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Abstract: The main objective of this paper is to introduce a novel method of 
feature extraction for character data and develop a neural network system for 
recognising different Latin characters, tn this paper we describe feature 
extraction, neural network development for character recognition and perform 
further neural network analysis on noisy image segments to explain the 
qualitative aspects of handwriting. 

1. Introduct ion  

The recognition of hand-written characters using artificial techniques including neural 
networks is an important area of research for realising commercial advances in OCR 
technology. In the past neural networks have been used for character recognition for 
classifying written input from different sources. In this paper we describe a novel 
method of feature extraction for recognising Latin characters. The character image is 
segmented for extracting primitives in each segment. The o~tracted primitives are used 
for training a three layered neural network for recognising unseen test samples. The 
results obtained using cross-validation show very high recognition rates using this 
approach. Neural networks are further used to analyse the effect of noise on recognition 
rates when individual image segments are affected by gaussian noise. This analyses 
yields important information on the writing behaviour of individuals and off-line 
recognition of characters in noisy environments. We first describe feature extraction 
followed by the neural network analysis. 

2. Feature  Extract ion 

First, sample characters are digitized. The digitization algorithm is similar to that which 
appears in [1]. A 300 dpi scanner is used to digitize the image. Next, the digitized 
image is cleaned and thinned by using parallel algorithm [2]. Pre-processing is 
followed by feature extraction. The heart of a feature extraction process for all 
character recognition systems is determining the primitives features. In our system, we 
use two main primitives, straight line and curve. 

2.1 Binary tree construction 

An algorithm implementing a 3x3 window is used to trace along the path of the 
skeleton, recording the structural information of the trace path. A path is described as a 
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tracing between junction or end point, where an end point has a single neighbour and a 
junction point has two neighbours as shown in Figure 1. 

This path is stored in a node of the binary tree: where a choice of path to trace 
exists, a left and right node are formed beneath the current one and their respective 
paths traced out. A priority system is used which favours certain directions over others 
(without this, the window would trace the skeleton in random direction). 

This path is stored in a node of the binary tree: where a choice of path to trace 
exists, a left and right node are formed beneath the current one and their respective 
paths traced out. A priority system is used which favours certain directions over others 
(without this, the window would trace the skeleton in random direction). 

Junction End 
point point 

~ O 

Fig. 1: Tracing path. 

This path is stored in a node of the binary tree: where a choice of path to trace 
exists, a left and right node are formed beneath the current one and their respective 
paths traced out. A priority system is used which favours certain directions over others 
(without this, the window would trace the skeleton in random direction). The starting 
point for tracing the skeleton is based on several criteria. The image is divided into 
three horizontal regions and the top and bottom region are searched for end points or 
junction points. This ensures that the starting point does not split a path into two 
subpaths. If no such points are found, as with the letter "O", the left most pixel of the 
image is used as starting point, 

2.3 Structural information 

The structural information for each path traced is saved as follows: 

1. Freeman Code [3] chain: an 8-directional code describing the tracing of the path. 

2. Positional: co-ordinates describing the start and ending points of the path used to 
determine positional relationship between loops and between loops and touching 
path (e.g. "b" = left touching path, "d" = right touching path). 

3. Loop: pointer indicating paths joining previously explored section (e.g. "e","6") 

The completed tracing results in the segmentation of the character into paths or strokes 
which will be formed into primitives. 

2.4 Primit ives  

The structure information in the binary tree allows the formation of pattern primitives, 
or sub-pattern, which are used to describe the original image. There are two main 
primitives described in this system: straight lines and curves. A path may be described 
by a single primitive or by multiple primitives. The structure information in the tree is 
converted to these primitives using the following definition. 
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Breakpoint (Separator): divides a path into sub-paths more easily described by 
primitives. A breakpoint has at least one of two possible conditions: 

• inflection point: a change in curvature, a positive (clockwise) curve followed by a 
negative (ani-ctockwise) curve, or vice versa. 

• cusp point: a sharp change in direction, two segments form an acute angle <= 90. 

Straight line: has its usual geometric definition as two points in sequence within a 
path. A point in a Freeman chain can be defined as a change in the Freeman code. Lines 
can be distinguished from curves in two ways: the length of a line segment is significant 
in comparison to the length of the path, or the path contains only two points. 

Curve: these are formed by at least three segments of nearly equal length (usually 
small in relation to the length of the path) with no breakpoint. Two types of curves: 
Open and Closed. 

• Open: there are four open curves useful in describing Latin characters. They face the 
four main points of the compass, eg. U, S, C. 

• Closed (Loop): e.g. a, R, D, 8. 

The primitive~ t:~ed for this study are shown in Figure 2. 

Line ~ = = - -  

Open curve 

Closed curve 

U 
O 

/ 

Fig. 2: Primitive features used in this system 

3. E x p e r i m e n t a l  resul ts  

Hand-printed character data is highly non-linear in nature as a result of varying styles of 
writing by different participants. For our analysis, we therefore need to use an efficient 
non-linear classifier for recognising character data. In this paper we have used a three 
layered neural network for this purpose. Neural networks are selected because of their 
well known generalisation capabilities and ability to characterise non-linear data. We 
describe three phases of analysis for using a neural network for character recognition: 
data pre-processing and input data selection, neural network architecture and algorithm 
selection, and recognition results obtained with a cross-validation study and noisy 
character data. 

3. 1 Data pre-processing and input selection 

The initial data sampled for the character recognition exercise consisted of a total of 
1115 patterns for a total of 52 classes with roughly 21 patterns in each class. As 
described in earlier sections, a moving window of fixed size traces the presence or the 
absence of the nine primitives in a sequential manner. The initial position of the 
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window is dependent on the free points found in a character or if the character has an 
unbroken loop, it starts from the top left corner. For each window position (a total of 
twelve), the presence of already discussed nine primitives is traced in a sequential 
manner. If a primitive is found, then its code is recorded in a stack. For no primitive 
found, an "empty" code is recorded. A data pattern consists of the sequence of codes 
available in the stack at the end of the analysis. For different writers, a particular 
written alphabet should have a similar code sequence for different samples (writers). It 
is assumed that the difference between different writers writing the same character is 
much smaller in comparison with different writers writing different characters. Our 
initial analysis shows that for five of the twelve measurements made in different 
window positions, in most cases there were either no primitives present in those 
windows, or the primitives found did not change with different characters significantly 
to be considered important for the classification process. For this reason, we finally 
settle on using measurements recorded in a total of seven window positions which 
record the presence of already described nine primitives for the purposes of 
classification. 

Each class represents a particular alphabet with the first twenty six classes 
representing lower case letters (a-z) and the next twenty six classes the same alphabets 
in upper case (A-Z). A total of nine primitives are extracted for character analysis as 
described in the previous section for a total of seven image windows (Figure 2). For 
each input vector P = {xl, xz, ...xT}, its target output was represented as the vector {h, 
tz, ... ts2}. Here xi (1< i < 7) represents the ith window measurement and tj (1_< j < 52) is 
the target output for supervised learning, i.e. if tl = 1 and all other t 1 are 0, then the input 
pattern is "a". Similarly, if t2 = 1 and all other t 1 are 0, then the input pattern represents 
a "b". In this order, if the target output tj =1 in position j, then it represents a hand- 
written character of class j in sequence a...zA...Z. The data finally presented to the 
neural network for training consisted of all 1115 input patterns with their respective 
target patterns. For all of our results, the data has been interleaved before presentation, 
i.e. classl pattern is followed by class2 pattern, followed by class3 pattern and so on. 
This ensures better training since it allows the weights to adjust for the given problem 
in a well balanced manner. The Stuttgart Neural Network Simulator (SNNS) used for 
this study also offers the facility to "Shuffle" or randomly mix input patterns before 
presenting them to the neural network. This facility was also used during network 
training. 

3.2 Neural network development 

In the selection of an appropriate architecture and for further analysis, we first 
determine the least complexity model with minimal training error as recommended by 
Weiss and Kulikowski [4]. For this purpose, we train a number of neural network 
architectures with the same algorithm but with varying number of hidden nodes and 
choose a model which produces the minimal training error with the character data. We 
find that using the recommended procedure, a 7x120x52 architecture is adequate for 
our purposes. For this architecture, there are seven nodes in the input layer, one 
hundred and twenty hidden nodes and fifty two output nodes. For training the neural 
network, backpropagation with momentum training method is followed. This method 
was selected because of its simplicity and because it has been previously used on a 
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number of pattern recognition problems. The method works on the principle of gradient 
descent and has been described in its basic form in detail by Rumelhart et al. [5]. The 
algorithm uses two parameters which are experimentally set, the learning rate r I and 
momentum ~t. These parameters allow the algorithm to converge more easily if they are 
properly set by the experimenter. Bishop[6] describes backpropagation with these two 
techniques in detail. In order to arrive at a reasonable values of these parameters for 
training we have taken into account the guidelines set by Vogl et al. [7]. We finally 
settle on a learning rate rl =.77 and a momentum term g =.9. This algorithm is available 
with the Stuttgart Neural Network Simulator (SNNS) which has been used for our 
experimentation throughout. 

3.3 Pattern recognition with cross-validation 

The neural network analysis of data is performed in two separate phases: training, when 
the network learns by example in an iterative manner, and testing, which then presents 
unseen data to be classified. In order to measure the performance of our neural network 
system on the character recognition problem, we use the cross-validation procedure, 

Fu [8] describes the cross-validation process as: "K-fold cross-validation 
(Stone[9]) repeats K times for a sample set randomly divided into k disjoint subsets, 
each time leaving one out for testing and the others for training". The value of K = 10 is 
usually recommended [4]. Cross-validation requires that the original data set is split in 
k disjoint sets. At any one time, 90% of the data is used for training and the 
performance is tested on the remaining 10%. Each training process is called a 'fold'. At 
the end of 10 folds, all data has been tested. In every fold therefore the training and test 
patterns are different. The overall performance of the system may be measured using 
two different parameters: the average recognition data of training data in percentage 
(av. R~ ), and the average recognition rate of the test data in percentage (av. R~). As 
expected, the latter is smaller in practice but is very important since it represents the 
true performance of the neural network. 

Table 1 shows the recognition performance using ten-fold cross-validation. Here 
the recognition rate of the training and test data at the end of fold K (1 < K < I0) 
training is shown in separate rows of the table. The recognition rate in percentage 
represents the ratio of the total number of correctly classified patterns to the total 
patterns tested during a test phase. We follow rigid guidelines for specifying what is a 
correct classification. For a test pattern whose target is {h, t2 . . . .  t52} and the actual 
output is {Tb Tz .... T52}, the correctly classified pattern must satisfy the condition Tj - 
tj < 0.2 for allj ( l< j  _< 52). If this condition is violated even once in a pattern, then it is 
misclassified. Similar stringent guidelines are followed for training. The training 
process for the network is stopped only when the sum of squared error falls below 
,0001. 

It is important to note here that the system performs extremely well with 
recognition rates ranging between 84% and 88% on different folds and the overall 
recognition is 85.8%. This is a very good performance taking into account the fact that 
we have a limited number of samples in each class and that we have not used any noise 
filtering techniques. A linear discriminant analysis yields a recognition rate of 56% at 
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best. The recognition on the training data is also extremely high, 99.8% which 
represents very good training. 

In Table 1, the results have been produced keeping the experimenter bias to a 
minimum when developing a neural network for analysis and the feature extraction 
stage. These set of results however do not tell us about the quality of our feature 
extraction in terms of their resistance to noise. In other words, we need to quantify how 
well the system will perform in the presence of noise. For this purpose we generate 
gaussian noise with a fixed distribution (mean = 0, sd. = 1) and use this to contaminate 
our character recognition data. Recognition rates are then recorded for varying noise 
amplitude. For further experimentation we do not follow cross-validation since our aim 
is not to investigate the true generalisation error, rather it is to quantify the degradation 
in performance with pre-defined step-wise increases in noise. For this purpose, data in 
fold 2 in Table 1 is selected (marked with an asterisk). We train with 90% of the data in 
the training set and test with 10% of the data in the test set, when injected with additive 
non-cumulative noise of varying amplitude. The noise data is generated using a C++ 
function library. The noise vector N is a series of randomly generated numbers which i ~ 
transformed within the [-1, +1] range. A total of ten trials are conducted, each time 
varying the maximum offset allowed. The maximum noise offset 8 represents the 
maximum noise possible for a single pattern. The actual noise value for a particular 
pattern with the [-1, +1] range is multiplied by this maximum offset before being added 
to the character data. The average noise ~ represents the ratio of the total noise present 
in the data and the number of patterns. This value for a particular trial is always much 
below the noise offset 8 for that trial. Since noise is random, the average noise N~ for 
training data is different to the test data gl~. For different trials, we use different noise 
series but with the same noise distribution. During each trial, the neural network is 
trained and tested with noisy character data. Table 2 shows the recognition results 
obtained using the above procedure. 

Fold Recognition Rate % 
Training (R~) 

Average 99.8 

1 99.9 
2* 99.9 87.0 
3 99.7 87.0 
4 99.8 84.0 
5 99.8 86.0 
6 99.9 86.0 
7 99.9 85.0 
8 99.9 85.0 
9 99.9 88.0 
10 99.8 85.0 

85.8 

Recognition Rate % 
Testing (Ra) 

85.0 

Table 1. Neural Network recognition rate performance using ten fold cross-validation. 
Recognition rates on the training and test sets. 
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In Table 2, the average noise per pattern added to both the training and test set is shown 
with the recognition rates obtained on both the training and test set when the neural 
network learning was finished. As expected, in every successive trial, the amount of 
noise added to the system increases. The training recognition rates fall and then start to 
rise: this phenomenon has been noted in other studies when the presence of noise 
actually helps the neural network for training purposes [10, 11]. Following this trend, 
the test performance also degrades with increasing noise for most cases. Some 
important points of observation may be stated as follows: 

The degradation in performance is graceful and predictable. The correlation r 
between the amount of noise and the drop in recognition rate is high, rt~ai,= -,85, and 
rtest = -.86. 

• The recognition rates are high for most trials except when the noise increases 
considerably, 

* The degradation in training and test recognition rates are highly correlated r = .97 
but in most cases the degradation in performance is not directly proportional. 

Trial Noise 

1 .1 
2 .2 
3 .3 
4 .4 
5 .5 
6 1.0 
7 1.5 
8 2.0 
9 2.5 
10 3.0 

Av. o~ Noise 

.O2 

Recognition 
Rate % 

Training (Ra) 

Av. [3 Recognition Rate % 
Testing (RI~) 

99.9 

Noise 

.03 85.0 
,06 96.7 .07 81.0 
• 07 93.0 .08 74.0 
.10 ....... 90.5 i .12 .... 75.0 

.128 87.6 .13 71.0 
,28 73.7 .37 58.0 
• 40 76.2 .45 56.0 
51 66.8 .61 51.0 
,59 68.2 .90 48.0 
• 70 77.7 1.23 52.0 

Table 2. Neural Network recognition rate performance with noisy hand-written character data. 
Results are shown for gaussian additive noise added to both the training and the test set. 

4. Conclusion 

The technique adopted in this paper for recognizing hand-printed Latin characters using 
a neural network combined with a structural approach. The method is based on 
structural primitives such as curves, straight lines and loops, in a manner similar to that 
in which human beings describe characters geometrically. Moreover, we have used 
neural networks for recognizing different hand-printed Latin characters using a cross- 
validation study. In our study with ten fold cross-validation study, for most folds we 
obtain recognition rates as high as 88% on unseen test data and the overall average 
recognition rate for the test data is nearly 86%. We have also used neural networks for 
further analysis when the character data is contaminated by noise of varying amplitude. 
The results show that the degradation in performance is graceful and predictable. 
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