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Abstract: The term 'knowledge engineering' was coined in the 1980s to reference 
the processes whereby knowledge was elicited from human experts in order to 
develop knowledge-based systems. It was seen as reflecting an alternative paradigm 
for system engineering in which, for systems which were difficult to analyze in 
themselves but were subject to human activities, one modeled the human operators' 
skills rather than the system itself. In the 1980s, expert systems development 
appeared radically different from conventional systems development, but in the 
1990s it is time to re-evaluate the reality and significance of the differences. The 
growth of expert systems development coincided with that of high-performance 
workstations, improvements in the efficiency of symbolic programming languages, 
and the development of graphic user interfaces. Much of what has been attributed to 
'expert systems' may be seen as a halo effect of these other technologies. More 
fundamentally, the knowledge acquisition community has moved from an 'expertise 
transfer' to a 'knowledge modeling' perspective, in which knowledge is seen as not 
so much transferred from the expert as built in conjunction with the expert as a 
means of emulating his or her skill. This paper develops a modeling framework for 
systems engineering that encompasses systems modeling, task modeling, and 
knowledge modeling, and allows knowledge engineering and software engineering 
to be seen as part of a unified developmental process. This framework is used to 
evaluate what novel contributions the 'knowledge engineering' paradigm has made, 
and how these impact software engineering. 

1 Introduction 
Expert systems were seen originally as a development arising out of artificial intelligence 
research that offered new possibilities for implementing intelligent, knowledge-based 
systems emulating human expertise. They are still presented as a new information 
technology that has a major economic role to play in industrial organizations 
(Feigenbaum, McCorduck and Nii 1988). However, a major market place for expert 
system shells has not materialized, several of the companies offering specialist platforms 
and tools have ceased to operate, attendance at artificial intelligence and expert systems 
conferences is declining, and the number of expert system products is decreasing. In 
addition, deeply reasoned books have appeared arguing that there are significant aspects 
of human expertise that cannot be emulated by computers (Dreyfus and Dreyfus 1986). 
What is happening? Have expert systems been a dead-end in the evolution of information 
systems? Is the expert systems paradigm of any long-term significance? 

This paper provides a framework for knowledge engineering and software engineering 
that views them as components of  an overall systems engineering methodology for 
information systems development.  Knowledge engineering for expert system 
development is shown to involve a definite paradigm shift, but one that has become 
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embedded in many other trends in the 1980s that are part of the evolution of information 
systems in general rather than expert systems in particular. Our overall answer to the 
questions above is that the experience gained and techniques created in developing expert 
systems is becoming absorbed into modern information systems design, and that the term 
'knowledge-based system' is not the name of a new technology but rather an appropriate 
term for the current and coming states of modern advanced information systems. 

2 The Expert Systems Paradigm 
What was presented originally as the distinguishing feature of expert systems is that they 
model the expertise of human experts as practical reasoners achieving objectives by 
actions in some domain. This can be seen as a significant alternative paradigm for system 
development when, for some reason, a usable model of the domain is not available 
(Gaines and Shaw 1985). We can then model the control strategy of the human expert. 

Figure 1 illustrates this in more detail. The classical approach in decision and control 
system design is the instrumentation, data collection, modeling and optimization sequence 
shown on the left: 

�9 Knowledge of past case histories is used to select a class of system models 

�9 The information required to discriminate within this class determines how the system 
should be instrumented for data acquisition 

�9 Data is collected from the system through the instrumentation 

�9 A model is identified from the model class which best fits the data 

�9 This model is used to design a decision or control system for optimal performance 

This approach to system design underlies the methodologies of the physical sciences and 
technologies based on them. It has the merit that it has been extremely successful in 
engineering much of the technological infrastructure of our current society including our 
manufacturing industries. However, this approach is successful only to the extent that the 
systems under consideration are amenable to instrumentation and modeling. Its greatest 
successes have been where this amenability can be achieved normatively, that is in cases 
where the system to be controlled is itself a human artifact. 

The expert systems paradigm may be seen to be particularly applicable when it is not 
possible to model the system but there is an alternative source of data available because 
human operators are able to performance the decision or control task. The right hand 
column shows the use of knowledge sources in the expert system design paradigm: 

�9 Structured interviewing may be used to acquire knowledge directly from the operators 

�9 Behavior modeling may be used to identify the operators' strategies even if they are 
unaware of them or give incorrect ones in interviews 

�9 Text analysis may be used with instructional material such as the operators' manuals 

�9 Reasoning by analogy may be used based on the case histories without the data 
collection of the classical system design paradigm 

Note that the classical and expert system design paradigms, and the various acquisition 
techniques for expert systems, need not be regarded as competitive. They may all be used 
in the system design, and it may be that a collection of heterogeneous subsystems is 
necessary because there is no overall algorithm that can be applied. 
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Fig.1. Classical and expert system design paradigms 

There has been a tendency in recent literature to downplay the human expert as a source 
of knowledge for expert system design. The use of expert system shells for incremental 
system development, and the use of the shells themselves as rapid prototyping tools are 
seen as equally important: 

"Currently there appear to be two types of knowledge engineers. The first type 
designs and implements reasoning systems that closely mimic the cognitive 
behavior of the experts. The second, new class of knowledge engineers 
organizes and encodes knowledge in forms dictated by expert system shells. 
They generally no not have an academic background in artificial intelligence; 
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they often have no programming experience. Whereas the first type of 
knowledge engineer is not very common, the latter type of knowledge engineer is 
on the rise. It includes experts who build their own systems." (Feigenbaum et al. 
1988) 

While we do not disagree with this remark or the significance of the phenomenon cited, 
we wish to interpret the phenomenon in a different way. 

The expert system paradigm became commercially significant in the 1980s at the same 
time as major changes were occurring in information technology. The advent of low-cost 
personal computers and workstations with graphic user interfaces and that of fourth 
generation languages offering evolutionary prototyping capabilities are parallel 
developments. Networked access to corporate databases also became common during this 
period, as did the object-oriented programming paradigm. Expert system shells did not 
invent such technologies but they took full advantage of them to provide visual languages 
for heterogeneous system development that, in many cases, were usable directly by 
computer literate end-users to encode their own expertise, or that of close associates in 
their profession. It is noteworthy that it is the products with closed, specialized 'artificial 
intelligence only' architectures that have not survived. 

Thus, there has been a strong 'halo effect' in what are often adduced as evidence of 
successful expert system developments. Evolutionary prototyping, modular, object- 
oriented software development, graphic user interfaces and networked heterogeneous 
integration are major trends in the evolution of information technology that happen to 
have been mobilized in expert system development, but they are not intrinsic to it, or a 
result of it. 

3 Expert Systems Encode Practical Reasoning 

What then is the significance of the expert system paradigm for modem information 
systems? We will argue that it the acceptance of the human practical reasoning 
underlying skilled performance as providing a model for a legitimate component of 
information systems. The significance of "practical modes of knowing" has long been 
recognized in education: 

"We define practical knowledge as procedural information that is useful in one's 
everyday life. In proposing this definition, we are clearly imposing two critical 
restrictions on the domain of knowledge that we are willing to call practical, 
namely, that the knowledge be procedural rather than declarative and that the 
knowledge be relevant to one's everyday life. We require practical knowledge to 
be procedural because of our view that practical knowledge is of and for use. 
We view practical knowledge as stored in the form of productions, or condition- 
action sequences that implement actions when certain preconditions are met." 
(Steinberg and Caruso 1985) 

The spirit of what is being said exactly captures that of the origins of expert system 
development. We go to experts when we do not have overt domain and problem solving 
models, precisely because they are the relevant practical reasoners in the domain, using 
their practical knowledge as part of their everyday professional life to achieve the 
practical objectives of interest in system development. 
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The emphasis of practicality is a classification of the mode of reasoning involved, not the 
domain. A skilled mathematician is a problem solver in a domain that may be highly 
theoretical but where his or her problem-solving skills are examples of the practical 
reasoning described above. The mathematician's everyday life as a mathematician is 
lived in the world of mathematics and he or she develops skilled behavior to navigate and 
manipulate that world. Even though we may have highly overt models of the domain they 
do not automatically provide us with overt knowledge of the practical problem-solving 
skills in that domain. 

The reason why a deep model may be of little use in some domains is that restricted 
information flows about a particular situation may make it difficult to estimate the 
parameters required to use a deep model effectively. In such situations two types of 
practical knowledge arise: the first associated with avoiding catastrophic states such as 
those that prevent the goals being achieved; and the other with increasing the chances of 
the goals being achieved through actions that, due to uncertainties, may not be successful. 
Such knowledge tends to appear as a set of isolated and discontinuous condition-action 
rules that have little overall coherence in themselves, although they will be consistent with 
more coherent overall models of the domain. 

It is interesting historically that further rationalizations of production rules were proposed 
other than that they are a natural effective representation of skilled behavior. Production 
rules were promoted as offering the advantage over normal programming that they were 
modular and hence more easily developed and modified. The fact that quite the contrary 
is true seems to have taken a long time to disseminate---papers are still appearing warning 
of the software engineering problems of system development based on production rules 
(Li 1991). 

The expert systems paradigm is not to be preferred to classical system design in general. 
It is a price we have to pay when more principled design based on deep knowledge is not 
possible. Thus, we should not use it unnecessarily. It is to be expected as the expert 
systems approach becomes better integrated with conventional system development that 
major components of the 'knowledge base' become based on structured models rather 
than unstructured production rules. However, we should not assume that this will be 
universally possible. 

4 Processes in Knowledge Engineering 

What these arguments suggest is that we need an overall framework for advanced 
information system development that provides for the different roles of different 
approaches, and their integration, and shows the relation between knowledge engineering 
and software engineering. This is developed in the following section. We first examine 
knowledge engineering processes from a modeling perspective. 

In the knowledge acquisition community the development of tools for eliciting knowledge 
from experts has come to be seen as a 'knowledge modeling' exercise in which human 
practical knowledge is modeled within the computer (Gaines, Shaw and Woodward 
1992). It has been suggested that a common factor underlying all expert systems is that 
they contain qualitative world models, and that we can gain insights into the structure of 
knowledge bases and knowledge engineering by classifying the types of models involved 
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(Clancey 1989). These considerations suggest that a classification of the sources and 
types of models developed in system engineering may be used to provide a framework 
within which knowledge engineering and software engineering methodologies and tools 
can be analyzed and compared. 

One might view the replication of human expertise in a knowledge-based system as 
involving the elicitation of the mental models of the human experts involved (Gentner and 
Stevens 1983). However, we do not have direct access to these models, and must create 
conceptual models of them through communication with the expert (Norman 1983). The 
representations made by the knowledge engineer are not isomorphic to structures in the 
mind of the expert (Compton and Jansen 1990). Within this framework, one can view 
knowledge engineers, or automated knowledge acquisition systems interacting with the 
expert, as accessing and developing the expert's conceptual models. Some parts of these 
models may be pre-existent, particularly if the expert has a teaching role, but other parts 
will come into being as a result of the knowledge acquisition process. 

The distinction that Norman introduces between mental models and conceptual models, 
and the dubious status of mental models in themselves, suggests that a useful framework 
for the analysis of knowledge engineering may be developed through the analysis of the 
sources and types of conceptual model available to the knowledge engineer rather than 
focusing only on the mental processes underlying expertise. The situation of the 
introspective expert who can communicate his or her 'knowledge' well, may be treated as 
one where the 'knowledge engineering' and 'expert' roles are operating effectively 
together within the same person. The situation of the expert from whom knowledge is 
being 'elicited' actually building a new model on the basis of his or her skills through the 
process of elicitation may be treated as one where the conceptual model is developed as 
part of the process of knowledge engineering. In adopting the conceptual modeling 
perspective we do not exclude previous viewpoints, but rather supplement them with 
complementary perspectives. 

In the early days of expert systems development, it was assumed that the direct 
communication of knowledge between expert and knowledge engineer was the preferred 
method. A classic experiment, showed that this was not necessarily so and inductive 
behavior modeling, in which the expert is observed in action and his or her activities 
modeled, may lead to a better knowledge-based system (Michalski and Chilausky 1980). 
This is an example of the expert systems paradigm above, of modeling the expert as 
opposed to modeling the system. However, it is rarely a purely behavioral paradigm since 
the knowledge engineer may not be able to discriminate the inputs that the expert is using 
and will normally rely on verbal reporting by the expert for a description of the inputs and 
outputs. 

It is customary in expert system development, to assume that the expert has already 
constructed such models or may be in a privileged position to do so through self- 
observation and introspection, and these may be elicited by direct communication 
between knowledge engineer and expert. Additionally, the knowledge engineer may 
derive models from other experts, from the literature, and from the application of 
principles allowing performance skills to be derived from deep knowledge. The final 
knowledge-based system development involves the synthesis of these many models and 
the encoding of them to become an operational knowledge-based systems emulating the 
desired expertise. 
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Thus, the knowledge engineer, or knowledge engineering team and tools, has access to 
multiple sources of data through various channels and uses these to develop a variety of 
conceptual models. Figure 2 shows the major conceptual models that may be developed 
in knowledge engineering, distinguished by their sources, and indicating some of the 
knowledge engineering processes and skills involved. This figure attempts to be 
comprehensive, showing knowledge sources not only in association with the expert and 
his or her behavior, but also knowledge derived from others, the literature and through the 
application of laws and principles. 

Figure 2 is an accurate representation of what is typically involved in knowledge 
engineering for a knowledge based system development nowadays. It uses any source of 
knowledge that is available for system development, not just the practical reasoning of the 
expert, and hence exemplifies the "second type" of knowledge engineering cited above 
(Feigenbaum et al. 1988). However, it still has a major, and irreducible component of the 
first type representing the central expert systems paradigm. What is significant is the way 
in which the two approaches are synthesized, and also the way in which many 
components of the "second type" of activity are already part of modern systems and 
software engineering. This is the basis of a much wider synthesis than that between two 
forms of knowledge engineering. 
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Fig. 2. Modeling processes in knowledge engineering 
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5 A M o d e l i n g  F r a m e w o r k  for  I n f o r m a t i o n  S y s t e m  D e v e l o p m e n t  

The discussion of the preceding sections and the range of modeling processes shown in 
Figure 2 provide an overall framework for systems engineering in terms of the sources 
and types of models involved. Within such a framework it should become only a matter 
of internal classification and terminology that a method is part of a 'knowledge 
engineering' or a 'software engineering' approach, rather than a resultant system 
classification. 

SYSTEMS AND DATA AND ANALYSIS AND 
MODELING KNOWLEDGE SYNTHESIS SCHEMA BASES TECHNIQUES 

Figure 3 presents a modeling framework for knowledge acquisition methodologies, 
techniques and tools based on the distinctions already discussed and the incorporation of 
system analysis and software engineering procedures. In the leftmost column are the 
knowledge sources in terms of systems and modeling schema already discussed with the 
addition, at the top, of 'objective models' as a term for the formally specified operational 
models. In the column to the right of this are the processes giving access to these models. 
These processes are shown as mediating between the systems and models involved, 
deriving from and generating, the hierarchical relation between the systems and models in 
the leftmost column. 

ACCESS ACQUISITION 
PROCESSES PROCEDURES 

Explication H mplementation ~ Knowledge 
Procedures Integration 

] ~  ~ Knowledge Formalization Modeling 
Procedures ~ ~ Techniques Prscisification 

Knowledge 
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Knowledge 

H Introspection Elicitation Induction, 
Case-Based Procedures ~ Clustering 

Data 

H Behavior ~ System Interaction Observation 
Procedures Identification 

H System ~ Instrumentation Ol:~ervation 
Procedures 

Fig. 3. A hierarchical framework for knowledge acquisition 

In the next column on the right are shown the knowledge acquisition procedures 
appropriate to each of the access processes. These generate data and knowledge bases as 
shown to their right, which are in one-to-one correspondence with the original systems 
and models in the leftmost column. In the rightmost column are shown analysis and 
synthesis techniques that draw on these databases to generate the computational 
knowledge base, and also mediate between them generating one form of data or 



216 

knowledge from another. These combine with synthesis techniques that integrate the 
results of analysis and of derivations from various knowledge sources to synthesize a 
computational knowledge base. 

Thus the overall schema consists of five types of component: 
1. Systems and modeling schema: the problem environment, performance skill to be 

emulated, expert's mental models, knowledge engineer's conceptual models, and, 
possibly, objective models. 

2. Access processes: instrumentation of the target system, the expert's interaction with it, 
his or her introspection about the skill, communication about it, and its expression in 
formal terms as objective knowledge. 

3. Knowledge acquisition procedures: observation of the target system, observation of the 
expert's behavior, elicitation procedures, discourse procedures, formalization 
procedures, and implementation procedures. 

4. Data and knowledge bases: database of system data; database of behavioral data; 
informal knowledge base; formal knowledge base; computational knowledge base; 
objective models. 

5. Analysis and synthesis procedures: classical system identification can be used to build 
system models from observation data; empirical induction and case-based clustering 
can be used to build skill models from behavioral data; conceptual organization and 
linguistic analysis techniques can be used to build a formal, or structured, knowledge 
base from an informal, or intermediate, one; knowledge modeling techniques can be 
used to represent the formal knowledge base in computational form; and logical 
deduction from laws and principles may be used to provide some knowledge about a 
system and this, together with the results of data analyses from various sources needs to 
be integrated to form a computational knowledge base. 

All the earlier stages of analysis are shown as normally creating data at the next level but 
also as potentially creating computational systems in their own right. 

Figure 3 illustrates the way in which knowledge engineering as a system design 
methodology is sandwiched between two classical approaches to system engineering. At 
the bottom of the figure is the path to system design through instrumentation, data 
collection and system identification. At the top of the figure is the path to system design 
through existing objective knowledge of the physical world allowing explication of 
particular requirements to lead directly to implementation. The middle layers represent 
the enrichment of the design process when we draw on human skills as exemplars of the 
system to be designed. Such a process has been common informally in engineering 
design, and knowledge engineering may be seen as formalizing it now that computer 
technology makes it feasible to develop knowledge-based systems operationalizing human 
expertise. 

6 Knowledge Acquisition Issues in Terms of the Framework 

This section focuses on some of the major classes of knowledge engineering methods now 
in use, and discusses them within the framework developed. 

It is clear that a catchall term such as 'interviewing' does not designate a monolithic 
technique in terms of the framework of Figure 3. When we interview an expert we may 
be operating at any level of the hierarchy and may be supporting any one of the many 
processes shown. All that we can say about interviewing in general is that a flow of 
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linguistic information is involved--it is the content of that flow that determines the type 
of knowledge engineering involved. The expert may provide observations of the system, 
observations of his or her own problem solving behavior, introspection about aspects of 
his or her mental models, statements about his or her conceptual models of any aspect of 
the situation, and statements of formal or even computational models relating to the 
situation. 

Specific knowledge acquisition techniques are characterized by their vertical and 
horizontal locations within the framework. For example, protocol analysis involves data 
collection for the behavior data base through observation of interaction at one level or 
elicitation of introspection at the next. The behavior database is then subject to statistical 
system identification or to conceptual induction and clustering. The data collection 
methodology in protocol analysis may easily slip into the elicitation of not just a protocol 
but also an explanatory commentary which belongs in the informal knowledge base and is 
subject to linguistic analysis. Thus, applications of protocol analysis may involve 
multiple levels and activities that are confusing unless seen as organized within the 
framework. 

Analytical tools such as induction and clustering algorithms have a well-defined location 
in the framework as analysis techniques providing a model creation technology. Their 
differentiation comes from what level, or levels, they can accept data, and at what level, or 
levels, they create data. A major focus in machine learning research for several years has 
been to create models at the knowledge level, conceptual structures rather than rules. To 
the extent that all the analytic techniques involved do this, the problem becomes one of 
integration of conceptual structures. However, it is more usual to find that the analytic 
tools create data or knowledge at different levels and further processing is required before 
integration is possible. 

Methodologies such as KADS (Akkermans, Harmelen, Shreiber and Wielinga 1992) that 
provide a structured software engineering approach to knowledge engineering are focused 
at the penultimate level of applying formalization procedures to derive a formal 
knowledge base through making conceptual models precise. KADS focuses on the 
detailed structure of a formal problem solving architecture within which to operationalize 
the results of knowledge acquisition rather than on the processes of knowledge acquisition 
themselves. It may be seen as providing a formally specified 'virtual machine' well- 
suited to the range of system developments that have come to be classified under the 
heading of 'knowledge-based systems.' Less formally, one can say that it provides a 
'high-level language' in contrast to the 'machine languages' provided by expert system 
shells. 

Knowledge acquisition methodologies such as those stemming from personal construct 
psychology (Shaw 1980) that are based on a cognitive model of intelligent agents are 
focused on the middle levels in Figure 3, modeling the way in which mental models 
mediate between conceptual models and performance skills. Clearly any well-founded 
cognitive psychology has a potential role to play in knowledge acquisition that is strictly 
within the 'expert systems' paradigm of modeling the expert rather than the system. 
However, to be useful the psychology must result in operational models on the one hand 
and support methodologies giving access to its hidden variables on the other. Personal 
construct psychology has been particularly attractive in these respects because, even 
though it is a constructivist model, it takes a positivist, axiomatic approach based on a few 
well-defined primitives that correspond to a formal intensional logic (Gaines and Shaw 
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1992), and is well-supported by practical tools (Boose and Bradshaw 1987; Shaw and 
Gaines 1987; Shaw and Gaines 1989). 

The interface between cognition and formalization for people is mediated through 
language and knowledge acquisition support is required for the communication and 
discourse procedures and analysis level in Figure 3. Current knowledge acquisition tools 
addressing this level range from those focusing on the inter-translation of restricted 
natural language and knowledge representation frames such as SNOWY (Gomez and 
Segami 1990), to those providing support for human classification of natural language 
components in terms of knowledge level primitives such as Cognosys (Woodward 1990). 
Improved natural language processing must have a very high priority in the support of the 
complete range of knowledge acquisition processes in the framework of Figure 3. 

Classical system analysis focuses on the collection and analysis of system and behavior 
data at the lower levels of Figure 3. In complex system development the other levels play 
their part, but the basic assumption has been that the final system design is grounded in 
accurate models of the environment in which the system is to operate and in precise 
'requirements specifications' corresponding to the top level goals of the human agents 
involved. The implementation is quite separate from the system analysis and design 
because conventional programming languages do not provide knowledge-level constructs 
supporting human understanding of their operation. In this respect, the framework of 
Figure 3 may be seen as an extension to classical system analysis appropriate to 
knowledge-based systems where very high level languages at the 'knowledge level' are 
being used for the implementation to provide this support of human understanding. 

7 Conclusions 

A complete account of system engineering acquisition for modern advanced information 
systems requires the integration of classical system analysis, cognitive modeling of 
intelligent agents, linguistic analysis of text and discourse, and a rich formal language at 
the knowledge level. This integration would provide us with a system development 
methodology adequate to cope with the increased expectations of those specifying 
requirements for knowledge-based systems. 

However, note that the knowledge level language alone is only a target for specification. 
On the one hand it needs to be made operational as computational knowledge. On the 
other it needs to maintain an effective ongoing relation with the knowledge processes that 
drive it, many of which are those of active human agents forming an essential component 
of the ongoing system operation. Knowledge acquisition should not be seen as part of the 
system design process only. Knowledge is dynamic and changing, and acquisition, 
maintenance and upgrading must merge into one process that is fully supported as an 
ongoing system operation. In particular, the cognitive aspects of much of the knowledge 
must continue to be recognized and supported in the ongoing system operation. 
Formalization cannot be at the expense of human understanding. On the contrary, 
effective formalization should lead to enhanced human understanding. This is the greatest 
challenge in the development of an effective knowledge-based systems technology. The 
objective is not just emulation of isolated human peak performance, but rather the 
emulation of the total human ability to develop, adapt and maintain that performance in a 
dynamic and uncertain environment. 
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