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A b s t r a c t  :An approximation of the gaussian model for density estimation in high-dimension data 
spaces is presented. The work is mainly motived by the need for a numerically tractable model in 
high dimension data spaces. The characteristic of the model is to restrict to the Principal Component 
of each local covariance matrix with the advantage of still being a probabilistic model. The likeli- 
hood of the local density is studied and an iterative algorithm is next proposed so as to learn the mod- 
el. This latter is an adaptation of the well-known iterative Generalized Hebbian Algorithrn. A com- 
parison is done with related works based on Factorial Analysis. First experiments on handwritten 
digits are also reported. 
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1 Introduction. 
Mixture of gaussians is a welt-known and widely used method for density estinaation, partly 

thanks to its Expectation Maximization (EM) based learning algorithm. However, when dealing with 
high dimension data spaces some diMculties appear due to the sparseness of tile data. Ill that case 
the likelihood of a pattern mostly reduces to the nearest local mixture along with an exponential de- 
crease. Also, the important number of parameters ,nay require high computation time as well a large 
database for learning. Finally, such systems present poor generalization ability and some attempts 
have been proposed in order to improve it for example by adding a term of regutarization [ 12]. On 
the other hand, a convenient method to reduce space dimension is the Principal Component Analysis 
(PCA). For example in the Karhunen-Loeve Transform (KLT), data are projected onto the principal 
eigenvectors subspace and it is a well known result that this projection is optimal in term of the dis- 
tance between a pattern and its projection, also called reconstruction error.The earlier methods ['or 
PCA were generally used in a batch context and more recently, especially in the field of neural net- 
works, various iterative methods have been proposed [9], [11], [13]. From a practical viewpoint 
these algorithms are considered as efficient and useful in the case of a data evolving context. 

We have presented recently the basic ideas for a combination of Mixture and PCA [ 81. We called 
the model M-PCG which stands lbr Mixtures of Principal Components Gaussians. In fact, if the 
problem of dimensionality reduction in the framework of mixture models have yet been addressed 
by several authors [4],[6], we have not found, except a parallel work [ 15] with a Factorial Analysis 
(FA) approach, any example of the association of the mixture model and PCA in a fully statistical 
context. Our objective is this paper is thus to detail this model and its recent evolutions, to compare 
it with parallel works on FA, and also to illustrate its interest with an example of classifying hand- 
written digits. 

The ltl;.lill fealul'e of the preselttcd model is tlmt in spite of the restriction to a few components i.e. 
to a few directions in the data space, it remains a statistical model expressed by a true probabilistic 
local density which can be included in the general statistical modelling of the problem to solve. Ba- 
sically, thanks to this probabilistic expression, the local restriction to the principal components re- 
mains directly comparable to others local components restriction in different directions.This com- 
parison is facilitated by the use of a global parameter which also offers a mean to regularize the 
mixture. 

More formally, we will show, that tinder some conditions this local probability density is justified 
in term of Maximum Likelihood Estimation (MLE). Once this proof established, a classical and con- 
vergent training method for the M-PCG model could be based on the EM algorithm [1],[161 with at 
each step a complete extraction of the principal eigenvectors. In practice, this solution is not appeal- 
ing because the computing of the principal components at each step might be time consuming and 
not adapted to a data evolving environment or incremental use of the model in the sense proposed in 
[ 10]. We thus propose, without proof of convergence, to use an iterative method tbr principal com- 
ponents extraction. 

Combined with attractive properties in term of computation lime, the model thus presents many 
applications such as data compression, density estimation and statistical classification. Our field of 
interest is the handwritten recognition with handwritten character classification but also the Contin- 
uous Density Hidden Markov Model for handwritten words recognition [7]. Also, several recent 
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works in the field of handwritten character modelling are based on autoencoder networks [4] and we 
will connect these works to our approach. 

The paper is organized as follows. The second chapter presents the statistical model. The chapter 
3 studies the optimality of the model and the chapter 4 considers the training of the model. The sec- 
tion 5 establishes links of our model with recent works.The section 6 reports the application of the 
model to a task of character classification. The final chapter presents the conclusion and some per- 
spectives. 

2 The M-PCG Model. 

Given a point x ~ R a , the mixture is a weighted sum of local densities: 
M M 

P(xIO) = 2 Ctjg(xlOJ ) with Z etj = 1 
j = l  j = l  

In the M-PCG model, the local density g(xl0i)  corresponds to a classical multi-dimensional gaus- 
sian with the restriction of the lowest eigenvalues to a default width parameter 02. By decomposing 
the local covariance matrix among its eigenvectors this local probability can be expressed by: 

i '" '; 
g(xlOj) = e x d 

k = |  k=P+l 
where u~ is the centre of the local density. The sets {k~l ..... ~'id} and { Vii ..... V m} are the sets of 
respecti',)ely eigenvalues and eigenvectors of the local'covaria'rice matrix E j ,  ord6red by ~')v -< ~'j, 
if l _< u .<.< v _< d. P is the selected number of principal eigenvalues.The model remains ttius very 
close to the classical multi-dimensional gaussian model. In particular the M-PCG model still works 
in all the directions of the data space and the function g(xlOj) is well stochastic. 
If we note x~ the projection of the pattern onto the local P-dimensional principal eigen-subspace we 
interpret he first term as a local deformation term which takes into account the weighted distance 
between the local centre and this point. We can also write: 

a 
T 2 p 2  

2 ((X-Uj) Vjk ) = d(x, xj) 
k = P + l  

and then the second term is an orthogonal term which depends on the distance between the pattern 
and its projection x~. We can remark that the distance in the orthogonal term is nothing but the cost 
of reconstruction o f  the Karhunen-Loeve Translbrm. The essential difference between this latter and 
our model is thus the use of the deformation term and the inclusion of the cost in a probabilistic mod- 
el. An analogue remark can be done if we compare our model with the Constrained Rank Gaussian 
Mixture Bayes classifier introduced in [6] which this time uses only the deformation term but not the 
orthogonal term. 

A last formulation can also be considered with: 
P 

T 2 
d(x, xP) z = d(x, u ) )2-d(x  p, u j) 2 = d(x, uj) z -  y ,  ( ( x - u  j) Vjk) 

k = l  

which gives: 

/ ) 1 1 1 T 2 °xp.2 o2 exp ( )((x_.,) v#) 
-- ~ = ,  J 

X p 

= ( H 
k = !  

This expression of the local density shows that we do not need to know all the eigenvalues for com- 
puting the local density. Only the P scalar products and the distance to the local centre are required. 

In this work, we have chosen an unique width parameter a for tile orthogonal density as well as 
an unique parameter P for the number of principal components estimation. With this rule, the nor- 
malization term l / ( 2 ~ o )  d -e  can be factorized among all the units, avoiding thus the reduction of 
the estimation to the most likely centre i.e. to a Winner Take All scheme. We do believe that this is 
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an important aspect of high dimensional density estimation especially when separately built mix- 
tures must  be compared. Finally, since the number  of  components  as well as the number  of  mixtures 
are not learned during the training process, we have for the model the following parameters: 

O = L.) {uj, a 2 VjL . . . .  , Vje ,~. j l , . . . , ;~je}w{cr} 
j = t  

3 Maximum Likelihood Estimation. 

In this section, we show that the local density model PCG is optimal in the sense of  the likelihood 
estimation. Note that, as a global parameter, a is fixed in this step. The demonstrat ion is based on 
classical results of  eigenvalues analysis but to our knowledge have not yet been published. Given a 

oint w e  R a and an orthonormal basis {W~, .... W e} of  vectors of  a P-d imens ional  subspace 
and given a set {~t . . . .  , I.tp} of  positive numbers,  we write the local density as: 

2 ( 2  ) \ k = l  
= X ' p 

k = l  

Given a data set X = {x l, x 2 . . . .  , x N } c R, I, tim likelihood of  the model is: 

L(OIX ) = ~ In(s(xilO)) = - N ( ( a -  e)ln((~ 2) + ln(2H)) 
t=1  

N P P N 

- d ( x # w )  - 2  ~ l n ( g k ) - 2  - ( ( x i - w )  Wk) 
i=1  k = l  k = |  o i = 1  

We have to show that the likelihood is maximized when the sets{ W l . . . . .  W e} and {It I . . . . .  tap} 
correspond to the sets{ V . . . . .  Vp} and {X l . . . .  , Ze} of  the principal eigenvectors and associated ei- 

n . . . . .  ge values. The denvaUon with respect to the centre of  the mixture Is nearly the same than in the case 
of the mult idimensional  gaussians mixture and leads to a maximum at the mass centre u of the data. 
On the other hand, since the euclidean distance is independent of  the orthonormal basis used, the de- 
pendence of  the likelihood to the vectors { W1, ..., Wt,} is only through the last term of  the above 
formula. Moreover  we have: 

( ( x ~ - u ) r w k )  2 = Wk r ( x i - u ) ( x ~ - u )  W k = N x  wkrzw~ 

i =  1 " . i=  1 

where 2; is the covariance matrix. The analysis of  the optimality is thus very close to Ihe analysis 
for the case of  the reconstruction error in the KLT expansion with the same orthonormality con- 
straints, For example in [2], these constraints are first introduced in the term to maximize through 
Lagrange multipliers so as to produce the necessary condit ion for the subspace S to be invariant by 
the covariance matrix. Next, it is classically shown by considering the restricted local covariance ma- 
trix that this subspace is an eigen-subspace, Ihat is a subspace generated by a subset Ut. , 7"  Ub, 
1 < l~g P Vk = I, .  ...... P of  the eigenvectors of the covariance matrix. This demonstrat ioh ~mme- 

2 diate'ly transposes to our case under the hypothesis P-k ~ a , Vk = 1 . . . . . . . .  P . We can now write: 
P wkl ~ = Wul k Vk = l , .  . . . . .  , P  Vu = 1,. . . . . .  , P  

W k = ~ WkluUl ~ P P 2 2 
. = l ~ w~t. = Y.w.t, = 1 W, = l ........ P 

k = l  k = l  

The next necessary condition concerns the parameter tt k Vk = I , .  ..... , P : 
P 

O-~kL(elX) = 0 ~ rt k = WJZW k = ~, ~.~w~t" 
u = l  

Thus i f  W k is an eigenvector, ~k is well the associated eigenvalue. For a given S ,  the maximization 
of  the likelihood is now equivalent  to the maximization of: 

N ~: t l w[ZW~ N N : 

k = l  \ u = l  j 2 ~  k = l t = l  
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The third term is the trace of the local restricted covariance matrix which is easily shown to be in- 
variant to the choice of the orthonormal basis { W I . . . . .  W e } of S .  For the second term, the convexity 
of the logarithm function gives: 

- In < -  ( = - w t = - 
k = l  " . u = l  J k = l u = l  u = l  \ k = l  ." u = l  

This last value being precisely obtained when the set { W l ... . .  W e} is the set of the eigenvectors. 
Therefore, for a given eigen-subspace S the opti,nal value is reached with the eigenvectors basis of 
S and its associated eigenvalues set. 

The final point of the demonstration concerns the choice of the eigen-subspace itself. For each 
choice of S and for a given value of ~ the maximization of the likelihood is thus equivalent to the 
maximization of: 

It is easy to show that the function: 

f o ( x )  = ~ - In(x) 

• 2 
is decreasing for x < cf 2 and increasing for x > r~ 2 . So, If we suppose that a < ;~e and if we impose 
to the local density model the condition: 

2 
Ftk > rJ Vk ,  k = 1 . . . .  , P 

The maximum of the sum of terms within the increasing interval of the function will be reached with 
the set of the P highest eigenvalues and eigenvectors. 

Thus, under the condition for the square of the width parameter to be smaller than the P-th high- 
est eigenvalue of the covariance matrix, The model is optimal in term of maximum likelihood among 
the subspaces generated by the eigenvectors with eigenvalue greater than r~ 2 . In particular if er ~ 0, 
the model might become optimal among all the data space. 

4 T r a i n i n g  o f  t h e  M i x t u r e .  

4 .1  S t a n d a r d  E M  A l g o r i t h m .  

Once proved the optimality of the P largest eigenvalues for the local density, we now enter the 
framework of the Expectation-Maximization algorithm for the mixture case [ 1], [ 16], The principles 
of the EM iterative algorithm are well known and we only recall here the main characteristics. At 
each time step t given the parameters set e( ' ) ,  The E-step evaluates for each pattern 
x i, i = 1, 2, ..., N of the learning set and each local unit j = 1, 2 .... , M the term: 

M 

-- ' Z lOl 
l = l  

Then the M-step of the algorithm maximizes the expectation of the likelihood: 
N M 

Q(O, Oct)) = Z Z h{O)L(OjIX) 
i = l j = l  

The mixing coefficients and the centres are classically modified by: 
N N N 

a ( t  + 1) l h{(t)  (t + I) . j ( t )  . ~'~ . j ( t )  
Z J "J = - -  ni  Z i /  2.1 tli 

= 

i = l  i = l  i = l  

and, as in the single case, the solutions are the P largest eigenvalues of the updated local covariance 
matrix: 

N N 
E( t+  1) ',t"-, . j ( t ) .  ( t+ I ) ) 2 / Z  hi j = ~_~n i t x i - t ~ j  j( t)  

i = |  i = !  
Nevertheless, in practice, this EM formulation of the learning is not appealing because at each M- 

step we have to evaluate from scratch the P eigenvalues for each new covariance matrix. In fact we 
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are interested in finding a more progressive evaluation of the eigenvalues and eigenvectors we 
present now. 

4.2 I terat ive  Learning .  

tn the EM approach for mixture of gaussians, different levels of progressive learning can be iden- 
tified from an update at the M-step of time (t+ 1) of the eigenvalues resulting from the previous M- 
step to a complete on-line version with an update of all parameters [ 10] after each pattern. In the cur- 
rent work, we have tested the intermediate case by replacing the complete extraction of eigenvectors 
from each local covariance matrix by an iterative PCA algorithm. Starting fiom tile values at tile end 
of the previous M-step, this latter updates the eigenvectors in an inner loop of the M-step. The iter- 
ative method is here a local version of the Generalized Hebbian Algorithm (GltA)[ 13]. For the ei- 
genvectors the algorithm is the following: 

~-~k)(°) vO) 
= --jk 

( k ~v(t)(t) ] i/(t+l) ~.(t)(N-I) ~,)~)(,+l) ~(t)O)+ n(t)h{(t~yot (xi_u)t+ 1))_ Z (Yijt) jt = VJk "jk = VJk 
I~-O 

T 
1))~.~) Vi, i=  1 . . . . .  N Vj, j =  1 . . . . .  M Vk, k =  l . . . . .  P with: Yq k = (Xi_lt t+ (i) 

and rl0) a slowly time-varying parameter.We update the eigenvalues in the same loop: 
~0)(o) ~'(0(i+ t) -~](0 z a(t + 1) :(n(N- t) 

jk  = 0 hjl¢ = 2,, + Yijk "~jk = AJ k 

In the case of the local density (M=I) this algorithm is precisely the GHA algorithm which ex- 
tracts the principal components by successively decorrelating the projections of the data onto the 
vectors. The GIlA [13] algorithm is an extension of the largest component extraction method pro- 
posed in [ 11 ]. Several proofs of convergence have been established for these algorithms [ 11 ], [ 13] 
but the detailed analysis of this convergence is still an active field of research [17]. In the case of 
several gaussians (M>I), the demonstration of the convergence of the algorithm towards the P prin- 
cipal components of each local density is not direct. Its analysis will be an interesting challenge es- 
pecially on the basis of recent works [5],[ 16], [17]. 

4.3 Global Learning of  the Width Parameter.  

We have previously explained the choice of an unique width parameter cr for the mixture so as to 
be able to easily compare the influence of the different local densities. Especially in high dimension 
data spaces, this condition prevents the model to reduce to a Winner Take All algorithm. In this chap- 
ter, we consider the global learning of this parameter directly through the maximization of the like- 
lihood at M-step, We first recall that we have previously shown the optimality of the principal ei- 
genveetors and eigenvalues for any value of ~ respecting the condition: 

2 
c~ <min(~,w, ~'27, - ' ,  ~'Mp) 

and then the analysis of the maximization of the likelihood at the M-step with respect to cr reduces 
to the analysis of: 

M N 
1 j z a ( o ,  O (t)) = - N ( ( d -  P)ln(o 2) + tn(2Fl) + e) - ~ Z Z h i d ( x i  , uj) 

,$t"I j =  1 i =  1 

M P M P _N 
2 Z a j  ' ~  In(X#)+ ~ Z ~.,: Z Zj,~ 

j = l  k ~ l  2;O" j =  1 k = l  

For the sake of simplicity we have not indicated the time step t notation. The second term of the 
right part of this equality can simply be expressed with the trace of the local covariance matrix: 

N d 

= (t+l)tr(ZJ) = °tJ Z ~jk 
t = 1  k = t  

and we thus write: 
M d 

= ~( t  + 1) 
a 

'ff j = l  k=P+l 
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The derivate of the likelihood will vanish at the value% : 
M d 

2 1 _ ( t  + I)  ,/, ( /+  I )  

j = l  k = P + l  

• - -  2 2 . 2 with posmve value for o < 00 and negatwe for 02 > o o The likelihood thus presents a maximum 
at this value. In this condition the maximum is reached for" 

O'-pt 2 = m i t t ( e r a  2, ~ ' IP,  ~'2P . . . . .  ~'Ml') 

Note that the sum of the lowest eigenvalues in the expression of o02 are not computed directly 
but through the trace of the covariance matrix equal to the sum of the local distances. 

5 Related Mixture Approaches. 

The initial motivation for the M-PCG model was to try to numerically approximate the multidi- 
mensional gaussian model by regularizing the lowest eigenvalues in a fully probabitistic context. We 
have therefore conducted our work from a direct eigenvalues decomposition and approximation 
point of view but after preparing the manuscript of [8], we have been aware of parallel works based 
on a Factorial Analysis approach [3], [15]. In this chapter we propose to compare our model with 
these very recent works. 
Factorial Analysis (FA~I is, beside PCA, a common tool for dimensionality reduction, In this ap- 
proach, the data x of R" is modeled by a latent variables vector y from a subspace of dimension P 
in the following way" 

x = W y + e  

where the vector of latent variables y is assumed to have a identity covariance distribution and the 
noise e to have a diagonal covariance distribution 'P. Therefore, the FA model implies that data are 
independent given the latent variables. The d x P  matrix W is called the factor loading matrix and it 
is easily shown given these assumptions that the covariance of the data is modeled by: 

Z = q J + W W  r 

Thus, like classical PCA, the FA model offers a framework for dimensionality reduction with the 
latent variable subspace with, unlike PCA, the great advantage of a probabilistic Ibrmulation• A 
common training of this density model is an iterative method is also based on the EM algorithm ac- 
cording to the MLE criteria [ 13]. At each E-step the responsibility of each latent variables for each 
observation is estimated, while at the M- step likelihood is maximized and factor loading and noises 
matrices updated. For the mixture case, this EM approach has been recently extended in a iterative 
way [3] but, since the estimation of each factor analyzer is based on a MLE criteria standard EM can 
also be applied [4]. 
The strong assumption of FA, expressed by the diagonatity of the covariance matrix of the noise, is 
that data are independent given the latent variables. In practice, this is not always true as illustrated 
in 141 where this approach is used for modeling handwritten digit forms. In our model there is not 
such an hypothesis, the direct approach does not implies any kind of dependency between the com- 
ponents of the input variables. Moreover in classical FA the relationship between latent variables 
subspace and principal components are not always established. This is one of the motivation of the 
work presented in [I5], where it is l~recisely shown that, in the special case where the covariance 
matrix of the noise reduce to ~I J = o".r the latent variables subspace corresponds, under some con- 
ditions, to the principal eigen-subspace. The local model is called PPCA and in term of dynamic is 
thus identical to our model PCG. 

In [15], the study of the optimality of the PPCA model is very complete and leads with a specific 
demonstration of the optimality of the eigen-subspace for a particular value of the width parameter. 
Nevertheless, this demonstration is done in the FA framework that is under the assumption of inde- 
pendence between input variables. Another difference between the PPCA and M-PCG models lies 
in the use of the width parameter which in [ t5] is specific to each local density function and equals 
the mean of the lower eigenvalues of each local covariance matrix. Without anticipating about the 
practical characteristics of the different alternatives in term of generalization in high-dimension data 
spaces, the PCG local density approach we have presented is for this parameter more general since 
the optimality has been demonstrated in an range value of this parameter• We have also proposed a 
global learning for this parameter which includes the specific learning of[ 151. 
The final difference between M-PCG and mixtures of PPCA approaches lies in the learning algo- 
rithm of the mixture. The PPCA benefits of two methods for learning the mixture. The first is the 
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classical extraction of a limited number of eigenvatues from each covariance matrix, which may be 
costly in high dimensional data space. The second is based on the FA approach for which most of 
the computing time is devoted to the inversion at each step of a dxd matrix. It is thus less costly, but 
still remains under the FA assumptions on the independence between the input variables. Moreover 
compared to the iterative GHA algorithm we have proposed, this FA approach is less progressive 
and for example can not be directly extended to a on-line version with an update after each pattern. 

6 Numerical Experiments. 

After testing the M-PCG learning algorithm on various small data sets, we have applied the meth- 
od to a set of images of handwritten digits made of 2000 elements for each class. A test data set of 
46634 elements is also used.With all type of data sets we have verified the convergence of the meth- 
od towards local principal eigenvalues and eigenvectors for adequate values of o .  This control is 
easily done by applying a classical method of PCA at the end of the algorithm. 

For the classification experiments, we have built for each class a mixture of five centres (M=5) and 
ten principal components (P=I0), The total number of centres is thus 50.The first case (M-PCG-I) 
corresponds to life learning of the width parameter fi~r each mixture we have presented. In tl~e second 
case (M-PCG-II) an unique width parameter has been learned 1or all the 50 local density probabili- 
ties. In fact, this corresponds to the maximization of a joint pattern class probability likelihood of a 
model made of all the mixtures but with a fixed binary bayesian probability of each class lbr each 
centre. In particular, we still have the nice property of separate computing of each pattern with its 
own class sub-mixture during the learning phase. The third case (M-PCG-III) is an example of an 
experimental value of the width fixed here to 0.5 while in the second case the optimal value found 
was of 021. 
The results in term of recognition rate are presented in the table 1 together with the results for the 
nearest neighbor method which as a costly but simple and universal method roughly illustrates the 
complexity of the problem to solve. The use and the global learning of an unique width parameter 

learning test 

l-nearest neighbour 100.0 94.62 

M-PCG-I 95.14 94.14 

M-PCG-iI (cr,,t, t =0.21) 96.36 95.05 

M-PCG-III (0=0.5) 96.06 95.12 

Table 1: recognition results. 

in M-PCG-II appears as a better alternative than its global but class by class learning in M-PCG-I. 
The first reason is certainly the joint probability maximization of the width parameter in M-PCG-II 
which explains the better results oil the learning set, but we also believe that in the data space of size 
256, the classification is, due to tile normalization term, cxcessi rely driven by tile difference between 
the default width parameters for each class. The third case, with the best result on tile test set illus- 
trates the fact that the best value of tile global width parameter may not be necessarily captured by 
the algorithm and that general or application specific regularization criteria should be applied. Here 
again, an advantage of the M-PCG model is to permit such a scheme since the optimality of the local 
density has been shown for a range value of the width parameter. 
Unfortunately, the comparison with the results presented in 141 and [15] for digits classification is 
not direct since databases are different as well as the number of centres for each class. Future exper- 
iments will try to compare the methods on an unique database. This comparison will be certainly in- 
teresting since our model as well as the models in [4] and 115] pertbrm slightly better than the refer- 
ence nearest neighbor method [41. We can also note that, in [4] some numerical recipes have to be 
used so as to prevent the absence of noise in some pixels. This is a classic way of regularizing multi- 
dimensional gaussians model but an advantage of our model is precisely to integrate this regulariza- 
tion aspect in its own formalism. 

7 C o n c l u s i o n .  

We have presented in this paper the M-PCG model which is an adaptation of the mixture of gaussians 
model for the case of high dimensional data. This model is mainly motivated by the need tbr a nu- 
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merically tractable approximation of the mixture of gaussians model in high dimensional data spac- 
es. It is characterized by a cheap computing time for learning and recognizing together with a gen- 
eralization ability while keeping a probabilistic formulation for the local density model and a close 
approximation of the mixture of gaussians model. The model simply consists in replacing the lower 
eigenvalues of the covariance matrix by a default width value. This local density model has first been 
justified in term of maximum likelihood estimation. We have next proposed a learning iterative al- 
gorithm for this model which consists in replacing the M-step of the EM algorithm by an iterative 
method for principal components extraction based on the Generalized t-Iebbian Algorithm (GHA). 
We have also proposed a global learning for the default width parameter and tbcused the attractive 
numerical properties of our model. 
The model have also been compared in theoretical terms with works based on mixture of Factorial 
Analyzers (FA). Especially a very similar model has emerged very recently from FA but under a the- 
oretical aspect, it remains under the FA assumption of an independent noise between input variables, 
In algorithmic terms the two approaches differ in the use of the default width parameter, the iterative 
learning algorithm we have proposed and different numerical costs. We have finally presented the 
first experiments on the recognizing of handwritten digits. We have reported classification results 
better than the ones obtained with the l-nearest neighbor method on our specific database and have 
emphasized on the interest of being able to control the default width parameter. 
Under a theoretical aspect, future works will concern the establishment of a proof of convergence 
and its analysis, In algorithmic terms, other iterative algorithms than GHA tbr could be tested. Also 
numerical comparison with close models based on Factorial Analysis remains to be done. Neverthe- 
less, in view of the first experiments presented here, we are yet considering the application of the 
model to HMM modeling for handwritten word recognition. This will be an interesting challenge for 
testing the ability of the model to learn in an evolving data context. 
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