
Fast Median Search in Metric Spaces

A. Juan and E. Vidal
Departamento de Sistemas Informfiticos y Computaci6n,

Universidad Polit6cnica de Valencia, 46071 Valencia, Spain.
E-mail: ajuan@dsic.upv.es

Abstract. Searching for a median of a set of patterns is a well-known technique
to model the set or to aid searching for more accurate models such as a gener-
alized median or a k-median. While medians and generalized medians are (rela-
tively) easy to compute in the case of Euclidean representation spaces, this is no
longer true when more complex distance measures are to be used. In these cases,
a direct method to perform median search is not feasible for large sets of pat-
terns. To cope with this computational problem, we proposed a technique which
is significantly faster than the direct approach, both in terms of distance compu-
tations and overhead (time not alloted to distance computing). We also proposed
another technique which is even faster than its predecessor in terms of distance
computations, though it involves significantly more overhead. In this paper we
introduce a generalized algorithm for fast median search which includes these
two techniques as particular cases. We also develop a new particular case of this
generalized algorithm.

Key Words: Set Median, Fast Search, Distance, Metric Spaces.

1 Introduction

Assume that we are given a set of patterns in an arbitrary (non-vector)
representation space and a distance function to measure the dissimilarity
between any pair of them. A well-known technique for modelling the
given set consists of finding a pattern of the set whose sum of distances
to all patterns is minimum. Such a pattern is called a set median (simply
median in what follows).

The concept of median is related to a more general concept known
as generalized median. This generalization arises when the search is not
constrained to the given set, but extended to the whole pattern represen-
tation space. Although a generalized median constitutes a more accurate
model than a median, finding such a model is often a difficult task that
requires complex and specific (approximate) algorithms [1]. Obviously,

906

here we are excluding trivial cases like that of computing the generalized
median of a set of patterns in a Euclidean representation space. In these
cases where such computation is not trivial, a median can be used as an
approximate generalized median or as a starting point for finding better
ones [5].

Another generalization of the concept of median is known as k-median.
As its name suggests, searching for a k-median consists of finding a sub-
set of k patterns (models) such that the sum of distances between all the
patterns and their corresponding nearest models is minimum. This prob-
lem, well-known as a prototype location problem, is NP-Hard [6]. On
the other hand, it can be seen as a clustering problem since each possible
subset of k patterns induces a partition of the set into k clusters and a
measure of its quality. Good partitions are generally found using a sim-
ple k-means-like algorithm which starts from a given initial partition and
then loops searching for a median of each cluster and reclassifying pat-
terns according to their nearest medians [3]. Thus, the concept of median
also turns out to be useful in finding more accurate models.

Searching for a median of a set of n patterns is a relatively easy task
since it suffices to compute ½n(n - 1) pairwise distances between pat-
terns. However, this naive approach is no longer applicable when large
sets of patterns or computationally expensive distance functions are in-
volved. To cope with this problem, we proposed a technique called Fast
Median Search Algorithm (FMSA), which is significantly faster then the
direct approach, both in terms of distance computations and overhead
(time not alloted to distance computing) [2]. Recently, we have proposed
a new FMSA version which is even faster than its predecessor in terms
of distance computations, though it involves significantly more overhead
[4]. In this paper we introduce a generalized FMSA which includes pre-
vious FMSA versions as particular cases. We also develop a new par-
ticular case of this generalized FMSA which is tested through computer
simulations.

2 The Fast Median Search Algorithm

Given a metric space (E, d) and a set of n patterns P C E, searching for
a median consists of finding a prototype p* C P that minimizes

f (P) = E d ' (p,p)
prEP

907

for all p E P. The (generalized) Fast Median Search Algorithm (FMSA)
efficiently solves this problem as is formally described in Figure 1 and
discussed below.

Assume that a lower bound function g has been defined for f . The
FMSA partitions P into sets U (Used), A (Alive) and E (Eliminated).
The set A is used to keep track of those patterns whose sums have not
been calculated and are candidates for being a median (initially A = P).
Patterns in this set are selected in turn using a g-guided strategy which
chooses the pattern having minimum g first. Once a pattern s is selected,
f(s) is computed and it is transferred from A to U. Notice that the
FMSA carries out this computation using a linear array F which stores
~ueud(~t,u) for each unused pattern ~. If f (s) i s smaller than those
sums previously computed, both the current median, p*, and its associ-
ated sum, f*, are updated. Then, 9 is computed for all alive patterns and
those whose lower bounds are not smaller than f* are transferred from A
to E; that is, they will no further be considered as candidates for being a
median. This process ends when no patterns remain candidates for being
a median (A = q)).

For any alive pattern a, define

gl(a) = d(a,u)+ maxid(a ,u) -d(u , ft)I
uEUt

uEUt fzEP-Ut

(1)

(2)

Z)
fzEP-Ui

(3)

where t denotes the current iteration and Ui = {sl, s2,... , si} is the set
of used (selected) patterns until iteration i, 1 < i < t. Then,

9 (a) < <_ 9 (a) <_ f(a) (4)

To see this, we first note that, by the triangle inequality,

maxld(a,u) - d (u , fi)] < d(a, ~) (5)
uEU~

908

Algorithm FMSA

Input: d : E x E -+ R ; P C E, n =]P I /* d is a metric on E */

Output: p* E P ; f* E R / * a median and its sum of distances */

Variables: U, A, E C P; F E R'~; s, s', a, p E P; dsp, g*, ga E R

Function: g : P --+ R / * lower bound function (to be defined) */

Method:

A = P ; U = E = 0; f* = oc; F = 0; s' = rand(A)

while [At > 0 do

s = s'; A = A - {s}; U = U U { s} / * s is the selected pattern */

Vp E A U E do/* computing of the sum of distances of s */

dsp = d(s ,p) ; F~ = F~ + dsp; Fp = F, + dsp

endV

if Fs < f* t h e n / * updating of p* and f* */

p* = s ; f * = F ~

endif

9" = CX~

Va E A do

ga = g(a)/* computing of lower bounds */

if ga >_ f* then/* elimination */

A = A - { a } ; E = E U { a }

e lse /* selection */

ifga < g* then s r = a; 9" = ga endif

endif

endV

endwhi le

Fig. 1. Fast Median Search Algori thm (FMSA)

909

for any 4 c P - Ui, 1 < i < t. Thus for any i we have

d(a, u) + IP - Uild(a, s~) - ~ d(s~, ~)
uEUi f~EP-Ui

-< Z d(~, ~) + Z le(~, s~) - d(~, 4)1
uEb~ ~EP-Ui

(by induction on the size of P - U0

<- Z d(a'u) + Z m a x [d (a , u) - d (u , 4)l
~v~

uEUi ~EP-Ui

< Z d(a, u) + Z max td(a, u) - d(u, u)l
-- uEU~

uEU¢: f~C P - U t

(since si E Ui)

(U~ C_ b~; by (5))

< f(a) (by (5))

and this chain of inequalities implies (4).
FMSA versions based on (1) and (3) are described in [4] and [2], re-

spectively. That based on (3) is significantly faster than the direct method,
both in terms of distance computations and overhead. On the other hand,
(1) leads to a FMSA version which is even faster in terms of distances
computations, though its space complexity is O(n 2) and its overhead
ranges from ~2(n 2) to O(nZ). Here we will focus on a new version based
on (2), which will be referred to as FMSA-92.

Although (2) can be incrementally computed from one iteration to
the following, direct calculation of this function is too expensive since it
entails O (n 2) steps. Fortunately, this overhead can be reduced as follows.
Assume that ~'t = { U l , u 2 , . . • , ~10tl } is an arrangement of the set of un-
used patterns in ascending order of their distances to the selected pattern
st in iteration t. Then, the bound of each alive pattern fii in this iteration
can be updated by computing

104

uCUt j=l

= Z ~(4~, ~) + ~ (d (4~ , 8~) - d(.,~, ~j)) + ~ (d (% ~) - d(8~, ~))
uCUt j=l j=i

Io4 i
= ~ d(~,,~) + (2i - I~,l)d(~, ~) + ~ d(~, ~) - 2 ~ d(~, ~)

ucU~ j=l j=l

910

As partial sums E)_-I d(gi, st), 1 < i < tCrti, can be incrementally pre-
computed in O(n), updating of a bound only requires 0(1) steps. Com-
plete computation of bounds, however, requires O(n log n) steps since
sorting unused patterns becomes the dominating cost.

It is easy to show that the FMSA-92 can not stop after calculation of a
single sum, but it can end after two iterations when, for instance, patterns
are numbers compared through the usual distance, and the first pattern
selected for sum calculation is either the minimum or the maximum of
these numbers. Therefore, it is worth noting that the algorithm can find
a median by computing as little as 2n - 3 distances in O(n logn) steps.
On the other hand, a worst case arises when the discrete metric is used
(d(p, q) = 1 if p = q; 0 otherwise). In this case, (2) reduces to sums
on used patterns and elimination has no effect. Thus the process ends
computing as many distances as the direct method (l n (n - 1)) and the
overhead becomes O(n 2 log n). On the average, as (2) is tighter than (3)
but not as tighter as (1), the FMSA-92 is expected to compute a number
of distances between those of the previous FMSA versions.

3 Experiments

The FMSA-92 was tested on sets of n artificial patterns (n = 16, 32,
64 ,1024) randomly drawn from a uniform distribution in the unit
d-dimensional hypercube (d = 2, 4, 6, 8, 10), and compared through
the Euclidean distance. Although the algorithm is not intended to deal
with patterns in a Euclidean space, following a time-honored tradition,
we chose such kind of patterns since they are easy to generate and re-
sults can be compared with those of many other related problems and
techniques. On the other hand, the FMSA-92 never took advantage of the
point coordinates, but only the distances were used.

For each value of n and d, 100 sets of patterns were independently
generated and the FMSA-92 was applied to search for a median of each
of them. Figure 2 shows the mean number of distances computed the
FMSA-g2, given as a percentage of the number of distances computed
by the direct method and accompanied with its corresponding 95% con-
fidence interval.

Although for large dimensions only modest savings axe obtained,
these savings tend to increase as n increases and they are substantial
for low dimensions. As expected, the number of distances computed by

911

100

80

60

40

20

I I I I I

NCfo :::::::::::::::::::::::::::::::::::: ~: , d = 10

X-., " "I-.... " g 8

4

2

I I I I I

64 128 256 512 1024

Fig. 2. Mean number of distances computed by the FMSA-92, given as
a percentage of the number of distances computed by the direct method
(NC%), for several number of patterns (r0 and dimensions (d).

the FMSA-92 is lower than that of the FMSA-93 [2], and greater than
that associated with the FMSA-91 [4]. Although in terms of number of
computed distances the FMSA-91 is in fact better than the here proposed
FMSA-92, the overhead of the FMSA-91 ranges from ~2(r~ 2) to O(n3),
which renders this algorithm useless for very large data sets.

4 Conclusions and Future Work

A generalized Fast Median Search Algorithm (FMSA) has been pre-
sented which includes two previously proposed algorithms for fast me-

912

dian search. A new particular case of this generalized FMSA has been
proposed and tested through computer simulations.

The FMSA can be used to reduce the computational cost of a k-
means-like clustering procedure which starts from a given initial parti-
tion, and then loops searching for a median of each cluster and reclassi-
fying patterns according to their nearest medians. In fact, an optimized
version of this procedure has been already developed by direct intro-
duction of the simplest FMSA particular case, the FMSA-g3 [2]. This
optimized version was tested on a set of speech data comprising ten rep-
etitions of the Spanish digit vocabulary uttered by five different speakers.
A computationally expensive (Dynamic Time Warping) distance function
was used to compare utterances. For small values of the number of clus-
ters (k <_ 10), it was observed that the optimized version runs from 3 to
6 times faster than the direct procedure [2]. While better results in terms
of distance computations can be easily obtained by using the FMSA-g2
(or FMSA-gl) instead of the FMSA-g3, we think that even better results
are possible by taking advantage of the fact that clusters (and medians)
tend to become "stable" after some iterations of the procedure [3]. To this
end, we are presently developing appropriate versions of the FMSA-gl,
FMSA-g2 and FMSA-g3.

References

1. E Casacuberta and M. D. de Antonio. A greedy algorithm for computing approximate Median
Strings. In A. Sanfeliu, J. J. Villanueva, and J. Vitri~, editors, VII National Symposium on
Pattern Recognition and Image Analysis, volume 1, pages 193-t98, Beltaterra, Barcelona
(Spain), 1997.

2. A. Juan and E. Vidal. An optimized K-means-like algorithm. In 4th Portuguese Conference
on Pattern Recognition, pages 11-16, Coimbra, Portugal, 1992.

3. A. Juan and E. Vidal. Fast k-Means-like Clustering in Metric Spaces. Pattern Recognition
Letters, 15(t): 19-25, 1994.

4. A. Juan and E. Vidal. An Algorithm For Fast Median Search. In A. Sanfeliu, J. J. Villanueva,
and J. Vitri~, editors, VII National Symposium on Pattern Recognition and Image Analysis,
vohtme 1, pages 187-192, Bellaterra, Barcelona (Spain), 1997.

5. T. Kohonen. Median Strings. Pattern Recognition Letters, 3:309-313, 1985.
6. R B. Mirchandani and R. L. Francis, editors. Discrete Location Theory. Wiley, 1990.

