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Abs t rac t .  A novel unsupervised multispectral texture segmentation al- 
gorithm is introduced. The textured image segmentation is based on a 
causal adaptive regression model prediction for detecting different types 
of texture segments which are present at the image. Texture segments 
axe detected in four mutually perpendicular directions in the image lat- 
tice. Every monospectral component is checked separately and single 
monospectral results are combined together. The predictor in each direc- 
tion uses identical contextual information from the pixel's neighbourhood 
and can be evaluated using a robust recursive algorithm. The method 
suggested can be successfully applied also to other unsupervised image 
segmentation applications, e.g. range image segmentation, edge detec- 
tion, etc. 

K e y w o r d s ;  Texture segmentation. 

1 I n t r o d u c t i o n  

Segmentation is a fundamental  process affecting the overall performance of a 
machine vision system and texture is the important  characteristics which exist 
in many natural  images and so it plays an important  role in both human and 
machine perception. Texture segmentation is a significant part  of autonomous 
navigation systems, automatic  inspection and quality control, virtual reality sys- 
tems, etc. and as such it has been an active research area for past twenty years. 
Segmentation of a textured image should partion this image into meaningful 
patches representing different types of textures present at the visual scene. Usual 
approach is to assume knowledge of possible textures present in the scene, i.e. 
supervised segmentation. Our task is complicated by assuming none of such a 
prior knowledge. Besides its pr imary segmentation functionality an optimal seg- 
mentation algorithm should be also stable, accurate and numerically efficient. 

There are many segmentation algorithms published in computer vision lit- 
erature and a number of good survey articles [4],[6] is available. However the 
mutual  comparison of segmentation algorithms is very difficult because of lack 
of sound experimental evaluation results together with available experimental 
data. The common approaches to solve the textured image segmentation prob- 
lem are region growing based algorithms where single regions are formed by 
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iteratively growing from seed regions, split-and-merge [5], clustering, and edge 
based techniques. Region growing and split-and-merge algorithms present the 
problem that they have to deal with different threshold values that are difficult 
to obtain and depend on an application. Clustering algorithms suffer usuMly 
Iess influence from this kind of problem, although other problems exist. Current 
segmentation algorithms most often miss small regions, detect false regions or 
suffer with over or under segmentation. 

The present paper is organised as follows. In Section 2, a proposed method 
general concept under a Bayesian framework is introduced. Sections 3 and 4 
complete the algorithm with an optimal model selection rule design and the 
voting criterion, respectively. The Section 5 deals with numerical realisation 
problems while Section 6 contains evaluation results obtained on a texture data 
test set. 

2 Causal Monospectral  Texture Model 

We assume that spatial correlation characterising a region texture can be ap- 
proximated by a spatial causal regression model. Unfortunately there is sel- 
dom preferred direction of dependence in textured images, i.e. texture data have 
usually noncausal dependence. Artificially imposing causal constraint neglects 
part of information present in data but leads to fast recursive algorithms of the 
Kalman-Bucy type what is the desired property in efficient segmentation applica- 
tions. The regression model exploits high spatial correlation between neighbours 
of a modelled texture pixel. We neglect mutual spectral correlation and model 
each monospectral texture component independently. Although the recursive re- 
gression model can be easily generalized into the full 3D multispectral model, 
the chosen 2D simplification significantly reduces number of parameters to be 
estimated. We assume mono-spectral pixeIs to be modelled as: 

= PT'Z, + E, (1) 

where p T  = [a l , . . . ,  az] is the 1 ×/3 unknown parameter vector ,8 = e a r d I t  . 

We denote the fl × 1 data vector 

z ,  = : v i e  I d  r (2) 

with a multi-index t = (m, n, d) ; Y~ is a predicted mono-spectral pixel value, 
m is the row number, n the column number, d (d > 1) denotes the number of 
spectral bands, E t  is the white noise component. I t  is some neighbour index 
shift set such as the contextual neighbourhood is causal. 

Note that although the model predicts a mono-spectral pixel component, 
the model can still use information from all other spectral bands in the case 
of a colour (multi-spectral) image (d > 1). If the segmented textured image is 
monospectral then d = 1. 

Let us choose a direction of movement on the image plane e.g. t - 1 = 
( m , n  - 1 , d ) , t  - 2 = ( m , n  - 2, d),. . . .  The white noise component E t  has 
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zero mean and constant but unknown dispersion /2. We assume that the prob- 
ability density of Et has a normal distribution independent of previous data 
and is the same for every time t. The task consists in finding the conditional 
prediction density p(Yt[Y(t-i)) given the known process history y(t-1) = 
{Yt-Q Yt -2 , . . . ,  Y1, Zt, Z t - 1 , . . . ,  Z1} and taking its conditional mean estima- 
tion Y for the predicted data. If a prediction error is greater than an adaptive 
threshold the algorithm assumes crossing a border between two different texture 
regions. The conditional mean estimator was chosen as the predictor, because of 
its optimal properties ([1]): 

- E[Yt I¥  (*-O] (3) 

Assuming normality of the white noise component Et, conditional indepen- 
dence between pixels and an a priori probability density for the unknown model 
parameters chosen in the form (this normal form of a priori probability results 
in analytically manageable form of a posterior probability density) 

p(p, $2-1[y(°)) = (2~-)- 2"~ If21 2 exp 

where V0 is a positive definite (fl + 1) * (/3 + 1) matrix and 
have shown ([3]) that the conditional mean value is: 

The following notation is used in (4) and (5): 

/5_ I - i  14.. = V/~(~_i) ~y(~-l) , 

(4) 
7(0) > d , we 

(5) 

(6) 

= + v0 , (7) 

l ~ ~T 

~-- Vzy(t-1) l~rzz (t- 1) 7 (8) 

It is easy to check (see [3]) also the validity of recursive (9). We assume 
slowly changing parameters, consequently these equations were modified using 
a constant exponential "forgetting factor" a to allow parameter adaptation. 

& A_~ + (a~ + Z~ '~-1 Z ~ - l V  -1 ~ y ~  ~T Z ~ = ~ ( , - 1 )  ~1 ~ ( t _ l ) ~ * ~  * - , - 1  t j  ( 9 )  

If the prediction error is larger than the adaptive threshold 

1 z 
I~ - Y*I > 7 E I~-~ - ~ - ~ l  (10) 

i=l 
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then the pixel t is classified to a different texture class than its predecessor, i.e 
wt :/: a~t-1 and the region border indicator Ct is set to 1. Otherwise both pixels 
share the same texture class cot = cot-1 and Ct = 0. The adaptive threshold is 
proportional to the local mean prediction error estimation. 

3 Optimal Model Selection 

The remaining problem is how to select an optimal contextual support set of the 
model (It). This can be done using the Bayesian theory. The following results 
can be either used to find an globally optimal model for the whole image before 
the segmentation step or to select a locally optimal model from a set of mutually 
competing models for each image lattice index during the segmentation process. 

Let us assume several causal regression models (1) Mi with the number of 
unknown parameters. (¢?i) and neighbour index shift sets It,i • The models 
may differ also in their forgetting factors c~i. According to the Bayesian theory, 
the optimal decision rule for minimizing the average probability of decision error 
chooses the maximum a posterior probability model, i.e. a model whose condi- 
tional probability given the past data is the highest one. The predictor used in 
the presented algorithm can be therefore completed for as in (11): 

Yt = -Pf, t_lZj, t  if p(Mj ly ( t -1 )  ) = max{p(Mi lY  (t- l))  (11) 

where Zj,t is a data  vector corresponding to the selected model. Following 
the Bayesian framework used in our paper and choosing uniform a priori model 
in the absence of contrary information, p(M~IY(t-z))  ~ p(Y(t-~)lMd, the 
simultaneous conditional probability density can be evaluated from 

p(y( t -1 ) lMi  ) = / / p ( Y ( t - 1 ) l P ,  f2-1)p(P,~2-1tMi)dPdX?-I  (12) 

Under the already assumed conditional pixel independence, the analytical solu- 
tion has the form 

p (M i lY  (t-~)) = k r (7,(0)~#,+2) IV/'z~(t-1)l-~ Ai, t-1 ~ , (13) 

where k is a common constant. All statistics related to a model Mi (7)-(9), (13) 
are computed using the exponential forgetting constant cti if the models differ 
also in their adaptation speed. The solution of (13) uses the following notations: 

"fi(t) = a~7~(t - 1) + 1 , (14) 

~ T  V -1  ~ . (15) Ai,t-~ = ~ , y y ( t - z ) -  i ,~y(~- l )  i ,~z( t_1)v~,~( t -z )  

The determinant IVi,zz(t)l as well as Ai,t can be evaluated recursively ([3]): 
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z T  17-1 ,7 "~ IV~,.(,)l = Iv~,**(,-l)l ~ '  (1+  i , , v i , ~ , ( t _ l F ,  i , t j  , 

)%t Ai,t-1 a~ (1 + (Yt ~T T = - P i , t _ l Z i , t )  

Z T ~/[-i Z ~-i~ /~--1 (Yt - -  / ) / : t _ l Z i , , ) ( ~ / 2  -F i,~: i ,zz(t--1) i , t )  } i,t--1 

(16) 

(17) 

4 B o r d e r  D e t e c t i o n  

A pixel to be identified as a region border pixel is required to be confirmed in 
at least two different modelling directions in the same spectral band, i.e. 

w,~,, = { ® ® otherwiseif maxt=(m,m.){~={t,~,~-,-~} e t ' }  -> 2 

where ® denotes the border class indicator and Q is the common indicator fbr 
texture classes present in the scene. 

5 N u m e r i c a l  R e a l i z a t i o n  

The predictors in (11) can be evaluated using updating of matrices E,t (7) and 
their following inversion. Another possibility is the direct updating of T'i,t (9). 
To ensure the numerical stability of the solution, it is advantageous to calculate 
/Si,t (9) using a square-root filter, which guarantees the positivity of matrix (7). 
The filter updates directly the Cholesky factor of matrices V/~ 1 . 

Alternatively it is possible to use the UDU filter (a factorization into two 
triangular and one diagonal matrices) for this purpose. Initialisation of recursive 
(9) and (17) must keep the condition of positive definiteness of matrices E,0 
(4). We implemented in our algorithm the uniform a priori start ~,0 = I . 
This solution not only conforms with the initial lack of information at the start 
of algorithm, but also simplifies the calculation of the integral (12). Another 
possibility could be for example a local condition start, which ensures a quicker 
adaptation. 

6 R e s u l t s  

In this section we present segmentation results of the proposed method. Our 
goal was to properly detect single homogeneous textures present in the im- 
age. The performance criterion checks the texture area detected borders and 
compares them with the ground truth information. A version of our algorithm 
complemented with a region postprocessing step to remove undersegmentation 
introduced by undetected border pixels and noise border pixels will be reported 
elsewhere. The experimental texture mosaic 226 × 226 was created from five nat- 
ural colour textures together with its gray scale alternative for the monospectral 
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Fig. 1. Texture mosaic composed from five different textures and the optimal segmen- 
tation, 
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Fig. 2. Detected texture borders on the single-spectral and the colour image. 

experiment. We have chosen natural textures rather than synthesized (for ex- 
ample using affine Markov random field models) because they are expected to 
be more difficult for the underlying segmentation model. The left image on Fig. 
1 shows the gray scale version of the test image mosaic while the right image on 
Fig. 1 shows the ground truth texture regions borders. The results obtained on 
the gray scale image (Fig. 2 left) and on the colour mosaic (Fig. 2 right) are pre- 
sented on the following images. The multispectral algorithm performs better oll 
four from five mosaic components, however the left upper region has lot of false 
detections. These errors can be diminished with an adequate postprocessing. 
Comparison of texture segmentation to the ground truth is done using the cri- 
teria of probability of finding a correct border pixel 

I~ = c a r d { 7  n 6 }  , P ~  = c a r d { : r  n (X - G) )  
card{G} card{Z} 
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and a probability of wrong border pixel detection where G, T, Z are the ground 
truth set, the segmentation result set, and .the set of all image pixels, respectively. 

The optimal regression model Mi for the test image was found to be: 

M~ 
* 0 * 

where pixels corresponding to the contextual support set It are denoted * and 
the predicted pixel o , respectively. 

Table 1. Segmentation performance criteria 

gray scale test colour test 
method Pc Pw Pc Pu, 
c~ = 0.99 ).93 0 .02  0.98 0.02 
c~ = 0.91 0.96 0.01 0.98 0.02 
c~ = 0.80!0.92 0 .02  0.98 0.03 

Results in Table 1. indicates the method dependence on the exponential for- 
getting factor a for the optimal model and the monospectral data while colour 
version seems to be more robust to the forgetting factor changes. These results 
shows good performance of our method even without additional region postpro- 
cessing step. The method is very fast, Mthough we could not directly compare 
processing times of other unsupervised methods published we can estimate our 
processing time to be comparable to the quickest methods developed for texture 
segmentation. The presented method demonstrates low number of wrongly de- 
tected border pixels in most regions, but in the same time misses some correct 
border pixels. Detected borders are clean and accurately located. 

7 Conclus ion  

We proposed the novel efficient and robust method based on a texture pixels 
prediction modelling. A texture is modelled using an adaptive causal regression 
model. The adaptive predictor uses spatiM correlation from neighbouring data 
what results in improved robustness of the algorithm over rigid schemes, which 
are affected with outliers often present at the boundary of distinct textures. The 
proposed Mgorithm is recursive and therefore numericMly effective. A parMlel 
implementation of the algorithm is straightforward, every image row and column 
can be processed independently by its dedicated processor. The numerical sta- 
bility is guaranteed using the Cholesky factorization of data gathering matrices. 
Usual handicap of segmentation methods is their lot of application dependent 
parameters to be experimentally estimated. Some methods need nearly a dozen 
adjustable parameters. Our method on the other hand requires only a contextuM 
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neighbourhood selection, which can be done using Bayesian statistics derived in 
the paper. The algorithm performance is demonstrated on the test natural tex- 
ture mosaic, however more extensive testing is necessary. The preliminary test 
results of the algorithm are encouraging. The proposed method was always able 
to find all textures borders in our experiments with excellent border localiza- 
tion precision. However some postprocessing (gap filling, noise reduction) is still 
needed. The presented method segments textures independently in each spectral 
band and combines the majority voting results from all bands. An alternative 
can be a multidimensional regressive model with much larger set of parameters. 

The proposed method is fully adaptive, numerically robust and still with 
moderate computation complexity so it can be used in an on-line virtual reality 
acquisition system, robot navigation system or some other image acquisition 
systems. 
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