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Abstract .  A novel method to improve the generalization performance 
of the Minimum Classification Error (MCE) / Generalized Probabilistic 
Descent (GPD) learning is proposed. The MCE/GPD learning proposed 
by Juang and Katagiri in 1992 results in better recognition performance 
than the maximum-likelihood (ML) based learning in various areas of 
pattern recognition. Despite its superiority in recognition performance, 
it still suffers from the problem of "over-fitting" to the training samples as 
it is with other learning algorithms. In the present study, a regularization 
technique is employed to the MCE learning to overcome this problem. 
Feed-forward neural networks are employed as a recognition platform to 
evaluate the recognition performance of the proposed method. Recogni- 
tion experiments are conducted on several sorts of datasets. 

1 Introduct ion 

It is well-known that, theoretically, the Bayes decision rule would give the opti- 
mum decision that achieves the minimum classification risk if one can predict the 
exact probabilistic parameters of the target categories beforehand [1]. However, 
in case of real world problems, as the number of training data for estimating the 
probabilistic parameters by the maximum likelihood (ML) method is restricted, 
the ML-based Bayes classifiers sometimes performs poorer recognition than the 
classifiers trained by non-parametric learning scheme such as LSE (least squared 
error) based neural networks and discriminant learning to minimize the recog- 
nition error. 

The idea of Minimum Classification Error (MCE) / Generalized Probabilistic 
Descent (GPD) learning was first proposed in 1992 by Juang and Katagiri [2] to 
establish a general learning scheme for minimizing classification error of arbitrary 
discriminant functions. Although a number of discriminative-learning algorithms 
have been proposed so far [3], [4], [5], the MCE learning is unique in the sense 
that it is applicable to arbitrary discriminant functions that are differentiable 
in respect to the parameters that are to be adapted. To be specific, it can be 
applied to discriminant functions that deal with variable record length of data 
like speech recognition. 
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The superiority of the MCE learning to the conventional ML based learning 
has been shown for various functions such as linear-discriminant functions, MLP 
(multi-layer perceptron), DTW (dynamic time warping) [6] and HMM (Hidden 
Markov Models) [7]. Since the MCE learning mainly tries to minimize a cost 
function that corresponds to the number of classification error for a given training 
dataset, the generalization performance is not adequate against unseen data. In 
another word, over-fitting to the training data is inevitable. 

In order to improve the generalization ability of the MCE learning, a reg- 
ularization technique, which is widely used to solve ill-posed problems [8], is 
employed in this study. 

This paper is divided into six sections. The next section describes the MCE 
learning briefly. The third section gives an idea of improving the generalization 
performance of the MCE learning. Implementation of the proposed method to 
neural networks is described in the fourth section. The fifth section presents 
experimental results. Finally, the last section is devoted to conclusion. 

2 M i n i m u m  C l a s s i f i c a t i o n  E r r o r  L e a r n i n g  

Let gk(x; Ak) be a discriminant function with positive value to discriminate a 
data of class ~k from the other classes, where x = (x l , . . . ,  XD) and Ak denotes a 
vector in D-dimensional feature space and a set of parameters of the discriminant 
function, respectively. For an input vector x, if the foflowing equation holds 

gk(x; Ak) _> gi(x; As) for all i ¢ k (1) 

then x is classified to class tgk. 
In the framework of MCE learning, misclassification measure for class ~2k is 

defined as follows 

dk(x) = --gk(x;Ak)+ [ CI~- I ~'~ J (2) 

where C represents the number of classes and ~/is a positive constant. In an 
extreme case where ~7 goes to infinity, the misclassification measure becomes 

dk(x) = -gk(x; Ak) + m a~g~(x; Ai). (3) 

Obviously dk(x) <_ 0 in case of correct classification, and dk(x) > 0 in case of 
misclassification. 

Using the misclassification measure for a set of data X = (xt ,  x2,- . . ,  xp}, 
the objective function to be minimized is defined as an empirical average cost 
function as given below 

1 P C 

L°(AIX) = -~ Z Z l(dk(xp))l(xp e ~k)- (4) 
p = l  k = l  
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Here A = {A1 ,A2 , . . . ,Ac}  and g(d) is a smooth loss function, for which the 
following sigmoid function is typically used 

1 
e(d) - 1 + e-~( d+°)" (5) 

1( ) in (4) is an indicator function which has value of one when the argument is 
true and zero otherwise. 

In order to minimize the objective function of (4), the well-known gradient 
descent method can be applied and the set of parameter of each discriminant 
function is adapted by the following rule: 

A (~+1) = A (0 - ¢VL0 (A (0 IX) (6) 

where A (~) denotes the parameter set at the t-th iteration and E denotes the 
learning parameter of a positive small value. 

Instead of using the parameter updating rule of (6), Juang and Katagiri 
showed another updating rule called Generalized Probabilistic Descent (GPD) 
which is given by 

A (~+0 : A (0 - ~tUV~(dk(x)). (7) 

Here U is a positive-definite matrix and ~ is a small positive real number. 
Compared to the updating rule of (6) that tries to minimize the empirical average 
cost of (4), (7) is expected to minimize the expected cost of the following equation 

L(A) = E[~(d(x))] = ~ P(Ck) f ~(dk(x))p(xlCk)dx. 
k 

(s) 

Here P(Ck) and p(xICk ) are the a priori and conditional probabilities, respec- 
tively. The convergence to a local minimum by the rule (7) is guaranteed when 
an infinite sequence of random observation {x} axe presented during training 
and the conditions ~ o~ 2 $=1 g~ -'4 (X), E t = l  g~ <: OO are satisfied. 

3 Modification of the MCE Learning 

In any real-world pattern classification problems, the number of training samples 
available is finite and relatively small, and the MCE/GPD learning described in 
the previous section basically tries to minimize an empirical error [9]. Therefore, 
the MCE learning scheme suffers from the problem of over-fitting to the training 
dataset as it is with other training schemes. 

In order to prevent the over-fitting effect and improve generalization per- 
formance, McDermott and Katagiri [6] proposed a method to adapt the slope 
parameter ~ in (5), which is expected to control the sensitivity of forming the 
decision boundary against the distribution of training data. In other words, as 
the parameter ( increases, the sensitivity increases and the number of training 
patterns that dominate the shape and location of the boundary becomes fewer. 
In this sense, the parameter ~ influences the generalization performance of the 
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discriminant functions. One of the drawbacks of this approach is that the rela- 
tionship between ~ and the shape of decision boundary in the feature space is 
not clear because it is not the shape of decision boundary but the sharpness of 
the sigmoid function of the distortion measure that ~ controls. 

From the view point of generalization, the mapping function from input to 
output that the recognizer tries to learn should be, in some sense, smooth. In 
other words, a small change in the inputs should produce a small change in 
the outputs. This assumption of smoothness as a priori knowledge is natural 
in case of real-world pattern recognition problems such as character recognition 
and speech recognition. Based on this assumption, we propose a new method 
to improve the generalization performance of the MCE learning. Basic idea is 
to utilize a regularization technique instead of the ori~nal definition. In the 
framework of regularization, the new objective function L(A) has the form 

L(AIX) = Lo(AIX) + 7F(A), (9) 

where F is the penalty term for adding smoothness to the discriminant functions, 
and the parameter 7 controls the extent to which the penalty term F influences 
the form of the solution. 

Regularization has been widely applied in the field of image restoration and 
neural networks. In contrast to the case-specific regularizers proposed so far, 
we employ the so called Tikhonov regularizers [8] for our purpose. This is due 
to the fact that the MCE/GPD learning is a general learning scheme that is 
applicable to any first order differentiable discriminant functions, and therefore 
the regularizer should not be case specific. 

The class of Tikhonov regularizers has the form 

F = ~ h,.(x) \dx~ ] dx (10) 
r~ .O  a 

in which x, y denote the input, output variable, respectively, and h~(x) >_ 0 for 
r = 0 , . . . , R -  1 and ha(x) > O. 

In the present study, as a simple case of the Tikhonov regularizer, we have 
employed the following empirical penalty term given in [10], [11], which is 

F(AIX) = EEEt o4, ) 
k = l  p = l  i=1 

( i i )  

where xp = (Xpl,Xp2,... ,XpD) represents the p-th training data in D dimen- 
sional space. The parameter updating rule of (6) is now 

A (t+~) = A (t) - cVL(A (t) Ix). (12) 

The MCE learning algorithm based on the proposed criterion will be referred 
as mMCE in the following text. 
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4 m M C E  Based Neural  Networks  

The modified MCE learning criterion given in (9) can be applied to arbitrary 
discriminant functions that are second order differentiable in respect to the vari- 
ables of the functions. In the present study, multi-layer perceptron type neural 
network is employed to evaluate the performance. 

For the p-th training data Xp • R D, let i(p~. ) and o(~ ) be the input and output 
of the j - th  cell of layer m respectively. Then the input value of the j - th  cell of 
layer m is given by 

n~r*-- 1 

i(~. ) :  ~ ~ (~'~-~)o(~-~) + 0J ~ ) . ~  ~p~ (13) 
i : 1  

(m,~-l) Here wj{ is the connection weight between the j- th cell of layer m and the 

i-th cell of layer m - 1, --~m) is a constant and n~ represents the number of cells 
in layer m. The output of each cell is given by 

o(m)= f(i~m)) (14) J 

where f (  ) is a sigmoid function of the form 

1 
f(x) = 1 4- e - = "  (15) 

In the framework of the classical error back-propagation (EBP) [12], the object 
function is defined on the basis of least squared error (LSE) 

1 e ~3 ( ,.,(3),~2 
",q = 5 Z :  E ,  tpk - ~,pk j , (16) 

p----1 k = l  

in which three-layer network is assumed and tpk is the desired output (teacher) 
for the k-th output cell against the p-th input Xp. 

On the other hand, in the proposed mMCE, the objective function is defined 
a s  

P P n l  

L(AIX) = Lop(AIX) + .,/1 ~ ~., Fp,(AIX) (17) 
p=l p=l i=l 

where  
n3 

Lop(A) = E ~(d~(xp))l(xp • C~), (18) 
i = l  

1 ~ / (32), (21),2 . u , - ( 2 ) ~  2 
Fp,(A) = 5  t, ~kj ~J'  J ± ~PJ J) (19) 

k = l  

The weight adjustment A (-,,m-i) ~Wp~j corresponding to VL in (12) is 

A (m,m-1)_ OLop(A) OFp 
Wpj~ ~ ( re ,m-- i )+7 ,  (re,m--l)" (20) 

UWji OWj~ 
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In the output layer where m = 3, 

OLop Odk (xn) o(2) 1 (x 
o (32) = g ' ( d k ( x p ) )  ~ ( 3 )  pJ P 
C]'Wkj "~°pk 

kj 

where 

e (21) 

(22) 

n2 

x-~ (32) (21)2~,,.(2), (23) Qvk~ = 2-, wkJ' wj,~ J [~vJ')" 
j~=l 

In the hidden layer where m = 2, 

OLo, o8 (oLp  (1) 
(:1) = Z .(3)~kj / ,~'(:) OPi' (24) 

awj~ ~ O~pk / k = l  O$pj 

OFpi 1 .(1) (21) 2 
,, (:1) 2 (25'i'f''(i(~))wl~l) +,p~,w,j [(1 .(e) ,, .(2) : - - 2f(Zpj )) f  (Zpj) (25) 
C]~l) jit 

n3 
-2f '(i(~))2]) Zw~32)Opki. 

k = l  

Here 5ii, is the Kronecker delta. It can be seen in the above formulation that 
the weight adaptation takes place backward from the output layer to the input 
layer. 

5 Experiments 

Performance evaluation was conducted on several types of datasets in UCI ma- 
chine learning repository [13] and ATR speech database [14]. 

In order to compare the performance of the proposed method with other 
learning algorithms, the EBP based neural networks, the original MCE based 
neural networks, and Bayes quadratic discriminant functions where a single 
Gaussia~ distribution (full covariance) is assumed for each category were ap- 
plied on the same datasets. 

Since the MCE and mMCE learning are computationally expensive, the ini- 
tial pa~:ameters used in the parameter updating rule of (6) were set to the one 
obtained by the LSE based EBP learning. 

Three-layer feed-forward neural networks were employed for the experiments, 
the parameter 7 in (9) was set to 0.01 and the slope parameter ~ in (5) was set 
to 1.0. 

In case where the absolute recognition performance of the recognizer is an 
important topic to discuss, one has to pay careful attention in choosing the 
parameters of neural networks such as the number of nodes in the hidden-layer 
and learning parameters. However, since the purpose of our experiment is to 
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Table 1. Performance comparison in two-class problems 

Method 

Bayes/ML 
NN/EBP 
NN/MCE 
NN/mMCE 

# data 

Dataset 
Cancer House Sonar 

training testing training testing training testing 
420 279 265 170 141 67 

2 2 ~classes 2 
9 15 60 

12 
# attributes 
# hidden nodes 12 12 

95.0 95.7 98.3 96.4 100.0 74.6 
91.9 90.3 96.3 96.5 95.0 82.1 
93.6 94.3 97.4 95.3 92.9 85.1 
95.0 95.7 94.3 97.7 91.9 89.6 

see how the proposed method improves the generalization performance of the 
original MCE learning, optimization of the network architecture and learning 
parameters is not very important. 

A. Resu l t s  for Two-Class  P r o b l e m s  

Experiments were, at first, performed for two-class problems on the UCI datasets 
"cancer", "house" and "sonar". Each dataset was divided into two groups, one 
was used for training and the other was used for testing. 

The experimental results (correct classification rates ([%])) are summarized 
in Table 1. It can be seen that mMCE gives the best test-set performance among 
the three methods for each dataset. Compared to the performance improvements 
from MCE to mMCE for the training set and testing set, the improvement on the 
training set is larger than that of the testing set. This certifies that the proposed 
penalty term of (11) is effective for improving the generalization performance of 
the recognizer. 

Fig. 1 shows the learning curves of the loss function L0, the penalty function 
F,  and the total loss function L in (9). Fig. 2 shows the correct classification 
rates in terms of the slope parameter ~ in (5). Although ~ influences the correct 
classification rate, mMCE performs better than MCE for any value of ~. This 
shows the proposed approach is more effective than the McDermott's approach 
[6] discussed in Section 3. 

B. Resu l t s  for Mul t i -Class  P r o b l e m s  

In order to evaluate the performance on different datasets, speech database "iso- 
let" (isolated alphabet letters) of the UCI repository, and "vowels" (Japanese five 
vowels) made of the ATR continuous speech database "Set-B" were collected. In 
the "isolet" database, the data file "isoletl+2+3+4" was used for training and 
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Fig. 1. Learning curves of the loss L0, L and the penalty F in terms of training epochs 
(dataset: house) 
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Fig. 2. Classification performance for the test-set "house" as a parameter of 

"isolet5" was used for testing. The database "vowels" was created for this re- 
search purpose by extracting 100 samples of each vowel uttered by each subject 
from the ATR database containing the uttered voice of six subjects. The dataset 
was divided into three groups so that  each group contains data  of two subjects. 
Among these three groups, two groups were used for training and the remaining 
one was used for testing. All of the possible combinations (in this case, 3) were 
employed for both training and testing. 
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Fig. 3. Classification performance for the test-set "house" as a parameter of 7 

Table 2 shows the correct classification rate for both the training and test sets. 
The proposed mMCE gives better classification performance than the original 
MCE for the test sets. 

6 Conclusion 

Improvement of generalization performance of the MCE/GPD learning is pro- 
posed by employing a regularizer to the objective function to be minimized. 
Since the employed regularizer is not case specific but general, apart from neu- 
ral networks the proposed modified MCE (mMCE) learning can be applied to 
various type of recognizers like HMM (hidden Markov models) and so on. 

Table 2. Performance comparison in multi-class problems 

Method 

Bayes/ML 
NN/EBP 
NN/MCE 
NN/mMCE 

data 
classes 
attributes 
hidden nodes 

Dataset 
isolet(UCI) 

training testing 
6238 1559 

26 
617 
32 

vowels(ATR) 
training testing 

4000 1000 
5 

12 
12 

- 86.3 73.0 
89.0 93.3 87.3 81.8 
95.9 94.8 88.3 86.4 
95.5 95.3 87.0 87.8 
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