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Abstract .  The estimation of structure and motion from image sequences 
using corresponding points, lines, conics and structured patches is trea- 
ted. Recent research has provided good tools for obtaining good initial 
estimates of structure and motion using point, line, conic and curve corre- 
spondences. These estimates are, however, not so accurate. In this paper 
it is shown how to obtain statisticMly optimal estimates of structure and 
motion using a combination of such image feature correspondences. The 
question of using proper weighting is important when different types of 
features are combined. We show how weights can be chosen in a statisti- 
cal optimal sense. Experiments with real data are used to evaluate every 
step of the algorithm. 

K e y w o r d s :  Bundle adjustment, Points, Lines, Conics, Patches. 

1 I n t r o d u c t i o n  

This paper deals with the problem of estimating structure (3D-reconstruction) 
and motion (camera movement) from images taken by uncalibrated cameras. All 
kinds of features are used in a statistically unified manner; points, lines, conics 
and textured, planar patches. In order to understand this process it is conveni- 
ent to think of this computation in three steps. Firstly, features are extracted 
in each image. Secondly, the interframe correspondences between the selected 
features are established. Thirdly, the structure and motion is calculated from 
these feature correspondences. The paper will focus on the accurate estimation 
of structure and motion with emphasis on feature extraction and structure and 
motion estimation. The correspondence problem will not be treated here. 

In I17] the problem of estimating structure and motion from line correspon- 
dences is analysed. There, it is discussed both the question of obtaining an initial 
estimate and the question of improving these estimates. Several authors discuss 
the problem of obtaining initial estimates for lines and points [6, 8, 7] and points, 
lines and conics [9]. 

Previous work on conic based vision is mostly devoted to calculating structure 
from known motion and calculating motion from known structure, [11]. However, 
in [10] the use of conic correspondences to estimate the epipolar geometry is 
treated. Some work has also been done on the correspondence problem for conics, 
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[13,12]. Finally, the problem of computing structure and motion by using general 
curves is treated in [4, 5]. 

The problem of obtaining a statistically optimal solution to the structure 
from motion problem, have traditionally been solved using the technique of so 
called bundle adjustments, see [3]. However, it is only possible to use points 
in the traditional approach to bundle adjustments. An attempt to use general 
curves has been made in [5]. 

Two major contributions are made in this paper: the novel algorithms for 
bundle adjustment of configurations of points, lines, conics and textured patches 
and the consistent treatment of uncertainty throughout the whole process. We 
would like to point out the importance of treating not only the geometric features 
but also their uncertainty in every step of the computation. 

2 B a c k g r o u n d  

We will use extended or extended coordinates throughout the paper for geo- 
metrical entities. Thus, a point (x, y) C IR 2 will be represented as a three-vector 
x = [x y 1]T. A direction (cos(a), sin(a)) in the two-dimensional plane will be 
represented by a three vector n = [cos(a) sin(a)0 ]T Similar notations will be 
used for points and directions in Na We will assume that the camera is an ideal 
pinhole camera. The projection of an object point X C Na onto an image point 
x E 1t~ 2 is conveniently represented by a 3 x 4 projection matrix P, such that 

Ax = PX , 

where A E ~. A line in the image will be represented by a vector 1 = l abe l  T. 
The points of the line fulfil ax + by + c = lTx =- 0. A conic in the image is 
represented by a symmetric non-singular 3 × 3 matrix C and a quadric in space 
by a symmetric non-singular 4 x 4 matrix Q. The points of the conic fulfill 
x T C - I x  = 0 and the points of the quadric XTQ-1X = 0. A quadric Q is 
projected to a conic C according to 

AC = p Q p T  . 

A general curve will be represented as a cubic b-spline containing. Using the 
control points, the curve has a natural parametrisation t ~ c(t). A textured 
patch will be represented by four points, defining a quadrangle and a matrix 
defining the gray-level values inside the quadrangle. 

3 I m a g e  F e a t u r e s  

In this section we will describe how to estimate the different types of image 
features that have been used. The representation of these primitives and their 
uncertainty is presented. 
Edge  detec t ion:  
How accurate can the image position of the edge be estimated in good conditions 
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such as in Figure 3a? In [2, 1] and it was shown how to estimate the standard 
deviation of the edge point estimate. Thus, the edge point p and its uncertainty 
(the standard deviation as in the direction n of the search line) is calculated from 
the image w and its uncertainty (the variance in each intensity measurements 
~2). In practice, it is assumed that the standard deviation ~ for the error in each 
pixel intensity is constant. 
Lines:  
The process of fitting lines to extracted edge points is well known. Figure lc 
illustrates several search lines and the extracted edge point positions. Using 
these edge points and assuming their uncertainty is normally distributed, the 
line is estimated according to the maximum likelihood method. Let xi be point 
number i, ni the direction of the search line and as,i the estimated standard 
deviation. The line parameters lm -- [abc] T are estimated so that 1Tlm = 1, 
1Tm(Xi + sini) = 0 and such that 

2 

2 
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is minimised. 
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Fig. 1. The uncertainty in intensity measurement causes uncertainty in each edge point 
position. These uncertainties in turn cause uncertainty in the extracted feature. 

The resulting line parameter lm lies on the surface of the sphere 1Tlm ---- 1. It 
is convenient to measure small deviations from lm in the tangent plane TB to lm 
on the sphere. Thus, for lines 'close' to lm we use the following parametrisation 

1 
llocal = P(1) = IT ~ . 

In this parametrisation P(1) is a stochastic variable with covariance matrix C1. 
This matrix is estimated from the line fitting algorithm. Since the domain of P is 
two-dimensional, C1 is (a 3 x 3 matrix) of rank 2. Using the Cholesky factorisation 
of the pseudo-inverse C~ of Cl we obtain the following factorisation, 

L T L : C ~  , 
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where L is a 2 × 3 matrix. Then, the stochastic variable LP(1), has covariance 
matrix 

LCIL T = I . 

The two variables in LP(1) are uncorrelated and have unit standard deviation. 
In the bundle a~justment it is necessary to measure differences between the 
measured line lrn and the reprojected line lp. The following weighted residual 

r(lp) : L(P(Ip) - 1,~) 

is used. Thus, the line and its uncertainty is calculated from the edge points and 
their uncertainty. 
Conics:  
The process of fitting conics to extracted edge points is similar. The goal is to 
cMculate the conic and its uncertainty from the edge points and their uncertainty. 
The conic is estimated using the maximum likelihood method. Let xi be point 
number i, n~ the direction of the search line and as,{ the estimated standard 
deviation. The conic parameters u,~ = [ a b c d e f ]  T are estimated such that 

(Xi -I- s in i )  T = 0 and such that 

2 
~ i  8i" 2 • ~rs, i 

is minimised. From the final result we obtain the measured conic parameters 
Um and the covariance matrix Cu. Again, since the conic parameters lie on the 
surface of a 6 dimensional sphere UTmUm = 1, the covariance matrix has less than 
full rank. Small deviations are measured in the tangent plane Tp to the sphere at 
Urn. Thus for conics u 'close' to urn we use the following parametrisation instead 

u 

In this parametrisation P(u)  is a stochastic variable with covariance matrix C~ 
which is estimated from the conic fitting algorithm. Since the domain of P is five- 
dimensional, C~ is (a 6 × 6 matrix) of rank 5. Using the Cholesky factorisation of 
the pseudo-inverse of Cu it is possible to factorise Cu according to, LT L  = C,~, 
where L is a 5 × 6 matrix. Then the stochastic variable LP(u)  has the covariance 
matrix 

LCuL T : I . 

Thus the conic and its uncertainty, is calculated from the edge points and their 
uncertainties. 
Patches:  
The process of extracting textured patches is somewhat different from the other 
features. It is assumed that a patch is planar, but it is only the relative positions 
of patches that can be measured in the images. A patch and its uncertainty 
is extracted as follows. First, a textured area is chosen in the first image and 
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identified in the other images by correlation. From these matches, a source patch 
is defined as a quadrangle together with the gray-levels inside the quadrangle. 
Note that since the patch is assumed to be planar, there is a homography from 
the source patch to the image patch. This homography can be represented by a 
3 × 3 matrix H, defined up to scale. The gray-levels of the source patch and the 
homographies between the source patch and each image are chosen to minimise 
the residuals in intensity.. Similar to the case of points, lines and conics the 
covariance is estimated and used as weights in the optimization. 

4 Initial Estimates of Structure and Motion 

An initial estimate of the structure and motion parameters is obtained using 
either projective methods for points and lines using the trilinear tensor, cf. [16], 
shape based factorisation methods for points, cf. [15], shape based factorisation 
methods for curves, cf. [4, 5], or affine method for points, lines and conics, cf. 
[9]. The estimate is reasonably correct, but the errors between the repro jetted 
features and the estimated features are sometimes large (several pixels). 

5 B u n d l e  A d j u s t m e n t  

The idea of the bundle adjustment method is to optimise the structure and 
motion parameters so that the residual between the measured features and the 
reprojected features is small in some sense. 
For each feature type it will be shown: 

- how to parametrise local changes in structure. 
- how to reproject, i.e. how to calculate the appearance of the feature. 
- how to calculate the weighted residuals and their derivatives with respect to 

changes in structure and motion. 

Points: 
Points in 1~3 are parametrised in extended coordinates as X = [X Y Z 1 IT. 
Changes in X are parametrised as X(Ax) = [ X+Ax(1) Y÷Ax(2) Z÷Ax(3) 1 ]T 
The projection Xp and its derivatives are given by xp = PX, 0xp -- 0PX + 
POX. The weighted residual is measured as 

r = L (  xp - x m )  • 
xp(3) 

Lines: 
Lines in ~3 are parametrised using two points X1 and X2 in extended coordi- 
nates. Changes in Xl and X2 are parametrised as Xl(Ax) = Xl + Ax(1)V1 + 
Ax(2)V2 and X2(Ax) = Xl + Ax(3)V1 + Ax(4)V2, where ~/] and V2 are ortho- 
gonal directions orthogonal to the direction between X1 and X2. The projected 
line lp and its derivatives are given by 

lp = (PX1) × (PX~), Olp - ~  (OPX1 +POX1) × (PX2)+(PX~) × (OPXz+POX2), 
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where × denotes vector product. The weighted residual is measured as 

r = L(1Tm]~Pl~ - l m )  . 

Conics: 
Quadrics in I~ 3 are parametrised using a 4 x 4 symmetric matrix Q. Changes 
in Q are parametrised as Q(Ax) = Q + Ax where Ax is a symmetric matrix 
containing 10 different elements. The projected conic up and its derivatives are 
given by 

C p = p Q p T ,  cgCp=PcgQP T + 0 P Q P  T + P Q O P  T 

From the conic Cp and its derivatives the conic vector Up and its derivatives OUp 
are calculated. The weighted residual is measured as 

r=L(  up - 

Patches: 
Three dimensional patches are parametrised by a homography from the source 
patch to a 3D-plane and the position of this plane in space. In total, there are 
11 degrees of freedom which can be represented by a 4 x 3 matrix T defined 
up to scale, see Figure 2. The homography of the projected patch Hp and its 
derivatives are given by 

H p = P T ,  0 H p = P O T + 0 P T  . 

From the above equation, the homography vector hp and its derivatives Ohp are 
calculated. The weighted residuals are measured as 

h p  h . , )  . 

Fig. 2. Textured patches 
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A d j u s t m e n t :  
The idea of the bundle adjustment is straightforward. Calculate a vector r con- 
taining all weighted residuals and its derivatives with respect to changes in all 
structure parameters and all motion parameters. The weighted residuals have 
been normalised such that they are approximately uncorrelated with zero mean 
and unit variance, using the true values of the motion parameters. Minimising 
r in a least squares sense is therefore statistically optimal in the first order 
approximation. 

6 E x p e r i m e n t a l  Val idat ion 

a b ., • . . . .  .C 

' : 1 % ' ~ ' : ~  

Fig. 3. Figure 3a shows one image in the experiments. Solid lines represent measured 
features and dashed line represent reprojected features• A close-up is shown of part of 
a conic in Figure 3b and part of a line in Figure 3c. 

Figure 3a shows one of 5 images that were used in the experiment with overlayed 
measured lines and conics and reprojected lines and conics. Figure 3b shows a 
close-up centered at a curved part of a conic. The solid curve illustrates the 
measured conic and the dashed line the reprojected conic. The residuals are 
of the order of 0.1 pixels. Similarly, Figure 3c shows a close-up centered at a 
detected line. The solid curve illustrates the measured line and the dashed line 
the reprojected line. Again the residuals are small. 

7 Conclus ions  and Discuss ions  

So far, most research in computer vision has concentrated on point features. But 
there are other important image features, like lines, cor~ics and patches. They 
contain more information than points~ It is often easier to detect and track these 
features. They are more robust and stable features. However, when using these 
features and in particular in combination, it is important to treat the uncertainty 
in a proper manner. In this paper we have focused on the systematic treatment 
of features and their uncertainty all the way from image acquisition to edge and 
feature detection and finally to their proper weighting in a bundle adjustment 
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method.  This t rea tment  makes it possible to est imate s tructure and motion in 
a statistically optimal  way using a combination of points, lines, conics and even 
textured patches. The theory predicts tha t  edge points can be extracted with 
high precision (approximately 0.1 pixels) and this is verified by the results from 
the bundle adjustment.  
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