
Optical Character Recognition: Neural Network
Analysis of Hand-Printed Characters

Adnan Amin ~ and Sameer Singh 2

School of Computer Science and Engineering
University of New South Wales, Sydney 2052, Australia

e-mail: amin @cse.unsw.edu.au

School of Computing, University of Plymouth
Plymouth PL4 8AA, United Kingdom

e-mail: sl singh@plym.ac.uk

Abstract: The main objective of this paper is to introduce a novel method of
feature extraction for character data and develop a neural network system for
recognising different Latin characters, tn this paper we describe feature
extraction, neural network development for character recognition and perform
further neural network analysis on noisy image segments to explain the
qualitative aspects of handwriting.

1. Introduct ion

The recognition of hand-written characters using artificial techniques including neural
networks is an important area of research for realising commercial advances in OCR
technology. In the past neural networks have been used for character recognition for
classifying written input from different sources. In this paper we describe a novel
method of feature extraction for recognising Latin characters. The character image is
segmented for extracting primitives in each segment. The o~tracted primitives are used
for training a three layered neural network for recognising unseen test samples. The
results obtained using cross-validation show very high recognition rates using this
approach. Neural networks are further used to analyse the effect of noise on recognition
rates when individual image segments are affected by gaussian noise. This analyses
yields important information on the writing behaviour of individuals and off-line
recognition of characters in noisy environments. We first describe feature extraction
followed by the neural network analysis.

2. Feature Extract ion

First, sample characters are digitized. The digitization algorithm is similar to that which
appears in [1]. A 300 dpi scanner is used to digitize the image. Next, the digitized
image is cleaned and thinned by using parallel algorithm [2]. Pre-processing is
followed by feature extraction. The heart of a feature extraction process for all
character recognition systems is determining the primitives features. In our system, we
use two main primitives, straight line and curve.

2.1 Binary tree construction

An algorithm implementing a 3x3 window is used to trace along the path of the
skeleton, recording the structural information of the trace path. A path is described as a

493

tracing between junction or end point, where an end point has a single neighbour and a
junction point has two neighbours as shown in Figure 1.

This path is stored in a node of the binary tree: where a choice of path to trace
exists, a left and right node are formed beneath the current one and their respective
paths traced out. A priority system is used which favours certain directions over others
(without this, the window would trace the skeleton in random direction).

This path is stored in a node of the binary tree: where a choice of path to trace
exists, a left and right node are formed beneath the current one and their respective
paths traced out. A priority system is used which favours certain directions over others
(without this, the window would trace the skeleton in random direction).

Junction End
point point

~ O

Fig. 1: Tracing path.

This path is stored in a node of the binary tree: where a choice of path to trace
exists, a left and right node are formed beneath the current one and their respective
paths traced out. A priority system is used which favours certain directions over others
(without this, the window would trace the skeleton in random direction). The starting
point for tracing the skeleton is based on several criteria. The image is divided into
three horizontal regions and the top and bottom region are searched for end points or
junction points. This ensures that the starting point does not split a path into two
subpaths. If no such points are found, as with the letter "O", the left most pixel of the
image is used as starting point,

2.3 Structural information

The structural information for each path traced is saved as follows:

1. Freeman Code [3] chain: an 8-directional code describing the tracing of the path.

2. Positional: co-ordinates describing the start and ending points of the path used to
determine positional relationship between loops and between loops and touching
path (e.g. "b" = left touching path, "d" = right touching path).

3. Loop: pointer indicating paths joining previously explored section (e.g. "e","6")

The completed tracing results in the segmentation of the character into paths or strokes
which will be formed into primitives.

2.4 Primit ives

The structure information in the binary tree allows the formation of pattern primitives,
or sub-pattern, which are used to describe the original image. There are two main
primitives described in this system: straight lines and curves. A path may be described
by a single primitive or by multiple primitives. The structure information in the tree is
converted to these primitives using the following definition.

494

Breakpoint (Separator): divides a path into sub-paths more easily described by
primitives. A breakpoint has at least one of two possible conditions:

• inflection point: a change in curvature, a positive (clockwise) curve followed by a
negative (ani-ctockwise) curve, or vice versa.

• cusp point: a sharp change in direction, two segments form an acute angle <= 90.

Straight line: has its usual geometric definition as two points in sequence within a
path. A point in a Freeman chain can be defined as a change in the Freeman code. Lines
can be distinguished from curves in two ways: the length of a line segment is significant
in comparison to the length of the path, or the path contains only two points.

Curve: these are formed by at least three segments of nearly equal length (usually
small in relation to the length of the path) with no breakpoint. Two types of curves:
Open and Closed.

• Open: there are four open curves useful in describing Latin characters. They face the
four main points of the compass, eg. U, S, C.

• Closed (Loop): e.g. a, R, D, 8.

The primitive~ t:~ed for this study are shown in Figure 2.

Line ~ = = - -

Open curve

Closed curve

U
O

/

Fig. 2: Primitive features used in this system

3. E x p e r i m e n t a l resul ts

Hand-printed character data is highly non-linear in nature as a result of varying styles of
writing by different participants. For our analysis, we therefore need to use an efficient
non-linear classifier for recognising character data. In this paper we have used a three
layered neural network for this purpose. Neural networks are selected because of their
well known generalisation capabilities and ability to characterise non-linear data. We
describe three phases of analysis for using a neural network for character recognition:
data pre-processing and input data selection, neural network architecture and algorithm
selection, and recognition results obtained with a cross-validation study and noisy
character data.

3. 1 Data pre-processing and input selection

The initial data sampled for the character recognition exercise consisted of a total of
1115 patterns for a total of 52 classes with roughly 21 patterns in each class. As
described in earlier sections, a moving window of fixed size traces the presence or the
absence of the nine primitives in a sequential manner. The initial position of the

495

window is dependent on the free points found in a character or if the character has an
unbroken loop, it starts from the top left corner. For each window position (a total of
twelve), the presence of already discussed nine primitives is traced in a sequential
manner. If a primitive is found, then its code is recorded in a stack. For no primitive
found, an "empty" code is recorded. A data pattern consists of the sequence of codes
available in the stack at the end of the analysis. For different writers, a particular
written alphabet should have a similar code sequence for different samples (writers). It
is assumed that the difference between different writers writing the same character is
much smaller in comparison with different writers writing different characters. Our
initial analysis shows that for five of the twelve measurements made in different
window positions, in most cases there were either no primitives present in those
windows, or the primitives found did not change with different characters significantly
to be considered important for the classification process. For this reason, we finally
settle on using measurements recorded in a total of seven window positions which
record the presence of already described nine primitives for the purposes of
classification.

Each class represents a particular alphabet with the first twenty six classes
representing lower case letters (a-z) and the next twenty six classes the same alphabets
in upper case (A-Z). A total of nine primitives are extracted for character analysis as
described in the previous section for a total of seven image windows (Figure 2). For
each input vector P = {xl, xz, ...xT}, its target output was represented as the vector {h,
tz, ... ts2}. Here xi (1< i < 7) represents the ith window measurement and tj (1_< j < 52) is
the target output for supervised learning, i.e. if tl = 1 and all other t 1 are 0, then the input
pattern is "a". Similarly, if t2 = 1 and all other t 1 are 0, then the input pattern represents
a "b". In this order, if the target output tj =1 in position j, then it represents a hand-
written character of class j in sequence a...zA...Z. The data finally presented to the
neural network for training consisted of all 1115 input patterns with their respective
target patterns. For all of our results, the data has been interleaved before presentation,
i.e. classl pattern is followed by class2 pattern, followed by class3 pattern and so on.
This ensures better training since it allows the weights to adjust for the given problem
in a well balanced manner. The Stuttgart Neural Network Simulator (SNNS) used for
this study also offers the facility to "Shuffle" or randomly mix input patterns before
presenting them to the neural network. This facility was also used during network
training.

3.2 Neural network development

In the selection of an appropriate architecture and for further analysis, we first
determine the least complexity model with minimal training error as recommended by
Weiss and Kulikowski [4]. For this purpose, we train a number of neural network
architectures with the same algorithm but with varying number of hidden nodes and
choose a model which produces the minimal training error with the character data. We
find that using the recommended procedure, a 7x120x52 architecture is adequate for
our purposes. For this architecture, there are seven nodes in the input layer, one
hundred and twenty hidden nodes and fifty two output nodes. For training the neural
network, backpropagation with momentum training method is followed. This method
was selected because of its simplicity and because it has been previously used on a

496

number of pattern recognition problems. The method works on the principle of gradient
descent and has been described in its basic form in detail by Rumelhart et al. [5]. The
algorithm uses two parameters which are experimentally set, the learning rate r I and
momentum ~t. These parameters allow the algorithm to converge more easily if they are
properly set by the experimenter. Bishop[6] describes backpropagation with these two
techniques in detail. In order to arrive at a reasonable values of these parameters for
training we have taken into account the guidelines set by Vogl et al. [7]. We finally
settle on a learning rate rl =.77 and a momentum term g =.9. This algorithm is available
with the Stuttgart Neural Network Simulator (SNNS) which has been used for our
experimentation throughout.

3.3 Pattern recognition with cross-validation

The neural network analysis of data is performed in two separate phases: training, when
the network learns by example in an iterative manner, and testing, which then presents
unseen data to be classified. In order to measure the performance of our neural network
system on the character recognition problem, we use the cross-validation procedure,

Fu [8] describes the cross-validation process as: "K-fold cross-validation
(Stone[9]) repeats K times for a sample set randomly divided into k disjoint subsets,
each time leaving one out for testing and the others for training". The value of K = 10 is
usually recommended [4]. Cross-validation requires that the original data set is split in
k disjoint sets. At any one time, 90% of the data is used for training and the
performance is tested on the remaining 10%. Each training process is called a 'fold'. At
the end of 10 folds, all data has been tested. In every fold therefore the training and test
patterns are different. The overall performance of the system may be measured using
two different parameters: the average recognition data of training data in percentage
(av. R~), and the average recognition rate of the test data in percentage (av. R~). As
expected, the latter is smaller in practice but is very important since it represents the
true performance of the neural network.

Table 1 shows the recognition performance using ten-fold cross-validation. Here
the recognition rate of the training and test data at the end of fold K (1 < K < I0)
training is shown in separate rows of the table. The recognition rate in percentage
represents the ratio of the total number of correctly classified patterns to the total
patterns tested during a test phase. We follow rigid guidelines for specifying what is a
correct classification. For a test pattern whose target is {h, t2 t52} and the actual
output is {Tb Tz T52}, the correctly classified pattern must satisfy the condition Tj -
tj < 0.2 for allj (l< j _< 52). If this condition is violated even once in a pattern, then it is
misclassified. Similar stringent guidelines are followed for training. The training
process for the network is stopped only when the sum of squared error falls below
,0001.

It is important to note here that the system performs extremely well with
recognition rates ranging between 84% and 88% on different folds and the overall
recognition is 85.8%. This is a very good performance taking into account the fact that
we have a limited number of samples in each class and that we have not used any noise
filtering techniques. A linear discriminant analysis yields a recognition rate of 56% at

497

best. The recognition on the training data is also extremely high, 99.8% which
represents very good training.

In Table 1, the results have been produced keeping the experimenter bias to a
minimum when developing a neural network for analysis and the feature extraction
stage. These set of results however do not tell us about the quality of our feature
extraction in terms of their resistance to noise. In other words, we need to quantify how
well the system will perform in the presence of noise. For this purpose we generate
gaussian noise with a fixed distribution (mean = 0, sd. = 1) and use this to contaminate
our character recognition data. Recognition rates are then recorded for varying noise
amplitude. For further experimentation we do not follow cross-validation since our aim
is not to investigate the true generalisation error, rather it is to quantify the degradation
in performance with pre-defined step-wise increases in noise. For this purpose, data in
fold 2 in Table 1 is selected (marked with an asterisk). We train with 90% of the data in
the training set and test with 10% of the data in the test set, when injected with additive
non-cumulative noise of varying amplitude. The noise data is generated using a C++
function library. The noise vector N is a series of randomly generated numbers which i ~
transformed within the [-1, +1] range. A total of ten trials are conducted, each time
varying the maximum offset allowed. The maximum noise offset 8 represents the
maximum noise possible for a single pattern. The actual noise value for a particular
pattern with the [-1, +1] range is multiplied by this maximum offset before being added
to the character data. The average noise ~ represents the ratio of the total noise present
in the data and the number of patterns. This value for a particular trial is always much
below the noise offset 8 for that trial. Since noise is random, the average noise N~ for
training data is different to the test data gl~. For different trials, we use different noise
series but with the same noise distribution. During each trial, the neural network is
trained and tested with noisy character data. Table 2 shows the recognition results
obtained using the above procedure.

Fold Recognition Rate %
Training (R~)

Average 99.8

1 99.9
2* 99.9 87.0
3 99.7 87.0
4 99.8 84.0
5 99.8 86.0
6 99.9 86.0
7 99.9 85.0
8 99.9 85.0
9 99.9 88.0
10 99.8 85.0

85.8

Recognition Rate %
Testing (Ra)

85.0

Table 1. Neural Network recognition rate performance using ten fold cross-validation.
Recognition rates on the training and test sets.

498

In Table 2, the average noise per pattern added to both the training and test set is shown
with the recognition rates obtained on both the training and test set when the neural
network learning was finished. As expected, in every successive trial, the amount of
noise added to the system increases. The training recognition rates fall and then start to
rise: this phenomenon has been noted in other studies when the presence of noise
actually helps the neural network for training purposes [10, 11]. Following this trend,
the test performance also degrades with increasing noise for most cases. Some
important points of observation may be stated as follows:

The degradation in performance is graceful and predictable. The correlation r
between the amount of noise and the drop in recognition rate is high, rt~ai,= -,85, and
rtest = -.86.

• The recognition rates are high for most trials except when the noise increases
considerably,

* The degradation in training and test recognition rates are highly correlated r = .97
but in most cases the degradation in performance is not directly proportional.

Trial Noise

1 .1
2 .2
3 .3
4 .4
5 .5
6 1.0
7 1.5
8 2.0
9 2.5
10 3.0

Av. o~ Noise

.O2

Recognition
Rate %

Training (Ra)

Av. [3 Recognition Rate %
Testing (RI~)

99.9

Noise

.03 85.0
,06 96.7 .07 81.0
• 07 93.0 .08 74.0
.10 90.5 i .12 75.0

.128 87.6 .13 71.0
,28 73.7 .37 58.0
• 40 76.2 .45 56.0
51 66.8 .61 51.0
,59 68.2 .90 48.0
• 70 77.7 1.23 52.0

Table 2. Neural Network recognition rate performance with noisy hand-written character data.
Results are shown for gaussian additive noise added to both the training and the test set.

4. Conclusion

The technique adopted in this paper for recognizing hand-printed Latin characters using
a neural network combined with a structural approach. The method is based on
structural primitives such as curves, straight lines and loops, in a manner similar to that
in which human beings describe characters geometrically. Moreover, we have used
neural networks for recognizing different hand-printed Latin characters using a cross-
validation study. In our study with ten fold cross-validation study, for most folds we
obtain recognition rates as high as 88% on unseen test data and the overall average
recognition rate for the test data is nearly 86%. We have also used neural networks for
further analysis when the character data is contaminated by noise of varying amplitude.
The results show that the degradation in performance is graceful and predictable.

499

References

1. A. Amin, A. Rajithan and P. Compton, Recognition of handwritten characters
using induct machine learning, 6 th International Workshop SSPR'96, Germany,
Springer, 189-t97, 1996.

2. B.K. Jang and R. T. Chin, One-pass parallel thinning: analysis, properties, and
quantitative evaluation, IEEE Trans. Pattern Anal Mach. lntetl. PAMI-14, 1 t29-
1140, 1992.

3. H. Freeman, On the encoding of arbitrary geometric configurations, IEEE Trans.
Electronic Computers EC-10, 260-268, 1968.

4. S. M. Weiss, and C. A. Kulikowski, Computer systems that learn, Morgan
Kaufmann, San Mateo, CA, 1991.

5. D. E. Rumelhart, G. E. Hinton. and R. J. Williams, Learning internal
representations by error backpropagation, In D. E. Rumelhart and J. L. McClelland
(eds) Parallel distributed processing, vol 1,318-362, MIT Press, 1986.

6. C.M. Bishop, Neural networks for pattern recognition, Clarendon Press, Oxford,
1995.

7. T.P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, Accelerating
the convergence of the back-propagation method, Biological Cybernetics, 59, 257-
263, 1988.

8. L. Fu, Neural Networks in Computer Intelligence, McGraw-Hill. Singapore, 331-
348, 1994.

9. M. Stone, Cross-Validatory Choice and Assessment of Statistical Predictions,
Journal of the Royal Statistical Society. 36 (1), 111-147, 1974.

10. M. Burton, and G. J. Mpitsos, Event-dependent control of noise enhances learning
in neural networks, Neural Networks, vol. 5, 627-637, 1992.

11. K. Jim, B. Horne and C. L. Giles, Effects of noise on convergence and
generalisation in recurrent networks, Neural Information Processing Systems 7, G.
Tesauro, D. Touretzky and T. Leen (eds.), MIT Press, p. 649, 1995.

