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Abstract. The paper addresses the problem of pattern classification when distortions are 
present in the observed data. These are distortions occurring either in the process of classifying 
a test pattern or during the learning phase of a classifier design. In particular we consider the 
case when the measurements are corrupted by noise. Additive, multiplicative and generalized 
noise models are taken into account. A unified framework of the posed problems based on the 
Bayesian paradigm is given. Learning algorithms stemming from nonparametric curve estimation 
techniques are derived. We examine the effect of distortions in measurements on the proposed 
classification algorithms. A class of classification techniques being Bayes risk consistent is 
derived. The latter result makes use of the idea of deconvolution. 

1 Introduction 

In many practical problems one often encounters situations where the supplied data 
are imprecise. This can happen due to a number of reasons, such as a data collection 
process may be imperfect, a sensor system gathering information may be distorted, 
data are transmitted through noisy information channel, allocation process is based on 
subjective opinion of various experts, calibration between sources such as different 
clinics. These are typical scenarios in applications such as medical diagnosis, remote 
sensing and communication systems. Such imprecision in feature vectors, although 
often recognized, has been rarely taken into account in the actual design of classification 
systems. In fact, relatively little work seems to have been done for the case where the 
measurements are distorted. We refer to [2]-[ 10l, [ I2] for some preliminary research 
on this subject. It is also worth noting that in many studies on artificial neural networks 
it is customary to add small amount of  noise to the training data in order to improve 
the networks generalization and fault tolerance, see [13], [14] and the references cited 
therein. It is our task to study the accuracy of classification rules when there is an 
inherent noise in the measurements. In the case of additive noise model we construct 
a classification rule which can converge to the optimal Bayes rule when number of 
training data is increasing. The rate of convergence is also evaluated. Nonparametric 
deconvolution technique is used to account for errors-in-variables. 

1.1 Statistical Classification Problem 

In this section we define basic notions of the classification problem in order to laid 
foundation for our further studies. A pattern recognition problem can be often modeled 
by the statistical decision-theoretic approach utilizing the Bayesian paradigm, i.e., one 
wishes to classify a vector x ~ R d to one of c-classes knowing that the state of x, 
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denoted O, takes value in f2={o), ..... o)c} with probabilities {p(w,) ..... p (w)} ,  

respectively and that x is a realization of a random vector X characterized by a 
conditional distribution p(x I 0), 0 ~ £2. Thus, the task is to find a measurable mapping 

V: Rd "-~ f2 such that the expected loss function R(V ) = E{L(v(X) ,O)  }, called risk, 

is minimal. Here L(r.oi,o)j) is the loss incurred by taking action co when the class is 

co. In this paper we assume, without loss of generality, that L(o),cox) = 0 for 

co~ =coj and L(wi ,wj)= 1 for o) i ~o)j and then R ( v ) = P ( v ( X ) * 0 )  is called the 

probability of error. It is well known that an optimal rule V * (the Bayes rule) which 

minimizes R(N) is of  the fo l lowing formgr ' (x)=argmaxp,(x) ,where  

p,(x) = P(O = o9, IX = x), i = 1 ..... c are the posteriori probabilities. Let R* denote 

the Bayes risk, i.e., the risk of the Bayes rule. In practice we rarely have any information 
about the distribution of the pair (0, X), instead there is in our disposal a training set 

r/, = {(0I,XI) ..... (0 ,X~)}, i.e., a sequence of pairs (0 ,X,)  distributed like (0,X), 

where X~ is the feature vector and 0~ is its class assignment. An empirical classification 
rule N, is a measurable function of X and 77. It is natural to construct a rule which 
resembles the Bayes rule, i.e., by replacing p,(x) by its estimate p~,(x). A popular 
nonparametric classification technique is the kernel classifier being defined as follows 

n 

~/,(x) = argmax,_<~_~ 2,=~ 1(0~ = co~)W ( ~ j , x -  Xj "~ (1.1) 

where W(x) is a kernel function defined on R d and b is a positive number called 
bandwidth. The performance of V, is measured by the conditional probability of 

error R(V,) = P(v , (X)  ;e 0t r/,). The rule gtn is said to be Bayes risk consistent if 

ER(V,)  .-', R * as n ~ oo. Such an important property is known to hold, in particular, 

the kernel classification rules regardless of the type of the distribution of (0, X), see 
[16], [17]. Letting the distribution of (0, X) to be smooth, the rate of convergence can 

be also established, i.e., ER(v~) = R*+an  -'~, where c~ > 0 depends merely on 

smoothness of the distribution of (0, X) and the dimensionality of feature vector. An 
optimal value for twice differentiable class distributions is c~ = 2/(d + 4). 

1.2 Classification with imperfect data 

The problem of imperfect measurements is concerned with the lack of availability of 

(0, X), i.e., we rather have its distorted version (0, X). Two cases can be distinguished: 

first the whole feature vector X is distorted, i.e., the pair (0,X) is in our disposal, 

second only some features of X are distorted, i.e., we observe X = (U, ~r), where ~r 
is the distorted part of X. Such an issue has been rarely discussed in the pattern 
recognition literature and it will be called in this paper as the errors-in features 
problem. It is worth noting that one can have 0 distorted. Such a case is often 
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referred to as a probabilistic teacher. In the aforementioned situations one wishes to 
design an optimal classifier knowing the probability characteristics of the true 
observation (0, X) and possibly the distortion process. This is a problem with a full 
probabilistic information and it is discussed in Section 2. The latter situations form a 
basis for more realistic situations when there are imperfections in the training set. 

Hence instead of the sequence r/, we have ~, = {(O~,X~) ...... (0~,X~)}, where the 

distortion concerns only the feature vector X. An extreme case occurs when there is 
some missing information either in (0,X) or in the training setr/~. The absence of 0 

is often referred to as the unsupervised pattern classification problem. On the other 
hand for the problem of missing values in the training set/7, we refer to [15] and the 

references cited therein. 

2 Classification of Distorted Pattern Vector 

It is often met in practice that instead of the true feature vector X we can only 

observe its an inaccurate version X. It is clear that a rule minimizing the probability 

of error P(t//(X)~ 0) is given by I/~(i)= arg max q,(i), where q~(~) is the posteriori 
l<i<c 

probability of (0,X). Let us assume that 0 and X are conditionally independent 
given X. Under such a condition it is straightforward to show that 

q,(~) = ~ pi(x)P( x l ~c)dx , (2.1) 

where p(x I~) is the conditional distribution of X on X. 

An important example is when an additive noise is corrupting X, i.e., X = X + e, 
where e is a random variable being independent of X. In such a case (2.t) takes the 

form q~ (~) = I,~ P~ (x)p, (~ -x )dx ,  where p, is a density of e. Hence for the following 

additive noise model the relationship between the class distributions of X and X is 
in the form of the convolution operator. In [3] a Gaussian parametric model for pi(x) 
and p(xl ~) in (2.1) has been used yielding an explicit formula for q,(~). In [5]-[7] 
further accuracy issues under the additive noise distortion model have been examined. 

In particular it has been shown that R' < R*(~) _< R', where R' (~)  = P(~(X) ¢ 0) is 

the Bayes risk of corresponding to (,X,0) and R" =P(~r*(X);~0)measures the 

performance of the Bayes rule on noisy feature vectors. The following result [9] 
concerns the performance of the rule ~' tested on noise-free data. 

Theorem 1. Let p~(x), i = 1 ..... c satisfy the Lipschitz condition 

1 p~(x) - p~(x0)I< M~ II x - x o II, 

forsome M~>O, i=1  ..... c. 
Let us assume the additive noise distortion model with the noise process being 
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identically distributed with #e = E II e tiP< 0% p > O. Then 
[ / (p+l~ 

R(~t)-R" <(p+l ) ( (M/  p)"U. ) , 

where R(~t) = P(1/)(X) ~ O) and m = max M,. 
I~i~c 

This result reveals that faster the tails of p~ tend to zero more accurate is t~. 

A general distortion model of the form IK = T(X, e) can also be taken into consideration 
with e being a random variable independent from (0, X) and T is a transform defined 
on the domain of the random pair (X, e). Furthermore the above result can be extended 
to partial distortion models. 
Yet another important extension is the case when no probabilistic information about 
the class distributions is given but instead the noise-free training set 77, is available. 

On the other hand, only distorted version X of X is observed. In this case one can 
use the aforementioned classification rules with the estimated class distributions. For 
instance the kernel classification rule for the additive noise distortion model takes the 
following form 

" x - X ~  
~.(X) = argmax E 1(~ = o)i) W ( - - - - £ - - ~  (x - Xj) . 

l~i-<g )=1 

It can be proved that this rule has a limit risk smaller than the standard plug-in rule 
for classifying the distorted pattern ~. 

3 Classification with Distorted Training Set 

Clearly the most challenging problem arises when there are some imperfections in the 
learning set. This is issue is addressed in this section. We confine our discussion to 
kernel classification rules although it seems to be possible to extend our results to 
other nonparametric classification rules. Furthermore we assume that the pattern X is 
to be classified is noise free. Hence one wishes to classify the pattern X based on the 

distorted training set ~. = {(0~, X, ) ...... (0., X.)}, where Xi is the distorted version of 

X,. This data can be used to estin-mte the conditional probabilities qi(x) in (2.1). This 
yields the following version of the kernel classification rule: 

n 

~.(x)  = arg max 2 1 ( 0 .  = o))W 
1-<1~ s=l 

(3.1) 

It can be shown that the probability of error P (~ . (X)~OI~ . )  of t~. tends to 

P(~ (X) ~ 0) -- R(~) as n - -~o ,  in probability where 1/~ is defined as 

follows t~(x)=argmaxqi(x).  The result of Theorem 1 in Section 2 reveals that 
l_<i_<c 

R(~) > R', i.e., the rule defined in (3.1) is not Bayes risk consistent. 
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To illustrate this phenomenon let us consider the two-class classification problem 
with equal prior probabilities and class-conditional densities being Gaussian, i.e., 
p(xlco~) ~ N~((I .... 1)r;I)), p(x tO'Z) o: Na((3,...3)r;I). The additive distortion model 

is used, i.e., ,'K = X + e,  where ~ *~ Na ((0 ..... 0)r; rzI).  Figure 1 shows the classification 
boundary (along with testing samples) of the kernel classifier (W(x) is assumed to be 
the Gaussian kernel and b is selected optimally) for d = 2 with ~'~=0 (no noise) and 
~r ~ =1. The training set of the size n = 200 was used. Figure 2 plots the classifier risk 
as a function of the noise variance ~'~. The deterioration of the classifier accuracy is 
clearly revealed. 
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Fig. 1. Classification boundary of the kernel classifier for noise-free and noisy data. 

o~,- 1 

i 

Fig.2. The probability of error versus "r:. 
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The problem which emerges now is how to construct a learning rule from the distorted 
data which can be Bayes risk consistent. This requires the inversion of the integral 
equation given in (2.1), provided that the noise characteristic (quantified by the 

conditional distribution of X on X) is known. In the case of the additive noise model 
this is equivalent to the problem of  deconvolution. The Fourier transform technique 
can be used here to design a classifier with the required property [9], [10]. Hence, let 
O,,(t) and 0=(t) be the Fourier transforms of the kernel function W(x) and the 

probability density p~, respectively. Let us also define the following kernel function: 

(x) = exp(-jt • x) x, 
~,(t) 

(3.2) 

where t ,  x is the scalar product of the vectors t and x. Note that W~(x)= W(x) 

when there is no noise present in the measurements. 
The following kernel classifier can be defined in the case of the additive noise model: 

VT"(x) = ar~ax 2 1(1' = ~') ~-, ' [ ~ ) "  (3.3) 

In order to see the potential benefits of this new rule let us plot its classification error 

and the error of the rule ~= in (3.1) which ignores the noise problem. Figure 3 plots 

the error versus n for the data as in Figure 1. It is seen that ~,  greatly outperforms 

J:  

: 0 . 1 2  

f l - ' '  I \  \ 

, , ,  , , , ...... ,,, 

Fig.3. The probability of error for the classifiers ~.  and Or versus n. 

As far as the asymptotic properties of the rule in (3.3) the following result can be 
proved. 
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T h e o r e m  2. Assume that O~(t) satisfies 

(a) tl t IIr(d~l $,(t)1---> a(d)  as Itt lI---> oo f o r  some 7(d) > 0 and a(d) > O. 

Assume that the kernel function W(t) satisfies 

~t~ 2 (b) 1t t 112r'd>l Sw(t) t dt < oo 

(c) I llt[12 W(t)  d t < o o a n d  i R t W ( t ) d t = O ,  j = l  ..... d. 

Let pj(x), j = 1 ..... c and p(x) be twice differentiable. 

If 
b - - -  n -I/(4+d+2Y(d)) 

then 

E{P(t~. (X) ;e 01 q.)} = R" + cn -~''*d*2r'a'', (3.4) 

for  some c > O. 

Hence the rule ~/, utilizing the deconvolution approach is able to converge to the 
Bayes classifier with a certain rate depending on the smoothness of Pc. In fact, the 
assumption (a) in Theorem 3 describes the smoothness of the density p, of the noise 
process, i.e., larger values ofT(d) correspond to smoother p,. Consequently the rate 
of convergence is slower for smooth densities of the noise process. This is due to the 
fact that the deconvolution with smooth measurement error is intrinsically difficult. 
Furthermore forT(d) = 0 we can recover the rate O(n -2~¢'÷e~) for the noise-free data 

case. 
The case of normal measurement error is particularly important. It is known that in 
this case ~,(t) has an exponential decay as I1 t 11---> oo, i.e., the condition (a) of Theorem 
2 does not hold. Nevertheless, it can be shown that in this case we have 

E{P(tF,,(X) ;~ 01 ~,,)} = R' + c(log(n))-'. (3.5) 

Let us note that this very slow rate is independent of the dimensionality of the feature 
vector. 
It is important to note, however, that all the aforementioned results have been obtained 
from the upper bounds. One can conjecture that optimal rates can be much better than 
those given in (3.4) and (3.5). 

5 Concluding Remarks 

The classification problem in the presence of distorted data has been presented. It has 
been observed that efficient solutions in this situation lead to the inverse problem, i.e., 
one wishes to infer about the true model from the distorted one. Suggestions have 
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been made how to design nonparametric classifiers from imperfect data. A number of 
issues remain open, e.g., optimal convergence rates of the proposed classification 
schemes, small sample properties, the choice of classifiers parameters. Furthermore, 
an important problem of assessing the performance of a classifier derived from distorted 
data remains to be addressed. 
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