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Abst rac t .  Recent studies have shown that the random subspace method 
can be used to create multiple independent tree-classifiers that can be 
combined to improve accuracy. We apply the procedure to k-nearest- 
neighbor classifiers and show that it can achieve similar results. We ex- 
amine the effects of several parameters of the method by experiments 
using data from a digit recognition problem. We show that the combined 
accuracies follow a trend of increase with increasing number of compo- 
nent classifiers, and that with an appropriate subspace dimensionality, 
the method can be superior to simple k-nearest-neighbor classification. 
The method's superiority is maintained when smaller number of train- 
ing prototypes are available, i.e., when conventional knn classifiers suffer 
most heavily from the curse of dimensionality. 

1 Introduction 

Nearest-neighbor classifiers have been widely used in pat tern recognition, mainly 
because of its conceptual simplicity and the assertion that  its error is bounded 
by twice the Bayes error when the training set size approaches infinity [2]. More- 
over, it is often observed that  its accuracy matches or surpasses those of more 
sophisticated classifiers [9]. The classifier's popularity has motivated many prior 
works on optimizing its speed by exploiting geometrical constraints. Those works 
do not aim at accuracy improvement because it is assumed that  using all the 
training data  as prototypes will yield the best accuracy under the same metric. 

Some other researchers have noted that  for many practical problems, even 
when all training samples are used as prototypes, the accuracy of nearest- 
neighbor classifiers can be far from optimal because of the lack of sufficient 
prototypes in a very high dimensional feature space [3]. To overcome the diffi- 
culty with the sparsity of data  in such spaces, researchers have investigated using 
a decision threshold [1][4] and enhancing the training set by bootstrapping [5]. 

A method that can exploit the advantages of nearest-neighbor classifiers with- 
out suffering from the sparsity of high-dimensional data would be valuable. Re- 
cently, it was shown [6] [7] that multiple tree-classifiers constructed in randomly 
selected subspaces can be combined to improve accuracy nearly monotonically as 
the number of trees increase. Contrary to the common difficulty encountered by 
other methods due to the curse of dimensionatity, the random subspace method 
effectively takes advantages of high dimensionality. By systematically construct- 
ing and combining a set of classifiers that  are mutually independent to a certain 
extent,  the method can achieve a very high accuracy without the need for an 
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"intelligent" similarity metric. In this paper we discuss an application of the 
method to k-nearest-neighbor classifiers with k _> 1. 

2 T h e  R a n d o m  S u b s p a c e  M e t h o d  f o r  k N N  C l a s s i f i c a t i o n  

The random subspace method relies on a stochastic process that randomly se- 
lects a number of components of the given feature vector in constructing each 
classifier. In the case of k-nearest-neighbor classifiers (knn), that means when a 
test sample is compared to a prototype, only the selected features have nonzero 
contributions to the distance. Geometrically this is equivalent to projecting all 
the points to the selected subspace, and the k nearest neighbors are found using 
the projected distances. Each time a random subspace is selected, a new set of k 
nearest neighbors are computed. The k nearest neighbors in each selected sub- 
space are then assembled for a majority vote on the class membership of the test 
sample. The same training sample may appear more than once in this ensemble 
if it happens to be among the k nearest neighbors in more than one selected 
subspace. 

Formally, given a set of N points in an n-dimensional feature space 

{(xl,x2, ...,x~)lx~ is real for all 1 < i < n}, 

we consider the m-dimensional subspaces 

{(x l ,x2 ,  .., ,x~)Ixi -- 1 for i e I,  xi = 0 for i ~ I} 

where I is an m-element subset of {1,2,...,n}, and m < n. In each pass, a 
subspace is chosen by randomly selecting an I from C(n,  m)-many choices. All 
points are projected onto the chosen subspace. For each testing point, k nearest 
neighbors (1 < k <_ N) among the projected training points are found using 
Euclidean distance, and the class labels of those k neighbors {cl,c2, ..., ck} are 
appended to a list C. After p (p > 1) passes, the test point is assigned to the 
class that has the most frequent occurrences in the list C. 

The method is a derivative of stochastic discrimination where many stochas- 
tically created weak classifiers are combined for nearly monotonic increase in ac- 
curacy [11] [12]. The individual classifiers do not have full discriminative power 
but they generalize very well to unseen data for the same problem. A stochas- 
tic procedure is used to introduce independence among the classifiers. It is in 
combining their decisions that the discriminative power is developed. The ran- 
dom subspace method follows the same approach. By ignoring some dimensions 
of the feature space, invariance of classification is maintained for samples that 
differ only in the ignored dimensions. By randomly selecting the combination of 
dimensions to be ignored, certain independence is introduced among the compo- 
nent classifiers. By combining the individual decisions, discriminative power is 
improved, just like in other methods for classifier combination [8]. By using knn 
classifiers as individual components, we avoid algorithmic difficulties in achiev- 
ing a uniform cover of the feature space that is needed in a former SD algorithm 
using simple weak models [10]. 
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The method gives a kernel estimate of the posterior probability P(clx ) for a 
vector x belonging to class c. The kernels are defined by the decision regions of 
the component classifiers so that their sizes and shapes are irregular. For knn 
classification, the kernels are defined by the locations of the k nearest neighbors 
of a test sample, thus they may be different for each test sample. In this aspect 
the method is very similar to simple k-nearest-neighbor classification. But with 
the combination of many component classifiers, there is another dimension for 
averaging, which makes it interesting to compare the two methods. In the rest 
of this paper, we will compare the empirical results of the proposed method and 
those of simple knn classification using data from a digit recognition problem. 

Since the method uses random subsets of components of a feature vector, it 
will be good only for problems with a relatively large number of features. Such 
problems typically arise in signal processing tasks such as image and speech 
recognition, or large-scale data mining applications. For problems with smaller 
number of features, it will be necessary to augment the feature vector with 
certain simple functions (e.g. pairwise sums, differences, or products) of the raw 
features. 

3 C o m p a r i s o n  w i t h  k - N e a r e s t - N e i g h b o r s  in  F u l l  F e a t u r e  

S p a c e  

We tested the performance of the method using data from a handwritten digit 
recognition problem. Our choice of this problem was motivated by the suitability 
of the method to the domain, the accessibility of previous results on the problem, 
and the publicity of the dataset. The dataset contains 7291 training vectors and 
2007 testing vectors. Each vector has 256 dimensions and it stores the gray- 
levels (originally in [0, 255], normalized to be in [-1,1]) of a 16x16 image of a 
handwritten digit. The images were scanned from mail pieces processed by the 
U.S. Postal Services. Recognition accuracies of several methods on this datasets 
have been previously reported in [13] (Table 1). 

Table  1. Reported accuracies of other methods on USPS data. 

Source: V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995. 

classifier 
human performance 
C4.5 decision tree 
two-layer neural network 
five-layer neural network 
support vector machines (degree 3 polynomials) 
support vector machines (radial basis functions) 
support vector machines (neural network) 

error rate (~) 
2.5 

16.2 
5.9 
5.1 
4.0 

4.1 
4.2 

We tested the effects of several parameters of the subspace method: (1) the 
number of subspace dimensions (referred to as f); (2) the value k in k-nearest- 
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neighbor voting; and (3) the number of prototypes (n) used in distance com- 
parison. For each combination of these three parameters (f ,k,n), we built 100 
knn classifiers each differing only by the random choices of feature components 
(Figure 1). In each component classifier, k nearest neighbors of a test sample are 
found among the prototypes using Euclidean distance, but voting for class mem- 
bership is delayed until decision combination. We measured the accuracy of the 
combined decisions on the test samples as each classifier was added. Ambiguous 
decisions were resolved randomly. These accuracies, as well as those of simple 
knn classification using each (k, n) combination (f=256, the entire feature vector 
is used), are plotted in Figure 2. 

From Figures 2 and 3, it can be observed that, regardless of the parameter 
values, the trend of accuracies of the subspace method is like all other variants of 
stochastic discrimination, i.e., as the number of component classifiers increases, 
test set accuracy increases, and the rate of increase is largest at the beginning. 

The  Effect  of  k 

We first focus our discussion on the first column of Figure 2. There we show 
the accuracies of the method with different choices of k and f, using the entire 
training set for prototypes in distance computation (n=7291). For this dataset 

:.2 q q 

Fig. 1. A test sample and its 9 nearest neighbors under 12 random masks of 128, 
64, 32, or 16 features each. 
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Fig. 2. Test set accuracies of combined knn classifiers in random subspaces, with 
full and half the training set as prototypes. 
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F i g .  3.  Test set accuracies of combined knn classifiers in random subspaces,  with 
1 / 4  and 1 /8  of  the training set as prototypes.  
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it seems that k=5 would be the best for simple knn classification using the full 
feature vector (when f=256). However, with several settings of k and f (such as 
(k=l, f=64)), the random subspace method yields a better accuracy. In fact, 
with all the settings of k, there is a choice of f so that the accuracy of the 
subspace method either closely matches or exceeds that of simple knn. With its 
best setting (f=64 and k=l), the subspace method scores an error rate of 4.285%, 
matching closely with the best reported accuracy for this dataset. Also, with k 
= 1,3, or 5, it does not take many (about 10) of the component classifiers for 
the method to be better than simple knn. 

The  Effect of Sample Size 

We now compare the different columns of plots in both Figures 2 and 3. This 
comparison is to show the effect of a smaller training set on accuracy and dif- 
ferences between accuracies. Beginning with the entire training set, the set of 
prototypes to be used is randomly reduced to half in the runs shown in each 
column to simulate smaller training sets. The prototypes are fixed for all runs 
plotted in the same column. As expected, the number of prototypes has a very 
strong effect on accuracy, as the sparsity of data is one of the biggest problem 
with knn classifiers. Nevertheless, the superiority of the random subspace method 
persists (with k=l) and the margin is maintained between the accuracy of the 
random subspace method and that of simple knn as the training set decreases 
in size (Figure 4). 
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Fig. 4. Comparison of best achieved accuracy of the random subspace method 
versus that of simple knn as the size of the training set (number of prototypes) 
changes. 
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The Effect of Subspace Dimensionality 

Some interesting observations can be made about the effect of f.  When the 
training set is large (n=7291), f=64 yields the best accuracy. As n decreases and 
with k=l, the accuracy with f=32 gets closer to that with f=64, and eventually 
becomes the best when the training set size reaches one eighth of the original 
(n=9!2). One may also notice that the rates of increases in accuracy are different 
for each value of f and for all values of n and k. Classifiers with larger values of 
f tend to produce accuracy curves that rise rapidly when only a few component 
classifiers are combined, but stay fiat afterwards. Those with smaller values of 
f, on the contrary, produce slower increases, but their accuracies get closer to 
or eventually may exceed those with larger values of f (say, at n=912). 

The slower increases in accuracy are due to weaker discriminative power 
of component classifiers using a smaller number of features. But those weaker 
classifiers tend to generalize better, and when the training set is small, their gen- 
eralization power becomes more valuable. Unfortunately it is impossible to test 
the effects of all values of f when the number of component classifiers approaches 
infinity. Therefore, it remains uncertain at which point the effect on accuracy 
will be dominated by the generalization power rather than the discriminative 
power of the component classifiers. 

4 I m p l e m e n t a t i o n a l  C o n c e r n s  

On a first thought the method seems to be a prohibitively expensive procedure, 
since the knn calculation is done in multiple times. However, the distance com- 
putation can be organized in a way that the per-feature differences and their 
squares need only be computed once. The random subspace selection can be 
implemented as masks on the feature vectors. Each component classifier has its 
own mask, and only the differences of the unmasked features are summed and 
sorted. Therefore it is only the summation of per-feature differences and the 
sorting of the sums that are performed multiple times~With n training samples, 
m-dimensional feature space, f-dimensional subspaces, and p component classi- 
tiers, the run time for each test sample is O(ma + p(nf + nlogn)), and that with 
simple knn is O(mn + n log n). These estimates assume no optimization in finding 
the nearest neighbors. 

When a large number of component classifiers are used, much of the run 
time is spent in the sorting passes. Therefore an efficient implementation of the 
method will rely on ways to avoid complete sorting of all the distances by utiliz- 
ing geometrical constraints such as the triangular inequality. Better speed and 
accuracy tradeoff may also be obtained by reordering the component classifiers 
so that those contributing most to accuracy improvement are used first. 

5 C o n c l u s i o n s  

We described an application of the random subspace method to k-nearest-neighbor 
classifiers and showed that, on a practical digit recognition problem, the method 
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achieves a pat tern of performance very similar to those of other applications of 
stochastic discrimination, namely, accuracy improves nearly monotonically with 
increasing number of component classifiers. We also showed that  knn classifica- 
tion, performed in this way, can exceed the apparent upper limit of accuracy 
given by conventional knn classifiers using the entire training set for prototypes, 
and such a superiority is well maintained with decreasing number of training 
samples. For the digit recognition problem studied in our experiments, the ac- 
curacy of the method closely matches the best reported accuracy for the same 
data. It is worth noting that the results are obtained without reliance on a 
sophisticated similarity metric designed specifically for the problem. 
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