Using this
definition, if a is visible from _c, then either _a is a super domain of _c or it lies at
most one level deeper than the shared ancestor between a and c.

3.2 T h e H i e r a r c h y R e m o v e d

Our distr ibuted hierarchical algori thms will actually run on the network spanned
by Aft. Typically, we will have one process (possibly distributed) for each domain.
This process repeatedly does some local computat ion. It cooperates with its
neighbors by regularly informing them the (intermediate) results of its local
computat ion. See the program HDP below (read, write, and init sections are
omitted). Each HDP._b is the process associated with domain _b.

Definltlon13. TEMPLATE FOR A HIERARCHICAL DISTRIBUTED PROGRAM
HDP = (Jib: _b e]; : HDP.b) where HDP._b is:

prog HDP._b
assign do local processing, store the result in y.b

1 (1-~: I E ~,._~: inform _c of the new value of y.b)

Notice that HDP does not directly 'see' the hierarchy-relation <1 but instead it
relies on Aft. I t is true tha t the visibility function v is likely to depend on <3, but
once v is set the hierarchy <3 is no longer relevant to the behavior of HDP and
hence can be removed from our concern.

3.3 Distributing Domaln-level Computation

The program HDP above is split into components, each of which does some
processing associated to a domain. Such a domain-level component can be cen-
tralized in a server; or, it can be part i t ioned and distributed over a number of
servers; or, it can simply be duplicated by the servers, which is indeed redundant
but it does make a more robust system. In the latter option, consistency between
duplicates need to be maintained. This paper restricts itself to this duplication
scheme.

Since nodes are the only entities assumed to have computing ability, the role
of servers is assumed by the nodes, though usually not all nodes are servers.

408

When an ordinary, non-server node needs information from a domain it is in, it
requests the information from one of the domain 's servers, the exact mechanism
of which is considered less relevant to our main topic. For the sake of simplicity
we will pretend that all nodes in our hierarchical program are servers. Outside
the program there are non-server nodes, but how the da ta are distributed from
server to non-server nodes is put outside the scope of this paper.

A node acting as a server for domain _a does not have to act as a server for b,
even though b is an ancestor of_a. As long as each domain has at least one server
it suffices for our model. It means that (9) does not necessarily hold, which is
exactly why we did not insist on it. Having said all these, f rom this point on we
do not distinguish between nodes and servers.

4 Example: Computation of Minimum Cost

Let cost.a.b denote the min imum cost of going from node a to b in a network.
The notion is well known. For a fiat network this is defined by the following
equation. For all distinct nodes a and b:

cost.a.a = / (12)

co t. .b = n{cost. .b' e I b' c (13)

where w.a.b is the weight or the cost of the link between a and b. [7 is the
min imum operation, _L is the bo t t om element thereof. A simple instance of above
is the following definition of distance, which should look more familiar:

cost.a.a = 0 (14)

cost.a.b -- min{cost.a.b' + 1 I b' E N.b} (15)

In a hierarchical network cost is measured between domains. The notion of cost
can be expected to be more sophisticated than (14) and (15), which is why we
prefer to keep the definition of minimal cost under-specified as in (12) and (13).
For example Lentfert [Len93] defines the 'hierarchical ' cost of a pa th s to be
a vector v where v.i is the total cost of all links in s that end up at nodes at
'depth ' i. The hierarchical cost of two paths are to be compared lexicographically.
This way making a walk through domains closer to the root is considered more
expensive and hence will be avoided.

In the sequel, assume a hierarchical network (V, N, V, <l,n) with visibility
function v. By (10) and (11) the tuple defines Afv (recall that A/'~.b is the set
of all those domains physically connected to b and visible from b). We want
to construct a hierarchical self-stabilizing program, call it mCost, to compute
minimal cost between pairs of domains. However, we do not want to do this for
all pairs, but only between pairs (a, b) such that b are physically reachable and
visible from a. In other words, the cost is defined relative to the network spanned
by (Y, Aft) (note that for the notion of ' reachable ' to make sense, the notion of
visibility needs to be transitive). The cost function looks in general like this:

cost.a.a = _L (16)

cost._a.b = m{cost._a.b' @ w.b'.b I b' e ~' . .b} (17)

409

cost.a.b can however be computed without any knowledge of cost.a' of other a ~
unequal to a and hence it can be computed separately. Without loss of gener-
alization we will therefore only consider the problem of computing cost._a for a
given a_. Let us call that given a dest (from destination).

Introduce for each server (node) b serving domain _b a variable y.b.b. Here is
the specification of rnCost:

true mCost l-
true ~-~ (V_b, b: dest E Af*.b A b E]3 A b E n .b : y.b.b = cost.dest.b) (18)

where f* is the standard reflexive and transitive closure of f (pretend for this
purpose that the function f is a relation).

With the space allowed, it is unfortunately impossible to show detail how
the specification (18) above can be further refined and verified. Three major
refinement steps will however be shown below. They deal, separately, with three
key issues, namely hierarchy, parallelism, and self-stabilization. This is done in
the following way. In Subsection 3.2 it is pointed out that once the choice of the
visibility function is determined, hierarchy plays no further role. Subsection 4.1
will show how self-stabilization can be broken down to round-wise stabilization.
Subsection 4.2 will show how the responsibility of achieving this round-wise
stabilization can easily be delegated to a component program if our hierarchical
program consists of parallel components which are write-disjoint. The last two
steps can subsequently be repeated until the obtained stabilization sub-goals
each are simple enough to be implemented by a single component.

One may note those steps are as one should naturally expect. The fact that
the original proof in [Len93] overlooked these supposedly natural steps and took
instead a considerably more complicated approach warns us again about how
distracting it is in formal methods to think in terms of their machinery rather
than in terms of the problem at hand, especially in the absence of sufficient
abstraction tools.

4.1 R o u n d D e c o m p o s i t i o n

As our strategy, we divide any computation of mCost in rounds. Let A be the set
of all those rounds. Each round n will establish for each domain _b some predicate
which afterwards is maintained stable. Let us call this predicate Ok.b.n. In the
end, when all rounds have been visited, the following will hold:

true H true ~-* (Vn: n E A : (Vb: dest e Af*._bAb E ~ : Ok.b.n)) (19)

We will take the
stitution Rule) it

(Vn : n E A :

above as our new specification for mCost. By Theorem 4 (Sub-
refines (18) if:

(y.b.b = cost.dest.b) (20)

for all b E ~ such that dest C N~.b and b is a node in _b. (19) is also more general
than (18) as the goal of each domain-level processing is now abstracted by Ok.

410

The round-wise specification can be obtained by applying Theorem 12 (Round
Decomposition) to (19). We obtain:

(vm: m -< , ,: (w : dest E ~f~._b A b E V: Ok._b.,~))
t- true --~ (Vb: dest E A/'v*.b A _b E V : Ok._b.n)) (21)

for all rounds n E A. The above specifies the obligation of the program mCost
at each round. The relation -< on rounds is a well-founded relation, which is
required by Theorem 12. The fact that well-foundedness is imposed means that
any computat ion cannot go back to an already visited round. Assuming A is
finite, convergence in finite time is guaranteed.

4.2 D i s t r i b u t i n g mCost

Let us call the part of mCost responsible for establishing Ok._b as mCost._b. Typ-
ically the work is not done by all nodes (servers) in the network, but only by
those nodes inside the concerning domain, which is _b. So mCost.b consists of yet
smaller parts, each doing node level computation. In any case, what we want is
to delegate the mentioned task to the component m Cost._b. This is possible by
applying Write Disjoint Composition law in Theorem 10 to (21) and obtain:

(V m : m -4 n : (Vb: dest E Af~._bA_b E r : Ok._b.m)) rnCost.bl- true -,-+ Ok.b.n(22)

for all b such that dest E A{~._b and b E];. The law does however require that all
those mCost._b's are pair-wisely write-disjoint.

4.3 I n s t a n t i a t i n g Ok

Interestingly, the choice of Ok does not solely depend on the given problem, but
also on the choice of communication method. The explanation is that we cannot
in general guarantee self-stabilization without making sure that our communica-
tion devices do not, by design or by accident, keep emitting 'bad' values. In other
words, we must guarantee that all communication devices also self-stabilize.

Below we give a choice of Ok that works for the minimum cost problem:

Ok.b.n =
(Vb : b E n.b : ok.b, ' , . (~.b.b)) ^ (V~, ~ : _b ~ :V',,.~ ^ ~ E n._~: ok.b.,, .(, ' .~.c.b))

where each variable y._b.b maintained by node b is intended to in the end hold the
value cost.dest.b; each variable r.c.c.b maintained by node c is intended to mirror
the value of y._b.b's in a neighboring domain _b; and ok is defined as follows:

ok.b.n.Y = (cost.dest.b r- n => (Y = cost.dest.b)) A (n IZ cost.dest.b =:> n IZ Y)

The variable r is introduced because a node c in domain g may not have a
direct link to any node in a neighboring domain _b. To compute a new value of
y._c_.c, c may need information from _b. So, this information will have to come from
other nodes in _c which do have direct links to some nodes in _b (so-called border
nodes). In our scheme these border nodes regularly broadcast their knowledge of_b

411

to the rest of_c. At node c this information is kept in r.c.c.b. More specifically, the
broadcast is done by propagating the source information from one r to another.
So, the role of the r ' s is to provide communication between two nodes, which as
argued, cannot be ignored in Ok. Had we a flat network (all domains are actually
nodes) then there is no need to broadcast and in this case indeed we can drop
the second conjunct concerning r from the definition of Ok.

4.4 T h e A l g o r i t h m

An algorithm H DP._b satisfying (22) for the choice of Ok as given in Subsection 4.3
is given below - - b y the argument given earlier it follows that the composition of
all HDP.b's satisfies the original specification (18) stating that it sclf-stabilizingly
computes minimal cost.

D e f i n i t i o n 1 4 .

prog
assign

HDP._b
(~b,c : b_ E .hfv.c A b E n._bA b 'bordering' with _c :

broadcast value of y.b_.b to all r._c.c._b, c E n.c)
1 (lb: b C n.b_" y.b.b := ~,.~,._b.(r._b.b))

where in our case of computing minimal cost, ~ is defined as follow:

~o.M.dest.f = _J_ (23)

~o.M.b_.f = n{f.a_@ w.a_.b_la_ E M.b_) i fb # dest (24)

Also, for the broadcast part to work, all interior nodes of any domain c must be
physically reachable from border nodes between _c and _b. The condition is met,
for example, if the whole network is physically fully connected.

The above program is called H DP because it is actually just a more detailed
formulation of the general template with the same name given in Definition 13.
By using different ~o's we can adapt HDP to solve other problems. Specification
(22) is very important as it re-formulates the essence of the original problem
should we try to solve it by round decomposition. In other words, given any hi-
erarchical, distributed self-stabilization problem, if the solution can be computed
by round-wisely approximating it, then (22) tell us what each domain-level pro-
cessing must do in each round. The whole problem of hierarchical, distributed
self-stabilization is now reduced to finding an Ok strong enough to imply the
intended solution (in the sense as in (20)) and a ~o such that (22) can be met.
In fact, (22) can be sharpen to:

{(Vm : ra --~ n : (V b: dest E M*.b A b e V: Ok._b.m))}
~._b.b := ~.M.b.(,.b_.b) {Ok.~.,~) (2S)

Notice also that with a proper instantiation the algorithm HDP also works
for an ordinary, fiat network. Since (25) does not in principle depend on the
hierarchy of the given network, any fiat network stabilization satisfying this
specification will also work on hierarchical networks.

412

Ol 1-

05 sgF A rO I\ TRANS rO /\ "(A={}) /\ FINITE A /\ CAP_PLa rl /\ CAP_Closed rl I\
03 (Top rl) IN (A_bc) /\ dClosed rl A.bc /\ (el = BoZ rl) /\ FINITE A_br /\
04 CAP_PLa (r2:*D->*D->bool) I\ CAP_Closed r2 I\ GRAPB(V,I) /\ "(V={}) /\ FINITE V /\

05 (!8. 8 IN V ==> FINITE (Nd B)) /\ (!8. B IN V ==> "(~d B = {})) /\

06 (!B C c. C IN V /\ B IN (N C) /\ r IN (Nd C) ==>
O7
08
09 (! c
10
11 (!8
12 (~B
13 (~B

14
15 ~B
16 ~8
17
18
19
20
21
22
23
24
25
26
57
28

!B
!B1 bl B2
~B1 bl B2
!B1 C1 cl
!B1 bl B2
!B1 C1 r
!BI Cl cl

" (r Cl

DAO

"(MiCos~ (\ e l . {c2 [c2 IN (Nd C) / \ r IN (Nn r r l addWbc el (Border Nn Nd C B) r
= Top r l)) / \

c ' . CAP_Distr r l r l (addgbc r c ')) / \ (! i c c ' . " (i = T0p r l) ==>
I.r rl i (addWbc c r i)) /\
n. 8 IN V /\ n IN A ==> s N (A,rO) (Gen (V,N)) ok n B) I\
b. B IN V /\ b IN (Nd B) ==> UNITY (gFSA V (Gen (V,N) B) d cp B b)) /\
C r C IN V /\ B IN (N C) /% c IN (Nd C) ==>

UNITY (r Nd In rl r2 addWbc el d r r B C r /\

b. 8 IN V /\ b IN (Nd B) ==> STABLE (EFSA V (Gen (V,N) B) d cp B b) J) /\
C c. C IN V /\ 8 IN (N C) /\ c IN (Id C) ==>

STABLE (r162 Nd Nn rl r2 addWbc el d r r B C r J) /\
C. C IN V /\ 8 IN (N C) ==> "(Border Nn ~d C 8 ={})) /\

Cl e l . "(d B1 bl = r C1 c l 82)) / \
Ci r r "(d B1 bl = r Cl B2 c l c2)) / \
c2 B2 C2 c3. " (r C1 B1 cl c2 = cp C2 c3 B2)) / \
b2. " ((B1 ,b1)=(B2 ,b2)) ==> "(d 81 bl = d 82 b2)) / \
B2 C2 r " ((B 1 , C I , c l) = (B 2 , C 2 , c 2)) ==> "(r C1 cl 81 = r C2 c2 B2))
r B2 C2 c3 c4. " ((B 1 , C t , c l , c 2) = (B 2 , C 2 , c 3 , r ==>
B1 r c2 = r C2 82 r c 4))

(dFSA Nd In (V,N) r l r2 addWbr el Gen d r r)
J Nd (V,N) A ok (cc0K Nd ~n r l e l addWbc ok cp r) d rO

Fig. 3. The final theorem.

5 Veri f icat ion

We can afford to be over-simplistic throughout this presentation because we
simply want the issues to be easily understood by the reader. Things are very
different in the mechanical verification world. Correctness is paramount there.
The true complexity of the problem has to be confronted and handled with
ul t imate detail. Hidden assumptions or parameters may leave us unable to prove
our final theorem. In many occasions the machine fails to prove things for us
and hence has to be guided step by step. This can be very laborious. Often:
manipula t ion which seems simple to an abstract human ' s mind turns out to
be a lengthy piece' of proof-code. In less than 10 pages we have conceptually
explained how the program H DP works and how it can be derived (and verified).
Its actual mechanical verification takes as much as 5500 lines of proof-code. The
underlying logic is also verified (from UNITY to the convergence logic) and it
takes 9300 lines of code. In addition to that , another 8900 lines of code are
invested to provide us with various basic mathemat ica l facts which are used
(such as theories about relations and graphs) but not provided by HOL.

Let us now take a quick look at a small part of the code. The following code
proves Theorem 4 (-,~ SUBSTITUTION). The theorem to be proved is listed in lines
3-6. The proof is quite simple (only two lines) and can be seen calling two other

413

properties of -,-% namely its monotonicity and its anti-monotonicity (at its last
two arguments) with respect to :~.

01 le~ CON.SUBST = prove_~hm
02 ('CON.SUBST',
03 "!(Pr:'Uprog) J p q r s.
04 (WRITE Pr) CONF r /\ (WRITE Pr) CONF s /\

05 i== ((r AND J) IHP p) /\ i== ((q AND J) IMP s) /\ CON Pr J p q

06 ==> CON Pr J r s",
07 REPEAT STKIP_TAC

08 T"EN IMP RES_TAC CON_gMONO T"EN IMP_RES_TAC CON_gANTIMONO) ;;

Verifying the logic has been relatively easy. Verifying a generic algorithm
such as HDP is much more difficult. The code displayed in Figure 4 illustrates
this well. Do not try to understand the code. Suffice to say that this complicated
piece of work implements the two major steps mentioned in Subsections 4.1 and
4.2 (and there are still 5500 lines of code to prove other steps, major or minor,
to complete the verification).

Figure 3 displays how our final theorem for HDP looks like. The program
is called dFSA. Its definition is not shown, but it is more complicated than its
simplification given in Definition 14 (it spans over 60 lines). Look at the number
of parameters required by the program and its specification DA0 (12 and 10).
Most of them are what we as human successfully keep implicit in our unmechan-
ical reasoning. The final lines(27, 28) state that the program dFSA satisfies DA0,
which basically is our initial specification (18). Line 11 expresses requirement
(25). First conjunct in line 2 requires the well-foundedness of the ordering on
rounds (r0). Lines 6-8 state that all participating nodes in a domain must be
reachable from border nodes (otherwise data broadcasted from the border will
not reach them). There are also minor conditions such as the one stated by lines
12-14, saying that all component programs are proper UNITY programs, and
the one stated by lines 19-25, saying that all variables used in the programs are
all distinct.

6 C o n c l u s i o n

Hierarchical self-stabilizing distributed systems have been described. Especially
in a large network, it is more economical that each node only keeps knowl-
edge of other nodes which are considered 'visible' to that node. An example -a
hierarchical algorithm to compute minimum distance- was given. Three major
refinement steps of its initial specification were shown. Further refinement, which
is not shown, is done basically by repeating those steps down to a certain level.
A logic for self-stabilizing systems has also been shown. Both the logic and the
example have been mechanically verified. Although the number of lines required
to achieve this goal has been tremendous, and the code as displayed in Figure 4
does not look all too friendly either, people should not feel discouraged. The tech-
nology of computer aided verification is progressing steadily. More automation
and better user interface can be expected in the near future.

The verified specification for H DP actually makes no reference to a minimal
distance function. It simply assumes the condition (25), which essentially states

414

let dFHA_basic_decom = prove_thm
('dFSA_basic_decom ~ ,

.., <deleted> ,..
STRIP_TAC
THEN MATCH.MP_TAC D.kound.Decom.l
THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL
[~--I--X

REWRITE_TAC [D_preOK]
THEN (CONV_TAC o s o RAND_COHV o ABS_CONV o MK_ABS_CONV) "m:*E"
THEN CONF.TAC THEN BETA_TAC THEN CONF TAC THENL
[~ - - 1.I --X
REWRITE.TAC [D_daZaOK_ADEF; D_domOK]
THEN (CONV TAC o RAND_CONV o RAND_CONV o ABS_CONV o MK_ABS.CONV) "b:*Node"
THEN CONF_TAC THEN BETA_TAC
THEN RULE_ASSUM_TAC BETA_RULE
THEH RULE_ASSUM.TAC (REWRITE_RULE [DAI_DEF])
THEN UNDISCH.ALL.TAC THEN REPEAT STRIP.TAC THEN EES.TAC
THEN IMP_RES_TAC fla~Uprogs.INSERT.DELETE
THEN POP_ASSUM SUBSTI_TAC
THEN MATCH.HP_TAC CONF_PAR THEN DISJI_TAC
THEN RULE_ASSUM_TAC (REWRITE.~ULE [CDN])
THEN ASM_REWRITE_TAC[] ;
~ - - I . 2 - - Z
REWKITE_TAC [D_comOK_ADEF]
THEN (CONY_TAC o RAND.COHV o RAND_CONV o ABS.CONV o MK_ABS_CONV) "H:*D"
THEN CONF_TAC THEN BETA.TAC
THEN RULE_ASSUM_TAC BETA.RULE
THEN RULE_ASSUM_TAC (REWRITE.RULE [DA2.DEF])
THEN UNDISCH_ALL_TAC THEN REPEAT STRIP.TAC THEN RES_TAC
THEN IMP_RES_TAC fla~Uprogs_INSERT.DELETE
THEN POP.ASSUM SUBSTI.TAC
THEH MATCH.MP_TAC CONF_PAR THEN DISJI_TAC
THEN RULE_ASSUM_TAC (REWRITE_RULE [CflN])
THEN ASM.~EWEITE TAC[]] ;

X-- 2 --X
MATCH.MP.TAC D.Round_Decom2 THEN CONJ_TAC THENL
[~-- 2.1 --Z
MATCH_MP.TAC D.s THEN ASM.REWKITE.TAC[]
THEN REPEAT STRIP.TAC THEN RES_TAC
THEN IMP.RES_TAC flazUprogs_INSERT.DELETE

THEN PHP_ASSUM SUBSTI_TAC
THEN MATCH_MP.TAC D_Kound.Decom5
THEH REPEAT STRIP_TAC THENL

[X-- 4sg --X
FIRST_ASSUM MATCH.MP_TAC THEN ASM_REWKITE_TAC[] ;
ASM_CASES.TAC "Pset DELETE ((gP (B:*Dom) (b:*Node)):'AD_Uprog) = {}"
THENL [ASM.REWRITE_TAC [flatUprogs_EMPTY]; ALL.TAC]
THEN DISJI_TAC THEN MATCH.MP_TAC fla~Uprogs_UNITY
THEN ASM_REWRITE_TAC [IN_DELETE; FINITE.DELETE]
THEN REPEAT STKIP_TAC THEN KES_TAC ;
INP.RES.TAC flazUprogs.INSERT.DELETE
THEN POP_ASSUH (SUBSTI_TAC o SYM) THEN RES_TAC ;

ASH.REWRITE.TAC[]] ;
Z--2.2--~
MATCH_MP.TAC D.Round.Decom4
THEN ASM_REWRITE_TAC[] THEN REPEAT STEIP_TAC THENL
[~-- 4sg --~
MATCH.MP_TAC flatUprogs_UNITY THEN ASM_REWRITE_TAC[]
THEN REPEAT STRIP.TAC
THEN UNDISCH.ALL.TAC THEN REWRITE_TAC [SYM (SPEC_ALL MEMBER HOT_EHPTY)]
THEN REPEAT STRIP.TAC THEN RES_TAC THEN RES_TAC
o.. <deleted> ,,.

]]) ;;

F i g . 4. A s a m p l e code of t he ver i f icat ion of HDP.

415

that each node-level computaion will bring the system closer to its final goal.
This is very general condition, and also implies self-stabilization on ordinary
networks, and hence it defines a class of self-stabilization which can safely be
lifted to work on hierarchical networks.

References

[AB89a]

[AB89b]

[AGg0]

[Aro92]

[BYC88]

[CM88]

[CYHgl]

[GMOS]

[Her91]

[LenO3]

[LS93]

[MP92]

[Pra94a]

[PraO4b]

[Pra95]

Y. Afek and GIM. Brown. Self-stabilization of the alternating-bit protocol.
In Proceeding of the IEEE 8th Symposium on Reliable Distributed Systems,
pages 80-83, 1989.
Y. Afek and G.M. Brown. Self-stabilization of the alternating-bit protocol.
In IEEE 8th Symposiom on Reliable Distributed Systems, October 1989.
A. Arora and M.G. Gouda. Distributed reset. In Proceedings of the lOth
Conference on Foundation of Software Technology and Theoretical Computer
Science, 1990. Also in Lecture Notes on Computer Science vol. 472.
A. Arora. A foundation/or fault-tolerant computing. PhD thesis, Dept. of
Comp. Science, Univ. of Texas at Austin, 1992.
F. Bastani, I. Yen, and I. Chen. A class of inherently fault tolerant dis-
tributed programs. IEEE Transactions on Software Engineering, 14(1):1432-
1442, 1988.
K.M. Chandy and J. Misra. Parallel Program Design - A Foundation.
Addison-Wesley Publishing Company, Inc., 1988.
N.S. Chen, H.P. Yu, and S.T. Huang. A self-stabilizing algorithm for con-

structing spanning trees. Information Processing Letters, 39(3):147-151,
1991.
Mike J.C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge
University Press, 1993.
Ted Herman. Adaptivity through Distributed Convergence. PhD thesis, Uni-
versity of Texas at Austin, 1991.
P.J.A. Lentfert. Distributed Hierarchical Algorithms. PhD thesis, Utrecht
University, April 1993.
P.S.A. Lentfert and S.D. Swierstra. Towards the formal design of self-
stabilizing distributed algorithms. In P. Enjalbert, A. Finkel, and K.W. Wag-
ner, editors, STAGS 93, Proceedings of the lOth Annual Symposium on Theo-
retical Aspects o/Computer Science, pages 440-451. Springer-Verlag, Febru-
ary 1993.
Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems--Specification. Springer Verlag, 1992.
I.S.W.B. Prasetya. A formal approach to design self-stabilizing programs.
In E. Backer, editor, Proceeding of Computing Science in the Netherlands 9~,
pages 241-252. SION, Stichting Matematisch Centrum, 1994.
I.S.W.B. Prasetya. Towards a mechanically supported and compositional
calculus to design distributed algorithms. In T.F. Melham and J. Camilleri,
editors, Lecture Notes in Computer Science 859: Higher Order Theorem Prov-
ing and Its Application, pages 362-377. Springer-Verlag, 1994.
I.S.W.B. Prasetya. Mechanically Supported Design of Self-stabilizing Algo-
rithms. PhD thesis, Dept. of Comp. Science, Utrecht University, 1995.

