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Abst rac t .  Multi-band data is often (unavoidably) pre-processed by non- 
linear mappings, or is comprised of measurements taken across non- 
commensurate bands. We treat such cases using rank order statistics, 
avoiding problems of dimensionality and nonlinearity. Our aim is to re- 
duce multi-band data to two images; one showing inhomogeneous image 
regions common to all of the image bands and another image which re- 
flects the differences. The measure used is a nonlinear analog of linear 
covariance, the 'co-diversity', which responds to the relative homogene- 
ity of local image regions in terms of rank. Algorithms to determine the 
'co-diversity' are presented and applied to the interpretation of edges in 
multispectral data and to the combination of information from different 
sources, for example, binary and greyscale data. The method is robust to 
contrast variations across the data, but relies on some prior morphologic 
smoothing to ensure the local rank order is not dominated by noise. 

K e y w o r d s  nonlinear statistics, multivariate techniques, mathematical  morphol- 
ogy 

1 Introduction 

For multi-band data  there is no agreed method to apply morphologic processing 
because there is not a unique method of ordering multi-band data. Commen- 
surate multi-band image data from a linear vector space can be mapped to 
form a single greyscale image which is then amenable to morphologic or other 
forms of processing. This can be done using R-ordering [1] using some distance 
metric or by artificially imposing a total ordering on vector data  [2]. For non- 
commensurate multivariate data, where the component bands are dimensionally 
distinct, these techniques are not meaningful. Multi-band image da ta  tha t  has 
either suffered strong non-linear mapping on one or more components, or where 
individual bands are measures of different kinds of variables, cannot be arbi- 
trarily combined using linear statistics or by some form of vector ordering ap- 
proximation. Here we will adopt the use of relatively simple nonlinear statistics 
to help condense multi-band image data  to a strongly representative greyscale 
form. 
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2 Rank and Linear Variance Measures 

We have considered, in some detail, the use of measures of linear and nonlinear 
variance as a means of enhancing inhomogeneous regions in a single compo- 
nent image in [3]. It was shown that previous rank variance indicators, like that 
associated with Spearman's rank correlation p [4] and the R-estimate of vari- 
ance discussed by Draper [5], are not very responsive to ties in image data and 
so poorly enhance image structure. Linear variance is sensitive to the numeric 
distribution of local grey values and the presence of outliers. The measure of 
nonlinear variance, called diversity, was characterised in [3] and was shown to 
be a useful method of enhancing inhomogeneous regions in single-component 
images. 

2.1 Diversity: Nonlinear, Tie-Sensitive Variance 

A measure of rank variance for N (odd) data points can be defined by first 
ranking the data using the same method as Chung and Marden [6]. Rank 1 is 
assigned to the lowest value, rank 2 is assigned to the next lowest values and so 
on. The same integer ranks are assigned to tied values. The diversity of these 
ranks is then defined by 

N 
d = ~ i = l ( r ~  - rmed)2 (1) 

N ( N  2 -  1)/12 ' 

where ri is the rank of the ith value, rmed is the assigned rank of the median 
value, and N ( N  2 - 1)/12 is a normalising factor. 

The diversity of single-band image data is calculated using a moving, local 
window containing N pixets. The ranking process must be repeated every time 
new data enters the moving window before the diversity can be calculated. 

The diversity measure is invariant to any strictly order preserving mapping, 
for example, nonlinear contrast stretching. The diversity can be measured with 
respect to ranks other than the median rank; equally useful are measures of the 
rank distribution based on the local maximum rank, rmax, or local minimum 
rank, train. Diversity intrinsically responds tot he number of ties present in the 
local data values; the occurrence of more ties present implies greater homogene- 
ity. For those cases where the selected local window size N, is greater than g, the 
number of possible grey values in an image, the maximum diversity of 1 cannot 
be attained as there will always be at least N - g ties. 

Because the chance of obtaining tied values depends in part on the precision 
of grey value specification (eg the number of bits per pixel), some form of local 
smoothing should be considered, or otherwise all local regions contain few or 
no ties and hence must be considered as being equally and maximally rough. 
Smoothing with an morphological open or close forces the replication of local 
maximum or minimum values (but introduces no new values). Such smoothing 
prevents the result being dominated by image noise. 
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3 E x t e n s i o n  o f  D i v e r s i t y  to M u l t i - c o m p o n e n t  I m a g e s  

We extend the idea of the diversity to a nonlinear measure called 'co-diversity', 
which can be applied to multi-component images. The co-diversity is made up 
of two terms; a cross diversity term xd  and a residue term, A Local xd  mea- 
surements made in a multi-band image highlight inhomogeneous image regions 
which are common to the input bands and local A measurements reflect the 
differences between the input bands. In this section two different methods of 
calculating co-diversity are presented. 

3.1 In-band Cross-diversity 

For multivariate data, the cross-band diversity, xd  can be measured by corre- 
lating the within-band d values, obtained at some scale N ,  for each spatially 
registered point. A useful measure of xd is the mean or median of the in-band d 
values at each point. Since the in-band diversity characterises the spatial in-band 
geometry at each point in each band, we can combine locally measured d values 
using linear or non-linear statistics as necessary. 

A residue measure for multi-band data (A) can be calculated by summing 
the squared deviations of the ranked values with respect to the mean or median 
rank value. This cross-band measure can be larger than N ( N  ~ - 1)/12 by a factor 
of (b - 1)/2 for b bands, and so it, too, can be meaningfully normalised. 

xd  = median{di}, i = 1, .., b. (2) 
b 

~ i = 1  (di - -  xd) 2 
A = ( ( b -  1 ) / 2 ) N ( N  2 - 1)/12'  (3) 

This method is simple to implement and relatively fast to compute. The 
results are, however, sensitive to the global number of grey scales in each band g 
if g < N,  because diversity is used. Comparing in-band values this way ignores 
spatial mismatches over lengths smaller than the local window size. The cross- 
band, in-place diversity measure takes these spatial mismatches into account. 

3.2 Cross-Band In-Place Diversity 

Now the rank values are replaced in their original local spatial order for each 
band and a pair-wise cross-product of the ranks is summed over the local window. 

Here the ranks must not only be similar, but have the same spatial structure 
to contribute to a high value of xd. The residue A is calculated as the sum of 
pair-wise differences of the absolute value of the ranks. The general formula for 
cross, band, in-place xd  and residue A are, 

xd  = ~ = 1  

F_, b k=j+l ajk(I,' j -(r, ,ed)jl . i",k -(rmod) l) 
(b - 1 ) ( b / 2 ) N ( N  2 - 1)/12 , (4) 

E b N k=j+l ~ = 1  b~k(lru - ( r . ,ed)~l-  lr~k - (r.,ed)kl) 2 

( b -  1 ) ( b / 2 ) Y ( g  2 - 1)/12 , (5) 
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where r~j is the assigned rank at position i in band j and (rmed)j is the assigned 
rank of the median value in band j .  (b - 1 ) (b /2 )N(N 2 - 1)/12 is a normalisation 
factor. 

The co-diversity of multi-band image data is calculated using a moving, local 
window containing N pixels. The ranking process must be repeated in each band 
every time new data enters the moving window before the co-diversity can be 
calculated. 

The insertion of coefficients ajk enables compensation of each pair-wise con- 
tribution to give equal weight to xd for the general case of bands j and k be- 
ing any type of image. For example, if both images have N grey scales, then 
ajk = 1.0. If one image was binary and the other N levels, the maximum summed 
cross product is (N 2 - 1)/8, so then ajk = 2N/3.  If both images are binary, the 
maximum summed cross product is (N-l)/2, so ajk = N ( N  + 1)/6. 

The coefficients bij similarly enable each pair-wise difference to give equal 
weight to A. Similar weighting schemes can be applied for the in-band measures 
of section 3.1 to compensate for the effect of bands with reduced grey scales. 

4 A p p l i c a t i o n s  

We applied the xd measures to 3 band, RGB data to produce an 'intensity' 
image and cross-band variation, from which reliable 'colour' edges were able to 
be extracted using 'top-hat' morphologic ridge detectors. Where the residue A 
is strongly correlated to xd, the extracted edges in A and xd  may be combined 
using a point-wise maximum; for anti-correlated residues (where noise dominates 
the residue), the minimum of xd and the residue can be used to suppress non- 
edge structures. When one band of inconsistent data is used in cross variance 
with 'correct' data, the residue will largely contain an image of the inconsistent 
band data. Figures la and lb show xd and A for the in-band method, respec- 
tively; Figures 2a and 2b show the results obtained using the in-place co-diversity 
measure. 

Figures t and 2 can be compared to figure 3, which shows the local linear 
variance of the first and the last (third) principal components of the R G B  image 
respectively. The last principal component does not exactly show the disagree- 
meat between image bands, which A measures. Edges are highlighted in figure 
3b which also appear in figure 3a, and which are present in more than one band 
of the original RGB image. On the other hand, the xd  and A images show 
complementary sets of information. 

When calculating the co-diversity of a multi-band image, we have also ex- 
tended the original 3-band data to include the open and close of each cotour 
band, and then calculated xd for these 9 bands. This results in a cleaner edge 
image, as the original data matches the open or close near edge locations, but  is 
suppressed in flat regions, where the open and close, being smoothed, have low 
within-band d values. 

An orientation sensitive xd  and A values can be can be obtained by calcu- 
lating xd using 1-D oriented windows, eg. horizontal, vertical, and left and right 
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diagonal, and taking the median or mean of the results as if they were generated 
from separate image bands. 

By calculating (in-band) xd values between a greyscale image I, and each 
member of a set of thresholded images T(I), a global threshold T can be selected 
which maximised the global mean value of xd. The thresholded image is selected 
on the basis of retaining the maximum degree of correlated spatial information 
with respect to the original grey level image. 

5 Conclusions 

The rank diversity, d, represents the wide range of possible variations of local 
geometries in a concise and descriptive fashion. Because this statistic is directly 
comparable for all images (even after strongly non-linear mappings or for sepa- 
rate bands of dimensionally independent variables), measurement of the common 
cross-band diversity, xd, makes it a convenient and robust method to combine 
any bands of spatially registered data. The residue, A provides a reliable mea- 
sure of the between-band variation not registered in xd. These methods should 
prove of general use for the combination of spatial data such as economic, census 
and geographic information, as well as for multi-band image data (such as colour 
or satellite data) and for blending visual and range image data. 

Acknowledgements 

CJE would like to acknowledge the finanr!~ support of the CSIRO Australia's 
Division of Mathematical and Information Sciences and the Australian Research 
Council (through the APA award) in her PhD studies. 

References 

1. Barnett V.. The Ordering of Multivariate Data. J. R. Statist. Soc. A., 139 part 3. 
(1976), 318-344. 

2. Jones R. and Talbot H.. Morphological Filtering for Colour Images with No New 
Colours. IVCNZ '96, 149-154, Lower Hutt, New Zealand, 1996. 

3. Evans C.J. and Svalbe I.D.. Nonlinear Variance Measures in Image Data. To be 
presented at SPR 98. 

4. Kendall M.G.. Rank Correlation Methods, 4th ed.. Griffin, London, 1970. 
5. Draper D_ Rank-Based Robust Analysis of Linear Models.I. Exposition and Review. 

Statistical Science, 3(2) (1988), 239-27t. 
6. Chung L. and Marden J.I.. Use of Nonnull Models for Rank Statistics in Bivariate, 

Two-Sample, and Analysis of Variance Problems. :I. American Statistical Associa- 
tion, 86(413) (1991), 188-200. 

7. Serra, J.. Image Analysis and Mathematical Morphology. volume 2: Theoretical 
Advances. Academic Press, London, 1988. 



327 

(a) (b) 

Fig. 1. (a) In-band xd of RGB image of Lena, (b) In-band A of RGB image of Lena, 
both locally calculated in circular regions of diameter 7 pixels. 

(a) (b) 

Fig. 2. (a) In-place xd of RGB image of Lena, (b) In-place A of same image, both 
locally calculated in circular regions of diameter 7 pixels. 
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(a) (b) 

Fig ,  3. Local linear variance of (a) the first principal component and (b) the last 
principal component of the RGB image of Lena. Local linear variance was calculated 
using a 7 × 7 window. 


