
The Synthesis of Knowledge Engineering
and Software Engineering

Mildred L G Shaw & Brian R Gaines

Knowledge Science Institute
University of Calgary

Calgary, Alberta, Canada T2N 1N4.

Abstract: The term 'knowledge engineering' was coined in the 1980s to reference
the processes whereby knowledge was elicited from human experts in order to
develop knowledge-based systems. It was seen as reflecting an alternative paradigm
for system engineering in which, for systems which were difficult to analyze in
themselves but were subject to human activities, one modeled the human operators'
skills rather than the system itself. In the 1980s, expert systems development
appeared radically different from conventional systems development, but in the
1990s it is time to re-evaluate the reality and significance of the differences. The
growth of expert systems development coincided with that of high-performance
workstations, improvements in the efficiency of symbolic programming languages,
and the development of graphic user interfaces. Much of what has been attributed to
'expert systems' may be seen as a halo effect of these other technologies. More
fundamentally, the knowledge acquisition community has moved from an 'expertise
transfer' to a 'knowledge modeling' perspective, in which knowledge is seen as not
so much transferred from the expert as built in conjunction with the expert as a
means of emulating his or her skill. This paper develops a modeling framework for
systems engineering that encompasses systems modeling, task modeling, and
knowledge modeling, and allows knowledge engineering and software engineering
to be seen as part of a unified developmental process. This framework is used to
evaluate what novel contributions the 'knowledge engineering' paradigm has made,
and how these impact software engineering.

1 Introduction
Expert systems were seen originally as a development arising out of artificial intelligence
research that offered new possibilities for implementing intelligent, knowledge-based
systems emulating human expertise. They are still presented as a new information
technology that has a major economic role to play in industrial organizations
(Feigenbaum, McCorduck and Nii 1988). However, a major market place for expert
system shells has not materialized, several of the companies offering specialist platforms
and tools have ceased to operate, attendance at artificial intelligence and expert systems
conferences is declining, and the number of expert system products is decreasing. In
addition, deeply reasoned books have appeared arguing that there are significant aspects
of human expertise that cannot be emulated by computers (Dreyfus and Dreyfus 1986).
What is happening? Have expert systems been a dead-end in the evolution of information
systems? Is the expert systems paradigm of any long-term significance?

This paper provides a framework for knowledge engineering and software engineering
that views them as components of an overall systems engineering methodology for
information systems development. Knowledge engineering for expert system
development is shown to involve a definite paradigm shift, but one that has become

209

embedded in many other trends in the 1980s that are part of the evolution of information
systems in general rather than expert systems in particular. Our overall answer to the
questions above is that the experience gained and techniques created in developing expert
systems is becoming absorbed into modern information systems design, and that the term
'knowledge-based system' is not the name of a new technology but rather an appropriate
term for the current and coming states of modern advanced information systems.

2 The Expert Systems Paradigm
What was presented originally as the distinguishing feature of expert systems is that they
model the expertise of human experts as practical reasoners achieving objectives by
actions in some domain. This can be seen as a significant alternative paradigm for system
development when, for some reason, a usable model of the domain is not available
(Gaines and Shaw 1985). We can then model the control strategy of the human expert.

Figure 1 illustrates this in more detail. The classical approach in decision and control
system design is the instrumentation, data collection, modeling and optimization sequence
shown on the left:

�9 Knowledge of past case histories is used to select a class of system models

�9 The information required to discriminate within this class determines how the system
should be instrumented for data acquisition

�9 Data is collected from the system through the instrumentation

�9 A model is identified from the model class which best fits the data

�9 This model is used to design a decision or control system for optimal performance

This approach to system design underlies the methodologies of the physical sciences and
technologies based on them. It has the merit that it has been extremely successful in
engineering much of the technological infrastructure of our current society including our
manufacturing industries. However, this approach is successful only to the extent that the
systems under consideration are amenable to instrumentation and modeling. Its greatest
successes have been where this amenability can be achieved normatively, that is in cases
where the system to be controlled is itself a human artifact.

The expert systems paradigm may be seen to be particularly applicable when it is not
possible to model the system but there is an alternative source of data available because
human operators are able to performance the decision or control task. The right hand
column shows the use of knowledge sources in the expert system design paradigm:

�9 Structured interviewing may be used to acquire knowledge directly from the operators

�9 Behavior modeling may be used to identify the operators' strategies even if they are
unaware of them or give incorrect ones in interviews

�9 Text analysis may be used with instructional material such as the operators' manuals

�9 Reasoning by analogy may be used based on the case histories without the data
collection of the classical system design paradigm

Note that the classical and expert system design paradigms, and the various acquisition
techniques for expert systems, need not be regarded as competitive. They may all be used
in the system design, and it may be that a collection of heterogeneous subsystems is
necessary because there is no overall algorithm that can be applied.

210

Classical
System
Design

Paradigm
Knowledge

Sources

Expert
System
Design

Paradigm

Case Analogical Select ~ Histories ~ ~ ' Derivation Model Class

Instrument r Operator's ' Text
System 1 ~ (Manual ~ P ' ~ Analysis

Collect k ~ (Human ~ p . ~ Structured
Data = Operator Interviewing

Identify Model) I ~ (System ,) ~ ModelingBehavi~

Decision
or Control
System

Expe~

Fig.1. Classical and expert system design paradigms

There has been a tendency in recent literature to downplay the human expert as a source
of knowledge for expert system design. The use of expert system shells for incremental
system development, and the use of the shells themselves as rapid prototyping tools are
seen as equally important:

"Currently there appear to be two types of knowledge engineers. The first type
designs and implements reasoning systems that closely mimic the cognitive
behavior of the experts. The second, new class of knowledge engineers
organizes and encodes knowledge in forms dictated by expert system shells.
They generally no not have an academic background in artificial intelligence;

211

they often have no programming experience. Whereas the first type of
knowledge engineer is not very common, the latter type of knowledge engineer is
on the rise. It includes experts who build their own systems." (Feigenbaum et al.
1988)

While we do not disagree with this remark or the significance of the phenomenon cited,
we wish to interpret the phenomenon in a different way.

The expert system paradigm became commercially significant in the 1980s at the same
time as major changes were occurring in information technology. The advent of low-cost
personal computers and workstations with graphic user interfaces and that of fourth
generation languages offering evolutionary prototyping capabilities are parallel
developments. Networked access to corporate databases also became common during this
period, as did the object-oriented programming paradigm. Expert system shells did not
invent such technologies but they took full advantage of them to provide visual languages
for heterogeneous system development that, in many cases, were usable directly by
computer literate end-users to encode their own expertise, or that of close associates in
their profession. It is noteworthy that it is the products with closed, specialized 'artificial
intelligence only' architectures that have not survived.

Thus, there has been a strong 'halo effect' in what are often adduced as evidence of
successful expert system developments. Evolutionary prototyping, modular, object-
oriented software development, graphic user interfaces and networked heterogeneous
integration are major trends in the evolution of information technology that happen to
have been mobilized in expert system development, but they are not intrinsic to it, or a
result of it.

3 Expert Systems Encode Practical Reasoning

What then is the significance of the expert system paradigm for modem information
systems? We will argue that it the acceptance of the human practical reasoning
underlying skilled performance as providing a model for a legitimate component of
information systems. The significance of "practical modes of knowing" has long been
recognized in education:

"We define practical knowledge as procedural information that is useful in one's
everyday life. In proposing this definition, we are clearly imposing two critical
restrictions on the domain of knowledge that we are willing to call practical,
namely, that the knowledge be procedural rather than declarative and that the
knowledge be relevant to one's everyday life. We require practical knowledge to
be procedural because of our view that practical knowledge is of and for use.
We view practical knowledge as stored in the form of productions, or condition-
action sequences that implement actions when certain preconditions are met."
(Steinberg and Caruso 1985)

The spirit of what is being said exactly captures that of the origins of expert system
development. We go to experts when we do not have overt domain and problem solving
models, precisely because they are the relevant practical reasoners in the domain, using
their practical knowledge as part of their everyday professional life to achieve the
practical objectives of interest in system development.

212

The emphasis of practicality is a classification of the mode of reasoning involved, not the
domain. A skilled mathematician is a problem solver in a domain that may be highly
theoretical but where his or her problem-solving skills are examples of the practical
reasoning described above. The mathematician's everyday life as a mathematician is
lived in the world of mathematics and he or she develops skilled behavior to navigate and
manipulate that world. Even though we may have highly overt models of the domain they
do not automatically provide us with overt knowledge of the practical problem-solving
skills in that domain.

The reason why a deep model may be of little use in some domains is that restricted
information flows about a particular situation may make it difficult to estimate the
parameters required to use a deep model effectively. In such situations two types of
practical knowledge arise: the first associated with avoiding catastrophic states such as
those that prevent the goals being achieved; and the other with increasing the chances of
the goals being achieved through actions that, due to uncertainties, may not be successful.
Such knowledge tends to appear as a set of isolated and discontinuous condition-action
rules that have little overall coherence in themselves, although they will be consistent with
more coherent overall models of the domain.

It is interesting historically that further rationalizations of production rules were proposed
other than that they are a natural effective representation of skilled behavior. Production
rules were promoted as offering the advantage over normal programming that they were
modular and hence more easily developed and modified. The fact that quite the contrary
is true seems to have taken a long time to disseminate---papers are still appearing warning
of the software engineering problems of system development based on production rules
(Li 1991).

The expert systems paradigm is not to be preferred to classical system design in general.
It is a price we have to pay when more principled design based on deep knowledge is not
possible. Thus, we should not use it unnecessarily. It is to be expected as the expert
systems approach becomes better integrated with conventional system development that
major components of the 'knowledge base' become based on structured models rather
than unstructured production rules. However, we should not assume that this will be
universally possible.

4 Processes in Knowledge Engineering

What these arguments suggest is that we need an overall framework for advanced
information system development that provides for the different roles of different
approaches, and their integration, and shows the relation between knowledge engineering
and software engineering. This is developed in the following section. We first examine
knowledge engineering processes from a modeling perspective.

In the knowledge acquisition community the development of tools for eliciting knowledge
from experts has come to be seen as a 'knowledge modeling' exercise in which human
practical knowledge is modeled within the computer (Gaines, Shaw and Woodward
1992). It has been suggested that a common factor underlying all expert systems is that
they contain qualitative world models, and that we can gain insights into the structure of
knowledge bases and knowledge engineering by classifying the types of models involved

213

(Clancey 1989). These considerations suggest that a classification of the sources and
types of models developed in system engineering may be used to provide a framework
within which knowledge engineering and software engineering methodologies and tools
can be analyzed and compared.

One might view the replication of human expertise in a knowledge-based system as
involving the elicitation of the mental models of the human experts involved (Gentner and
Stevens 1983). However, we do not have direct access to these models, and must create
conceptual models of them through communication with the expert (Norman 1983). The
representations made by the knowledge engineer are not isomorphic to structures in the
mind of the expert (Compton and Jansen 1990). Within this framework, one can view
knowledge engineers, or automated knowledge acquisition systems interacting with the
expert, as accessing and developing the expert's conceptual models. Some parts of these
models may be pre-existent, particularly if the expert has a teaching role, but other parts
will come into being as a result of the knowledge acquisition process.

The distinction that Norman introduces between mental models and conceptual models,
and the dubious status of mental models in themselves, suggests that a useful framework
for the analysis of knowledge engineering may be developed through the analysis of the
sources and types of conceptual model available to the knowledge engineer rather than
focusing only on the mental processes underlying expertise. The situation of the
introspective expert who can communicate his or her 'knowledge' well, may be treated as
one where the 'knowledge engineering' and 'expert' roles are operating effectively
together within the same person. The situation of the expert from whom knowledge is
being 'elicited' actually building a new model on the basis of his or her skills through the
process of elicitation may be treated as one where the conceptual model is developed as
part of the process of knowledge engineering. In adopting the conceptual modeling
perspective we do not exclude previous viewpoints, but rather supplement them with
complementary perspectives.

In the early days of expert systems development, it was assumed that the direct
communication of knowledge between expert and knowledge engineer was the preferred
method. A classic experiment, showed that this was not necessarily so and inductive
behavior modeling, in which the expert is observed in action and his or her activities
modeled, may lead to a better knowledge-based system (Michalski and Chilausky 1980).
This is an example of the expert systems paradigm above, of modeling the expert as
opposed to modeling the system. However, it is rarely a purely behavioral paradigm since
the knowledge engineer may not be able to discriminate the inputs that the expert is using
and will normally rely on verbal reporting by the expert for a description of the inputs and
outputs.

It is customary in expert system development, to assume that the expert has already
constructed such models or may be in a privileged position to do so through self-
observation and introspection, and these may be elicited by direct communication
between knowledge engineer and expert. Additionally, the knowledge engineer may
derive models from other experts, from the literature, and from the application of
principles allowing performance skills to be derived from deep knowledge. The final
knowledge-based system development involves the synthesis of these many models and
the encoding of them to become an operational knowledge-based systems emulating the
desired expertise.

214

Thus, the knowledge engineer, or knowledge engineering team and tools, has access to
multiple sources of data through various channels and uses these to develop a variety of
conceptual models. Figure 2 shows the major conceptual models that may be developed
in knowledge engineering, distinguished by their sources, and indicating some of the
knowledge engineering processes and skills involved. This figure attempts to be
comprehensive, showing knowledge sources not only in association with the expert and
his or her behavior, but also knowledge derived from others, the literature and through the
application of laws and principles.

Figure 2 is an accurate representation of what is typically involved in knowledge
engineering for a knowledge based system development nowadays. It uses any source of
knowledge that is available for system development, not just the practical reasoning of the
expert, and hence exemplifies the "second type" of knowledge engineering cited above
(Feigenbaum et al. 1988). However, it still has a major, and irreducible component of the
first type representing the central expert systems paradigm. What is significant is the way
in which the two approaches are synthesized, and also the way in which many
components of the "second type" of activity are already part of modern systems and
software engineering. This is the basis of a much wider synthesis than that between two
forms of knowledge engineering.

Skills
Knowledge
Engineer

. x, ~ ~--------------~ ~ i M~e.s] i Mo~ i i Mo, e.s from from from
Others Expert Literature

Skills

"Mental
Models" &

'Knowledge"

Modeling ") ~ Synthesis) /" Derivation
Skills Skills \ Skills

OOs~rve, I I ~176 I)f Mo~
System Skill from
Models , Models Principles

Skills
Observation') (Encoding

Skills , Skills

" Problem ~ Expertise T Knowledge- Environment , Based

Fig. 2. Modeling processes in knowledge engineering

215

5 A M o d e l i n g F r a m e w o r k for I n f o r m a t i o n S y s t e m D e v e l o p m e n t

The discussion of the preceding sections and the range of modeling processes shown in
Figure 2 provide an overall framework for systems engineering in terms of the sources
and types of models involved. Within such a framework it should become only a matter
of internal classification and terminology that a method is part of a 'knowledge
engineering' or a 'software engineering' approach, rather than a resultant system
classification.

SYSTEMS AND DATA AND ANALYSIS AND
MODELING KNOWLEDGE SYNTHESIS SCHEMA BASES TECHNIQUES

Figure 3 presents a modeling framework for knowledge acquisition methodologies,
techniques and tools based on the distinctions already discussed and the incorporation of
system analysis and software engineering procedures. In the leftmost column are the
knowledge sources in terms of systems and modeling schema already discussed with the
addition, at the top, of 'objective models' as a term for the formally specified operational
models. In the column to the right of this are the processes giving access to these models.
These processes are shown as mediating between the systems and models involved,
deriving from and generating, the hierarchical relation between the systems and models in
the leftmost column.

ACCESS ACQUISITION
PROCESSES PROCEDURES

Explication H mplementation ~ Knowledge
Procedures Integration

] ~ ~ Knowledge Formalization Modeling
Procedures ~ ~ Techniques Prscisification

Knowledge

H l.~,~r ~ ~ ~ Communication Discourse r~ ~,i Organi~;atiol Procedures ~ Linguistic Analysis
Knowledge

H Introspection Elicitation Induction,
Case-Based Procedures ~ Clustering

Data

H Behavior ~ System Interaction Observation
Procedures Identification

H System ~ Instrumentation Ol:~ervation
Procedures

Fig. 3. A hierarchical framework for knowledge acquisition

In the next column on the right are shown the knowledge acquisition procedures
appropriate to each of the access processes. These generate data and knowledge bases as
shown to their right, which are in one-to-one correspondence with the original systems
and models in the leftmost column. In the rightmost column are shown analysis and
synthesis techniques that draw on these databases to generate the computational
knowledge base, and also mediate between them generating one form of data or

216

knowledge from another. These combine with synthesis techniques that integrate the
results of analysis and of derivations from various knowledge sources to synthesize a
computational knowledge base.

Thus the overall schema consists of five types of component:
1. Systems and modeling schema: the problem environment, performance skill to be

emulated, expert's mental models, knowledge engineer's conceptual models, and,
possibly, objective models.

2. Access processes: instrumentation of the target system, the expert's interaction with it,
his or her introspection about the skill, communication about it, and its expression in
formal terms as objective knowledge.

3. Knowledge acquisition procedures: observation of the target system, observation of the
expert's behavior, elicitation procedures, discourse procedures, formalization
procedures, and implementation procedures.

4. Data and knowledge bases: database of system data; database of behavioral data;
informal knowledge base; formal knowledge base; computational knowledge base;
objective models.

5. Analysis and synthesis procedures: classical system identification can be used to build
system models from observation data; empirical induction and case-based clustering
can be used to build skill models from behavioral data; conceptual organization and
linguistic analysis techniques can be used to build a formal, or structured, knowledge
base from an informal, or intermediate, one; knowledge modeling techniques can be
used to represent the formal knowledge base in computational form; and logical
deduction from laws and principles may be used to provide some knowledge about a
system and this, together with the results of data analyses from various sources needs to
be integrated to form a computational knowledge base.

All the earlier stages of analysis are shown as normally creating data at the next level but
also as potentially creating computational systems in their own right.

Figure 3 illustrates the way in which knowledge engineering as a system design
methodology is sandwiched between two classical approaches to system engineering. At
the bottom of the figure is the path to system design through instrumentation, data
collection and system identification. At the top of the figure is the path to system design
through existing objective knowledge of the physical world allowing explication of
particular requirements to lead directly to implementation. The middle layers represent
the enrichment of the design process when we draw on human skills as exemplars of the
system to be designed. Such a process has been common informally in engineering
design, and knowledge engineering may be seen as formalizing it now that computer
technology makes it feasible to develop knowledge-based systems operationalizing human
expertise.

6 Knowledge Acquisition Issues in Terms of the Framework

This section focuses on some of the major classes of knowledge engineering methods now
in use, and discusses them within the framework developed.

It is clear that a catchall term such as 'interviewing' does not designate a monolithic
technique in terms of the framework of Figure 3. When we interview an expert we may
be operating at any level of the hierarchy and may be supporting any one of the many
processes shown. All that we can say about interviewing in general is that a flow of

217

linguistic information is involved--it is the content of that flow that determines the type
of knowledge engineering involved. The expert may provide observations of the system,
observations of his or her own problem solving behavior, introspection about aspects of
his or her mental models, statements about his or her conceptual models of any aspect of
the situation, and statements of formal or even computational models relating to the
situation.

Specific knowledge acquisition techniques are characterized by their vertical and
horizontal locations within the framework. For example, protocol analysis involves data
collection for the behavior data base through observation of interaction at one level or
elicitation of introspection at the next. The behavior database is then subject to statistical
system identification or to conceptual induction and clustering. The data collection
methodology in protocol analysis may easily slip into the elicitation of not just a protocol
but also an explanatory commentary which belongs in the informal knowledge base and is
subject to linguistic analysis. Thus, applications of protocol analysis may involve
multiple levels and activities that are confusing unless seen as organized within the
framework.

Analytical tools such as induction and clustering algorithms have a well-defined location
in the framework as analysis techniques providing a model creation technology. Their
differentiation comes from what level, or levels, they can accept data, and at what level, or
levels, they create data. A major focus in machine learning research for several years has
been to create models at the knowledge level, conceptual structures rather than rules. To
the extent that all the analytic techniques involved do this, the problem becomes one of
integration of conceptual structures. However, it is more usual to find that the analytic
tools create data or knowledge at different levels and further processing is required before
integration is possible.

Methodologies such as KADS (Akkermans, Harmelen, Shreiber and Wielinga 1992) that
provide a structured software engineering approach to knowledge engineering are focused
at the penultimate level of applying formalization procedures to derive a formal
knowledge base through making conceptual models precise. KADS focuses on the
detailed structure of a formal problem solving architecture within which to operationalize
the results of knowledge acquisition rather than on the processes of knowledge acquisition
themselves. It may be seen as providing a formally specified 'virtual machine' well-
suited to the range of system developments that have come to be classified under the
heading of 'knowledge-based systems.' Less formally, one can say that it provides a
'high-level language' in contrast to the 'machine languages' provided by expert system
shells.

Knowledge acquisition methodologies such as those stemming from personal construct
psychology (Shaw 1980) that are based on a cognitive model of intelligent agents are
focused on the middle levels in Figure 3, modeling the way in which mental models
mediate between conceptual models and performance skills. Clearly any well-founded
cognitive psychology has a potential role to play in knowledge acquisition that is strictly
within the 'expert systems' paradigm of modeling the expert rather than the system.
However, to be useful the psychology must result in operational models on the one hand
and support methodologies giving access to its hidden variables on the other. Personal
construct psychology has been particularly attractive in these respects because, even
though it is a constructivist model, it takes a positivist, axiomatic approach based on a few
well-defined primitives that correspond to a formal intensional logic (Gaines and Shaw

218

1992), and is well-supported by practical tools (Boose and Bradshaw 1987; Shaw and
Gaines 1987; Shaw and Gaines 1989).

The interface between cognition and formalization for people is mediated through
language and knowledge acquisition support is required for the communication and
discourse procedures and analysis level in Figure 3. Current knowledge acquisition tools
addressing this level range from those focusing on the inter-translation of restricted
natural language and knowledge representation frames such as SNOWY (Gomez and
Segami 1990), to those providing support for human classification of natural language
components in terms of knowledge level primitives such as Cognosys (Woodward 1990).
Improved natural language processing must have a very high priority in the support of the
complete range of knowledge acquisition processes in the framework of Figure 3.

Classical system analysis focuses on the collection and analysis of system and behavior
data at the lower levels of Figure 3. In complex system development the other levels play
their part, but the basic assumption has been that the final system design is grounded in
accurate models of the environment in which the system is to operate and in precise
'requirements specifications' corresponding to the top level goals of the human agents
involved. The implementation is quite separate from the system analysis and design
because conventional programming languages do not provide knowledge-level constructs
supporting human understanding of their operation. In this respect, the framework of
Figure 3 may be seen as an extension to classical system analysis appropriate to
knowledge-based systems where very high level languages at the 'knowledge level' are
being used for the implementation to provide this support of human understanding.

7 Conclusions

A complete account of system engineering acquisition for modern advanced information
systems requires the integration of classical system analysis, cognitive modeling of
intelligent agents, linguistic analysis of text and discourse, and a rich formal language at
the knowledge level. This integration would provide us with a system development
methodology adequate to cope with the increased expectations of those specifying
requirements for knowledge-based systems.

However, note that the knowledge level language alone is only a target for specification.
On the one hand it needs to be made operational as computational knowledge. On the
other it needs to maintain an effective ongoing relation with the knowledge processes that
drive it, many of which are those of active human agents forming an essential component
of the ongoing system operation. Knowledge acquisition should not be seen as part of the
system design process only. Knowledge is dynamic and changing, and acquisition,
maintenance and upgrading must merge into one process that is fully supported as an
ongoing system operation. In particular, the cognitive aspects of much of the knowledge
must continue to be recognized and supported in the ongoing system operation.
Formalization cannot be at the expense of human understanding. On the contrary,
effective formalization should lead to enhanced human understanding. This is the greatest
challenge in the development of an effective knowledge-based systems technology. The
objective is not just emulation of isolated human peak performance, but rather the
emulation of the total human ability to develop, adapt and maintain that performance in a
dynamic and uncertain environment.

219

Acknowledgements
Financial assistance for this work has been made available by the Natural Sciences and
Engineering Research Council of Canada. We are particularly grateful to Bill Clancey,
Brian Woodward and other colleagues at the Knowledge Acquisition Workshops for
discussions and critical comments that have improved the framework presented in this
paper.

References
Akkermans, H., Harmelen, F.v., Shreiber, G. and Wielinga, B. (1992). "A formalisation

of knowledge-level models for knowledge acquisition." International Journal of
Intelligent Systems : to appear.

Boose, J.H. and Bradshaw, J.M. (1987). "Expertise transfer and complex problems: using
AQUINAS as a knowledge acquisition workbench for knowledge-based systems."
International Journal of Man-Machine Studies 26: 3-28.

Clancey, W.J. (1989). "Viewing knowledge bases as qualitative models." IEEE Expert
4(2): 9-23.

Compton, P. and Jansen, R. (1990). "A philosophical basis for knowledge acquisition."
Knowledge Acquisition 2(3): 241-258.

Dreyfus, H.L. and Dreyfus, S.E. (1986). Mind over Machine: The Power of Human
Intuition and Expertise in the Era of the Computer. New York, Free Press.

Feigenbaum, E., McCorduck, P. and Nii, H.P. (1988). The Rise of the Expert Company.
New York, Times Books.

Gaines, B.R. and Shaw, M.L.G. (1985). "From fuzzy sets to expert systems." Fuzzy Sets
and Systems 36(1-2): 5-16.

Gaines, B.R. and Shaw, M.L.G. (1992). "Basing knowledge acquisition tools in personal
construct psychology." Knowledge Engineering Review : to appear.

Gaines, B.R., Shaw, M.L.G. and Woodward, J.B. (1992). "Modeling as a framework for
knowledge acquisition methodologies and tools." International Journal of Intelligent
Systems : to appear.

Gentner, D. and Stevens, A., Ed. (1983). Mental Models. Hillsdale, New Jersey, Erlbaum.
Gomez, F. and Segami, C. (1990). "Knowledge acquisition from natural language for

expert systems based on classification problem-solving methods." Knowledge
Acquisition 2(2): 107-128.

Li, X. (1991). "What's so bad about rule-based programming?" IEEE Software : 103-105.
Michalski, R.S. and Chilausky, R.L. (1980). "Knowledge acquisition by encoding expert

rules versus computer induction from examples--A case study involving soyabean
pathology." International Journal of Man-Machine Studies 12: 63-87.

Norman, D.A. (1983). Some observations on mental models. Mental Models. Hillsdale,
New Jersey, Erlbaum. 7-14.

Shaw, M.L.G. (1980). On Becoming A Personal Scientist: Interactive Computer
Elicitation of Personal Models Of The World. London, Academic Press.

Shaw, M.L.G. and Gaines, B.R. (1987). "KITTEN: Knowledge initiation & transfer tools
for experts and novices." International Journal of Man-Machine Studies 27(3): 251-
280.

Shaw, M.L.G. and Gaines, B.R. (1989). "A methodology for recognizing conflict,
correspondence, consensus and contrast in a knowledge acquisition system."
Knowledge Acquisition 1(4): 341-363.

220

Sternberg, R.J. and Caruso, D.R. (1985). Practical modes of knowing. Learning and
Teaching the Ways of Knowing. Chicago, Illinois, University of Chicago Press. 133-
158.

Woodward, B. (1990). "Knowledge engineering at the front-end: defining the domain."
Knowledge Acquisition 2(1): 73-94.

