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Abstract 

The object of this paper is to present a model of non-stationary time series generated by switching 
between a finite number of random processes and to apply clustering algorithms to the task of 
estimating the model's parameters. We will also analyze the parameters which govern the 
algorithm's behavior to infer a novel cluster validity criterion for fuzzy clustering algorithms of 
temporal patterns. 

The model defines a non-stationary composite source generated by randomly switching between 
elements of a finite number of random processes. The probability distribution which underlies the 
behavior of the switch is controlled by a temporal parameter vector process which is used to 
determine a different switching probability in each time instant. This definition allows us to 
analyze a drift between disjoint states of the composite model. 
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Introduction 

Many physical and biological phenomena, which are observed in terms of a 
non-stationary time series, can be modeled by a set of stable or semi-stable states that 
the system traverses. In each of these states the system outputs a stationary distributed 
segment of observations. The task of segmenting the series to states and of estimating 
the distribution of each state can be handled by several algorithms of which the Hidden 
Markov Model (HMM) with the Baum-Welch algorithm [1] is probably the most 
popular. 

In some of these cases it is of great importance to analyze the drift between any two 
states and to detect that such a drift is underway. An example for such an application is 
the early prediction of an epileptic seizure from a patient's EEG. The epileptic seizure 
itself can be detected in the sampled EEG signal and easily separated from the normal 
wake state [2], but the early prediction of the seizure, when the EEG diverges only 
slightly and infrequently from the normal wake signal, is a difficult task. 

Applications utilizing the HMM can only partially support such a demand by assigning 
stages of the drift process to specific intermediate states. Describing such a drift process 
using a continuous amplitude, time dependent, signal which governs the temporal 
distribution of the series is more natural and can offer more flexibility and accuracy in 
extracting information about the drift. We suggest estimating such a signal by means of 
unsupervised fuzzy clustering algorithms. Furthermore, situations in which the time 
series distribution can be presented as a composite source of an unknown number of 
sub-sources raise another problem regarding standard versions of the HMM, which can 
only approximate the series by a constant, pre-determined number of Gaussian 
sub-sources. 

In this contribution we propose a model for the generation of a non-stationary time 
series by a composite source such that its temporal distribution is controlled by an 
unknown temporal signal. First we will describe the model and provide an algorithm for 
estimating the process which underlies the time series distribution drift. Next we will 
analyze the algorithm's parameters and demonstrate it's performance with a simulation 
example. 

Model Description 

The output time series is generated from an unknown number, N, of sub-sources (see 
Fig. 1) by a random switching function F(0(t), X(t)), where 0 ( t ) ~  N is a parameter 
vector process and X(t)Egt N~ is a matrix with each of the N columns containing a 
random vector process with dimension D originated in a different sub-source. 0(t) is 
used as a parameter vector for determining the probabilities of selecting a single 
sub-source, in each time sample t, to be transmitted to the output. 

y(t) = F(X(t),0(t)) = xi(t ) with probability P(X(t), 0(t)) (1) 
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The random function F(0(t), X(t)) acts as a switch which takes a new position each time 
according to the probability vector inspired by 0(t) and outputs the vector y(t)eOl D 
which equals one of the columns of X(t). The behavior of the model can be illuminated 
by comparing it to the Continuous Hidden Markov Model (CHMM) as def'med in [1]. 
CHMMs of different kinds are widely used today in a variety of applications such as 
speech recognition [1]. If we are to define X(t) to be composed of Gaussian processes 
and F(o) as a random Markov process which can only receive a finite set of probability 
vectors for the switch and have a constant matrix goveming the transition probabilities 
between these constant probability vectors then this model would have realized the 
common CHMM. 

x,(t) 

! 

I 

. XN(t) 

Ira. 

~, ~ y(t)=F(0(t)'X(t))-- output time series 

. . . . . .  It. 

Figure 1 
Model description 

Examples for the random function F(0(t),X(t)) 

In general, no limitations are imposed on F(*) and although other types of F(o) can be 
used we preferred, throughout this paper, to use (1) with a probability distribution 
function ~df) which takes the value of 0(t) as a parameter. 

In this case we must demand that P(0(t)) will realize a pdf over the possible values of 
X(t). This means that it should be non-negative and integrate to one. The simplest 
example for p(e) is: 

P(X(t), 0(t)) = 0(t) (2) 

i.e. the value of 0i(t) itself will be used as the probability of selecting xi(t ). In that case 
every element of 0(t) must be non-negative and follow: 

N (3) 

)--~0 i = 1  
i = l  

We will use this simple possibility in the algorithm for estimating 0(t) which follows. 
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Another example for P(*) is the Gaussian distribution: 

P(X(t), 0(t)) = N(l.t(0(t), X(t)), cr~) (4) 

where %z is a constant variance and ~t(0(t),X(t)) is the Gaussian mean which is given by 

(5) 
~t(0(t), X(t)) = ~ 0, (t)x~ (t) 

i=l 

This definition of F(,,) can represent a tough but quite practical situation when both the 
sources internal distribution and the switching distribution is Gaussian. 

A n  algorithm for estimating 0(t)  

We now present an algorithm for the estimation of 0(t) in the case where all sub-sources 
are Gaussian with different means, drawn from a f'mite, D dimensional space. We 
assume that the output time series distribution {y(n)egl D [ -oo _< n < oo} is governed by 
(1). The main idea is to use a sampled period of the time series as an input to a clustering 
algorithm and to estimate 0(t) using the clustering results. 

The clustering space is composed of L sampled points from the time series: {y(n)e 9l D J 
1< n _<L}. We repeat the clustering for every possible number of clusters, N, in the range 
[Nmi, , Nmj  to receive a set of cluster means 

{~t~ eg~ o I I < i < N ;  Nmi n <N<Nmax} and membership matrices 

{Une[0,1] L'N I Nmin -< N _<Nm~x}. We are currently using two altematives for clustering: 
the unsupervised optimal fuzzy clustering algorithm (UOFC) defined in [3] and the 
deterministic annealing approach from [4], After performing the clustering we divide 
the sampled points into a set of L/K segments, each including K samples, and use the 
membership matrices to produce N possible estimations of the series 0(t). Each possible 
estimation, 0N(t), N~in< N _<N~. assumes a different number of sub-sources. The 
estimation result is given by: 

N I1<~:<~';  l < i < N ;  Nmi~<N<Nm~ ~ 0N('IT)= K E kli,j . . . . .  
j=K(x-I)+I 

Where N is the nmnber of clusters and uNi,j is an element in the membership matrix, U N 
, which resulted from clustering to N clusters and represent the membership of the j-th 
sample in cluster i. The result for each value of N is a sampled version of the estimated 
0(x) in a sampling rate of fs/K where fs is the sampling rate of the given time series. The 

algorithm output is the series {~Nc (1:) t 1 < x < L/K } where N~ is the number of  
clusters which is selected by a special cluster validity criterion that will be detailed. The 
general algorithm will now be presented followed by a discussion on the selection of its 
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parameters. Given a finite sample of  the time series output of  length L, perform the 
following steps to receive an estimate of  0(t): 

1. for every value of N in the range NmintO Nma x : 

a) use a fuzzy clustering method to calculate cluster means using all 
given data periods 

b) set Nc=0 and segment the sampled series to consecutive samples of  K 
elements each. 

c) for every segment of length K do: 

i) classify every point to a single sub-source. 

ii) estimate the temporal value of 0N(t) by (6). 

d) if elements of  the series 0iN(t) do not agree with the stopping condition 
then set N~N,  else stop and return N c. 

2. if No=0 return failure else return 0No(t). 

Stopping condition for the algorithm 

As a stopping condition we use the fact that when the number of  estimated clusters 
exceeds the original number of  clusters, then at least two estimated clusters contain 
elements which originated from the same sub-source. We deal with the common case 
where a true cluster splits into two or more pseudo-clusters with elements which 
originated in the same source. If two pseudo-cluster relate in that way then their relative 
temporal probability becomes: 

(7) P(q [ P(y) = N ( ~ , o  i)} + ~t = coas t  
P ( q ) / P ( c 2 ) :  p{c2 [ p(y ) :  N~,crl)} + h 

where P{c~lP(y)=N(gi,oi)} is the probability of selecting pseudo-cluster 1 given that the 
sample point y originated in sub-source i. %2 are the probability of error classification. If 
we ignore ex,e2 then we have that P(cl)/P(c2) becomes the relative probability of 
selecting each pseudo-cluster given this sub-source which is constant. For a sub-source 

6, 
which results in two pseudo-clusters i,j we expect that the value of  a---will be close to 

0j 
constant. We regard the case of two original sub-sources with constant relative 
probabilities as a single source regarding the temporal behavior of the series values 
distribution. 

We will also select Nm,x large enough for the stopping condition to limit the number of 
clusters to a value smaller than Nm~.. 
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The number of samples for each estimation of O(t) 

The number of elements in each segment used for estimating a single value of O(t) can 
be determined by several constraints. We will examine two important examples. First, 
an error bound can be related to the number of samples in each segment by the maximal 
variance of the sub-sources O2m~ [5]: 

~max = O*2max/K (8) 

Another option is to use a band limit on 0(t) which is available in some applications, 
when all processes 0i(t) are band limited by a mutual constant bound B which reflects 
the assumption of relatively slow transients between semi-static states of the system. The 
band limitation is given for each element 0i(t ) in 0(t) by: 

(9) 
0 i (f~) ----- ~ I0 i  (t)e-~'tdt = 0 V N >__ i > 1, [0~l>B 

~o 

This limitation, together with the Nyquist sampling condition suggests an upper bound 
on the number of samples that can be used for each estimation of 0(t) in order to avoid 
aliasing. If the band limit can be expressed relative to the time series sampling rate: 

RB =--fs (10) 

B 

where fs is the time series sampling rate and B is defined in (9) then the maximal 
segment length should not exceed RB/2. The two constraints can be combined by the 
demand: 

2 (11) 
f~ > K > Crma~ 

g gmax 

Simulation example 

As an example we present an estimation result of a simulated scalar composite source 
(D=I). The source distribution is given by: P(t) = 0~(t)N(10,4) + 02(t)N(40,4) + 
03(t)N(60,4) where: 

01(t)=10.5sin(2n0~lt)l, 02(0 = 10.5sin(2nm2t)[, 03(0 = 1 - 02( 0 - O~(t), ~,=104 , %=5.10 ". 
A plot of 1000 samples of the series is drawn in Figure 2. 5000 samples were used as the 
input for the algorithm and the segment length was chosen to be K=50 with 50% 
overlapping between the segments which yielded 200 temporal estimations of 0(t). The 
deterministic annealing algorithm [4] was used as the clustering algorithm and the 
stopping condition for N was the existence of any two estimated cluster with an 
averaged relation of C_+0.1 where C is any constant. The algorithm correctly detected 
three clusters and the estimation of 01(t), 02( 0 and 03( 0 is given in Figure 3 together with 
the original temporal probability signal that was used in the generation model. The 
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relative probabilities of  the estimations for the case N=3 is given in Figure 4. The 
relation is presented with a logarithmic axis. The relative probability between two 
observed pseudo-clusters is presented in figure 5 for the case N=4 and it is demonstrates 
that the points fi'om a single sub-source were split between two estimated 
pseudo-clusters. A threshold on the variance of the relation between clusters was used to 
stop the algorithm and to detect that NC3. 
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Estimation results for 3 sub-source example 
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Relative probability of two pseudo-clusters originated in the same sub-source 
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Summary and open problems 

A new model for the generation of  a temporal composite source was presented together 
with a method for estimation of  the statistical properties of  the model. A stopping 
condition for an unsupervised fuzzy clustering algorithm was derived and serves as an 
example for a clustering validity criterion for time series analysis algorithms. Current 
work is focused on using the model in practical applications and deriving bounds on the 
quality of  estimating 0(t). 
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