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Abst rac t .  Function-described graphs (FDGs) have been introduced very 
recently as a representation of an ensemble of attributed relational graphs 
(ARGs) for structural pattern recogrfition [1, 2]. In this paper, the re- 
lationship between FDGs and Random Graphs [3] is analysed and the 
synthesis process of FDGs is studied, whereas the matching process be- 
tween FDGs and ARGs is discussed elsewhere [4]. Two procedures are 
described to synthesize an FDG from a set of commonly labelled ARGs 
or FDGs, respectively. Then, a general incremental method to synthesize 
an FDG from a sequence of unlabelled ARGs is proposed. Specific meth- 
ods are obtained when an ARG-to-FDG matching algorithm is selected 
to find optimal morphisms. 

Keywords : graph synthesis, function-described graphs, random graphs, at- 
tr ibuted relational graphs, structural pat tern recognition. 

1 I n t r o d u c t i o n  

Attributed relational graphs (ARGs) are used in some pat tern recognition tasks 
to represent both structural and semantic information of complex objects [5~ 6]. 
Random graphs were proposed by Wong et al. [3, 7] for modelling classes of pat- 
terns described by ARGs, through a high-order joint probability space of random 
variables. However, to apply them in practical problems, the dimensionality of 
this space must be reduced and random graphs simplified by making some strong 
assumptions about  the statistical independence of random nodes and edges [3, 8]° 
Since relevant structural information, such as the presence or absence of nodes 
and edges, is embedded in the probabilities of the random variables, the in- 
dependence assumptions may lead to improper structural generalizations when 
synthesizing a random graph from a set of ARGs. 

To overcome this problem, function-described graphs (FDGs) have been in- 
troduced recently as a new representation for a set of ARGs [1, 2]. It is shown 
here that  FDGs can be seen as a different type of simplification of the gen- 
eral random graphs in which some structural constraints are recorded. On the 
other hand, both incremental [8] and non-incremental [3] clustering methods 
have been proposed to build a hierarchy of random graphs, that  are synthesized 
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from a given set of ARGs and represent the different classes and sub-classes of 
patterns included in the input data. In this paper, the synthesis process of FDGs 
is studied and a general incremental algorithm is given to synthesize an FDG 
from a sequence of ARGs belonging to a common class. 

2 A t t r i b u t e d  r e l a t i o n a l  graphs and r a n d o m  g r a p h s  

The definitions given in this section come from several previous works [3],[5]-[8], 
and they are rewritten here (using a convenient notation) as necessary back- 
ground for the definition of function-described graphs in the next section. 

Let ~v = {vk I k = 1 , . . . ,  n} be a set of vertices (or nodes), and let Se = 
{eij I i, j E {1 , . . . ,  n}} be a set of edges (or arcs), where the arc eij connects 
vertices vi and vj. Let Zv = {zi [ i = 1 , . . . , t }  be a nonempty finite set of 
attribute names for the attributes in a vertex, and for each zi in Zv let Dvi 
denote the corresponding domain of attr ibute values. Similarly, let Z~ = {z~ [ i = 
1 , . . . ,  s} be a nonempty finite set of attribute names for the attributes in an arc, 
and let D~i denote the domain of attribute values for z~. An at tr ibuted vertex 
vk is associated with an attribute set in which each element is an attr ibute pair 
(zi, ai) consisting of an attr ibute name zi E Zv and its at tr ibute value ai E D,~. 
Likewise, an attributed arc epq is associated with an attr ibute set containing 
pairs (z~, bi), z~ E Ze, b~ E D~.  An attributed graph contains a set of attr ibuted 
vertices, that  typically represent primitives, and a set of attributed arcs, that  
represent relations between these primitives [5]. 

Let us assume in the following that  attributed graphs are homogeneous, i.e. 
all vertices have the same attributes Zv and all arcs have the same attributes Ze. 
In such a case, the pairs in an attribute set can be listed always in the same order 
and the attr ibute names supressed, and thus an attributed vertex Vk (respectively 
arc epq) can be associated with a t-tuple (respectively s-tuple) of vertex (arc) 
attr ibute values. Hence, let Av = {(al, . . . , a i , . . . , a t )  I ai E Dvi, 1 < i < t} be 
the global domain for attr ibuted vertices and let Ae = {(b l , . . . ,  b~,. . . ,  bs) [ b~ E 
D~i, 1 < i < s} be the global domain for attributed arcs. An attributed relational 
graph (ARG) is formally defined to be a graph G = (Zv,Se,  A~,A~,Tv,%),  
where (Zv, ~e) corresponds to the underlying graph structure, 7~ : ~ --+ Av 
and 7~ : ~Y~ "-4 Ae are two mappings that  assign attribute values to nodes and 
edges, respectively. For each vertex., vk, let a k - -  %(vk) = (akl, ' '  •, akt ), and for 
each arc eij, let b ~j = %(eli) = (b13,..., b~J). 

A random graph is a graph structure with randomly varying vertex and arc 
at tr ibute values [3, 7]. Any ARG obtained by instantiating all random vertices 
and random arcs is called an outcome graph of the random graph. Hence, a 
random graph represents the set of all possible ARGs that  can be outcome 
graphs of it. Next, a more precise definition is given. 

Let ¢ denote a null value for attributed vertices and arcs. Let A~ = A.  U {¢} 
and A~ = A~ U {¢}. A (general) random graph is defined to be a tuple R = 
(E,~, Z~, A,,,, At ,  7,~, %, P), where (Z,~, S~) is the underlying graph structure, 
7~ : E~ -+/2~ where/2~ is a set of random variables with values in A~ (random 
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vertices), % : S~ -+ ~2~ where De is a set of random variables with values in A~ 
(random arcs), and P is a joint probability distribution P ( a l , . . . ,  a~, fix,---,  fl,~) 
of all random vertices {a i [  ai = 7~(wi), 1 < i < n} and random arcs {flj [flj = 
%(ekt), 1 <_ j <_ m}. 

Let C(R) be the set of all outcome graphs of a random graph R. For each G E 
C(R), a probability measure PR (G) is given by the sum of the joint probabilities 
of random vertices and arcs over all instantiations which produce G, and any 
such instantiation is associated with a structural isomorphism # : G' -+ R, where 
G' is the extension of G to the order of R obtained by adding null vertices and 
arcs appropriately 4. Let G = (27~, 278, Av, A~,vv, %) be an ARG in C(R) for 
a random graph R = (S~, Z~, Aw, Ae,%0,7~ , P), and let G be oriented with 
respect to R by isomorphism # : G ' -+ R. For each vertex wi of R, let vk = 
#- l (wi)  and then define a i = %(vk) if Vk is non-null and a i = ¢ otherwise. 
Similarly, for each arc e~ of R, let ekt = / r l ( e j )  and then define b j = 7e(ekl) 
if ekt is non-null and b ~ = ¢ otherwise. Then, the probability of G to be an 
outcome of R with orientation # is given by 

p R ( a ' , . )  = p r  = . ; )  ^ = . (1) 

j----1 

General random graphs are absolutely impractical due to the difficulty in 
estimating and handling the high-order joint probability distribution P, where 
all primitives and their relations are taken jointly. Consequently, a strong sim- 
plification must be made to allow their use in practical cases. Wong et al. [3, 7] 
proposed the class of first-order random graphs for real applications, in which 
the following assumptions are made: 

(i) the random vertices {ai} are mutually independent; 
(ii) given values for the random vertices {ai}, the random arcs {flj} are inde- 

pendent; 
(iii) a random arc flj is independent of any random vertex other than its end- 

points ak and al (where flj is the random variable assigned to the edge ekt 
connecting vertices wk and wz). 

Based on the above assumptions, (1) becomes 

Ptt(G', #) : H Pi(ai) H pj(bJ I aJl,aJ2),  (2) 
i----1 j----1 

where p/(a) --~ P r ( ( ~  i : a), p j ( b  i aJl,  aj2) --~ P r ( ~ j  : b t (~jl  : aJi ,  ozj2 -~ aJ2), 
and O~jl , aj2 refer to the random vertices for the endpoints of the random arc 
flj. Therefore, only the probability density functions p{(a), 1 _ i _< n, and 
pj(b  ] aJ~,aJ2), 1 < j _< m, must be estimated. Wong et al. also introduced an 
entropy measure for a first-order random graph and used it in the definition of 
distance and similarity measures for ARGs and random graphs [3, 7]. 

Without the extension of G to G ~, the mapping p : G -4 R would be a 
monomorphism. 
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3 F u n c t i o n - d e s c r i b e d  g r a p h s  ( F D G s )  

An important  drawback of first-order random graphs, which is due to assump- 
tions (i) and (ii), is that  the structural information in a set of sample ARGs 
is not well preserved in the graph synthesized from them. For example, if C 
is a set of ARGs describing different perspective views of an object 0 ,  many 
of the outcome graphs of the random graph synthesized from C will represent 
impossible views of O (just from the topological point of view, without further 
consideration of the attributes of primitives and relations). 

The function-described graphs introduced by Serratosa and Sanfeliu [1, 2] 
(and redefined next) can be seen as a different type of simplification of the gen- 
eral random graphs, in which both random vertices and arcs are not assumed to 
be mutual ly independent, at least with regards to the structural information. On 
the other hand, the conditional probabilities of the random arcs pj(b 1 aJl, aJ2) 
included in first-order random graphs are hard to estimate, and they are con- 
verted into marginal probability density functions pj(b) in FDGs, but taking 
into account that  an edge cannot occur if any of its two endpoints does not 

occur, i.e. pj(b) -~ Pr(flj = b I ajl # ¢,aj2 # ¢). As in [8], the underlying 
assumption is that  the probability of any outcome of a random edge is the same 
regardless of the actual non-null outcomes of the endpoints. 

A function-described graph or FDG is formally defined as a tuple F = 
(Z~,Z~,A,~,A~,Tw,%,R~o,R~,A~,A,,C~o,C~), where (Z~,Z~,A~,z~e,7~,7~) 
are as in a random graph, so that  there is a set of random vertices { a i ]  a i  = 
7~@i), ¢vi E 5:w, 1 < i < n} with values in A~ = A~ U {¢} and a set of random 
arcs {flj ] flj =7~(ekt),  ekt E ~ ,  1 < j < m} with values in A~ = A~t3{¢}; 
R•, R~ are the (marginal) probability density functions for nodes and edges, 
respectively, i.e. R~ = {pi(a), 1 < i < n} and R~ = {pj(b), 1 < j < m}; 
Aw, A~ are the so-cMled antagonistic node and antagonistic arc functions, where 
A~ : Z~ x Z~ -+ {0,1}, A~(wi,wj) = 1 ¢~ Pr(ai # C A a j  # ¢) = 0, 

: x {0 ,  i } ,  A (zk,,zpq) = 1 = ^ "t (Zpq) = 
~j A Pr(~i # ¢ A ~j ~£ ¢) = 0; as complementary information, C~, C~ are the 
co-occurrent node and co-occurrent arc functions, where C,~ : ~v~ x ~w --+ {0, 1}, 
Cw(~oi,coj) = 1 ¢~z Pr(ai # CAaj  = ¢) = Pr(ai = CAaj  # ¢) = 0, C~ : 

-+  {0 ,1} ,  = 1 ¢ ,  = ^ ^ # 
¢ A ~j = ¢) = Pr(fli = ¢ A ~j # ¢) = 0. In addition, it is assumed that  for every 
arc ekt E ~ (connecting vertices ~ok and ~0~) and its corresponding random vari- 
able flj = 7~ (e~), it follows that Pr(~j # ¢ I ak = ¢) = Pr(~j # ¢ I at = ¢) = 0, 
where ak and at are the random variables associated with vertices wk and wt. 

Note that  the functions A~o, A~, C~, C~, which can be represented as sym- 
metric boolean matrices, incorporate structural dependencies between vertices 
and arcs that  can be used as constraints in the processes of ARG generation 
and recognition. If two nodes of an FDG are antagonistic (A,: (w~, w j) = 1) then 
they cannot be instantiated to a non-null vertex at the same time in an out- 
come graph of the FDG, whereas if they are co-occurrent (C~ (wi, w j) = 1) then 
whenever one of them is instantiated to a non-null vertex, the other one must 
be instantiated too. The same applies to antagonistic and co-occurrent arcs in 
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an FDG. It is likewise assumed that all the constraints in A~,A~,C,~, C~ are 
mutually consistent; for instance, it two arcs are antagonistic then the vertices 
connected by them cannot be co-occurrent. 

The probability density functions of random vertices in R~ can be used, 
either directly or indirectly, to provide measures of the compatibility between 
an attr ibuted node of an ARG and a node of the FDG, which can be em- 
ployed, in turn, in the process of labelling an ARG with respect to the FDG 
[4]. A similar argument applies to the probability density functions of random 
arcs in Re. In practice, the probability density functions {p~(a), I < i < n} 
and {pj(b), 1 < j < m} can be represented by discrete approxlma~lons (his- 
tograms). Furthermore, if the number of vertex attributes t or the number of 
arc attributes s is greater than 1, then it might be difficult to represent the 
joint probability of the different attribute values, and an additional simplifica- 
tion might be made by assuming a statistical independence among the different 
attributes. In such a case, pi(a) p i ( a l , . . . ,  at) t = = I]k=lPik(ak),  where Pi~ is 
a marginal probability density function for the k-th attribute of random vertex 
al, and pj (b) ---- p j ( b t , . . . ,  bs ) - I]~=l pjk(bk), where Pjk is a probability density 
function for the k-th attribute of random arc/3j (given non-null endpoints). The 
mutual  independence of attributes was also assumed in [8]. 

FDGs, as random graphs, are able to describe an ensemble of ARGs. XvVe 
will see in the following sections how to synthesize an FDG from a set of ARGs 
that  supposedly belong to the same class of structural patterns and can thus be 
regarded as positive examples of the outcome graphs of an unknown target FDG 
describing the class. The FDG resulting from the synthesis process must cover 
the sample ARGs and perform some "plausible" generalization of the examples. 
As in [3], the synthesis from a set of graphs with commonly labelled vertices and 
arcs will be discussed firstly and later the synthesis from unlabelled ARGs. 

4 S y n t h e s i s  o f  F D G s  f r o m  g r a p h s  w i t h  a c o m m o n  

l a b e l l i n g  

4.1 S y n t h e s i s  o f  F D G s  f r o m  labe l l ed  A R G s  

Let D = {G1, G 2 , . . . , G z )  be a set of ARGs defined over some common ho- 
mogeneous domains for attributed vertices and arcs, A,  = { ( a l , . . . , a t )  [ al e 
Dv~, 1 < i < t ,  t >  1}and  A ~ = { ( b l , . . . , b ~ )  [ b i E  D~i, l < i < s ,  s >  1},re- 
spectively. Let Gi = (Z. i ,  Z~i, A, ,  A~, 7~i, %i), for 1 < i < z. Assume that  there 
are given labelling schemes ~ = (~vi : Zvi --+ L~, k~i : Zel ~ Le), i = 1 , . . . , z ,  
where ~vi is an injective mapping from the underlying structural vertex set of 
Gi to a common set of vertex labels L~ = {1 . . . .  , n} and ~ei similarly labels arcs 
with labels from L~ = { 1 , . . . ,  n ( n -  1) }. The labelling schemes ~i can be extended 
to bijective mappings ~" = (~'i  : Z'~i --+ L~, ~/'~'~ : Z ' i  -+ Le), i = 1 , . . . ,  z, if 
each ARG Gi is previously extended to an isomorphic complete graph G~ of 
order n. The arc labellings are also assumed to be consistent across all graphs 
in D, i.e. the arc from the vertex labelled i to the vertex labelled j (i < j)  has 

i - -1  the same label k in all graphs, e.g. k = (j - i) + ~ I = 1  (n - f ) .  
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An FDG F = ( . U ~ , S ~ , A ~ , A ~ , % ~ , 7 ~ , R w ,  R~,Ao~,A~,Coj, C~ ) can be syn- 
thesized from D and ~ in a straightforward manner. F includes a complete 
underlying graph structure with a set of n vertices 2:o~ = {Wl, . . . ,wn} and a 
set of n(n  - 1) arcs S~ = {e l~ , . . . ,  e(n-Dn} .  Each vertex wi E ~0 is associated 
with a random variable a~ = %~(wi) with values in Ao~ = Av U {¢} and each 
arc ekt E ~ is associated with a random variable flj = %(ekt) with values in 
A, = AeU{¢ }. In addition, let ~ = (la~ : So~ --4 Lv, !o~ : S ,  -+ Le) be a labelling 
scheme on F defined simply by tao~ (wi) = i and !a~ (skz) = ( l -  k ) + ~ . y = l ( n - f ) , k - I  
where k < 1. From labellings ff'~ and ~, a set of bijective mappings {#a = 
(#vg, Peg) : (S~g, S~ea) --+ (~o~, ~ ) ,  1 < g < z} can be determined such that 
O~g = ~o~ o tZvg and ~ g  = ~ o Peg, for g = 1 , . . . , z .  Finally, let v g = # ~ ( w i )  
and ej~j~ g -- #e~(ej~j~) be respectively the node labelled i and the edge labelled 
j in ARG G~. 

The probability density functions R~ = {p~(a), i = 1 , . . . ,  n} of individual 
random vertices and R~ = {pj(b),  j = 1 , . . . ,  n(n  - 1)} of individuM random 
arcs (given non-null endpoints) can be estimated separately, in the maximum 
likelihood sense, using frequencies of attributes and null values in D. Thus, 

p ~ ( a ) = P r ( a i = a ) =  # g :  l < g g z :  % g ( V ~ ) = a ,  (3) 
z 

for all possible values a of cei including ¢, and 

p j (b)  = Pr(t~j = b I O/j1 ¢ ¢' O~J2 ¢ ¢) 

---- ~ g :  l < g < z :  7 , a ( V ] ~ ) ¢ ¢ A T ,  g(V]~) ¢ ¢ A T e g ( e ~ / ~ ) = b  (4) 

#g  " 1 ~_~ g ~ Z : ")'vg(Vgl) ¢ ¢ ^ ~vg(vg2) ~ ¢ 

for all possible values b of flj including ¢. 
The antagonistic node function A~ and the antagonistic arc function A~ are 

given by 

v g l i f V g :  l < _ . g < z :  -~ ( % a ( i ) 5 ~ ¢ A T " a ( v g ) ¢ ¢ )  (5) 
0 otherwise A~(wi, wj) = { 

A~(cixi2, ~jlj~) = { 
g # ¢) l i f V g :  l < g < z : -~ ( % g ( e i ~ 2 ) ¢ ¢ A  e g 

0 otherwise 
(6) 

whereas the co-occurrent node function C~. and the co-occurrent arc function C~ 
are given by 

l i f V g :  l < g _ < z :  - ~ ( % g ( v / a ) # ¢ A % g ( v ~ ) = ¢ V  
Co~(wl,wj) = %g(V g) - C A % g ( ,  g) 7£ ¢) (7) 

0 otherwise 

e g C g l i f V g :  l < g _ < z :  - - ( % 9 ( ~ i ~ ) ~ 6 A T e g ( j ~ j : ) - - C V  
g 

= ¢ ^ # ¢1 
0 otherwise 

(8) 
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4.2 S y n t h e s i s  of  F D G s  from label led  F D G s  

Let D = {F1, F 2 , . . . ,  Fh} be a set of FDGs independently synthesized from 
disjoint subsets of a class of AI%Gs with common homogeneous domains for 
attr ibuted vertices and arcs. Let Fk = ( ~ k ,  S~k, A~, A~, 7~k, %k, R~k, I~k, 
A~k,A~k, C~k, C~k), for 1 < k < h. For each FDG Fk, the number of ARGs 
from which it was formed, Zk, is stored together with the value of the denomi- 
nator in Eq.(4), let us call it u~, for each random arc b] of Fk. 

Assume that  there are given labelling schemes ~k = ( ~ k  : Z~k --+ L~, ~ k  : 
~ k  -+ L~), k = 1 , . . . ,  h, mapping the vertices and arcs of the FDGs Fk into 
common label sets L~ = {1 , . . . ,  n} and L~ = {1 , . . . ,  n(n - 1)}, such that  all 
~ k  and ~ k  are injective and all arc labellings are consistent throughout the 
set D. If the order of some FDG Fk is less than n, then Fk can be extended 
to an isomorphic complete FDG/;~  of order n by adding null vertices and arcs: 
if wi is an added null vertex, p~(¢) = 1, A~(wi,wj) = 1 for all vertices ~d, 
C~(wi,wj) = 1 if wj is a null vertex and C~(wi,wj) = 0 otherwise; similar 
definitions are applied in the case of an added null arc. Therefore, the labelling 
schemes ~k can be extended to bijective mappings ~ = ( ~k : S~k -~ L~, ~'k : 
X~¢k -+ Le), k = 1 , . . . ,  h, whenever each FDG Fk is previously extended to an 
isomorphic complete FDG F~ of order n. 

An FDG F : (S~,S~,A~,Ae,7~,%,R~,R~,A~,A~,C~,C~) can be syn- 
thesized now from the FDGs F~ and the common labelling ~ '  as follows. F 
includes a complete underlying graph structure with a set of n vertices Z~ = 
{w~,. . . ,wn} with corresponding random variables {a~, 1 < i < n}, and a set 
of n(n - 1) arcs Z~ = {¢1~,.. . ,  ~(n-~)n} with corresponding random variables 
{flj, 1 <_ j < n ( n -  1)}. As before, let ~ = ( ~  : E~ --+ L~, ~ : ~ -+ L¢) be a 
labelling scheme on F given by T~ (w~) = i and ~ (~kl) : (1 -- k) + ~]=~k-~ (n -- f ) ,  
k < l ; a n d l e t  {/~ = (P~,p~k)  : ~ ~ ,  ~k~ 
set of bijective mappings such that  ~ = T~ o # ~  and ~ k  = T¢ o #~k, for 

-~ w ek " = P-[~(¢AJ~) be respectively k = 1 , . . . , h .  Finally, let w~ - p~k(~ )  and ~ 
the node labelled i and the edge labelled j in FDG F~. 

The probability density functions R~ = {p~(a), i = 1 , . . . ,  n} of individual 
random vertices and Re = {pj(b), j = 1 , . . . ,  n(n - 1)} of individual random 
arcs can be estimated separately, again in the maximum likelihood sense, using 
the corresponding probabilities in R ~ ,  R~k, together with the values zk and u k, 
k = 1 , . . . , h .  Let 

Zk 1 < k < h ,  and (9) q k -  h ' 
~g----1 Zg 

u~ l < k < h ,  l < j < n ( n - 1 ) .  (10) k 
r j  - -  h g ' 

~ g = l  Uj 

Then, for all possible values a of random vertex ai  including ¢, we have that  

h 
p,(a) : Pr(a, : a) = ~ qk pk(a), ( l l )  

k=l 
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and, for all possible values b of random arc flj including ¢, 

h 
p j (b)  = Pr(~j --~ b l(~jl  # ¢, o~j2 # ¢) -- E rk pk(h)" (12) 

k--1 

The antagonistic node and arc functions A~0, A~, as well as the co-oceurrent 
node and arc functions C~o, C~, are all readily calculated, since they are given 
by the logical and of the corresponding functions in the FDGs Fk: 

h 
A~(wi,wj) = A A~k(w~,w])' (13) 

k----1 

h 
A~(~1~2, Qlj~) A A k k = ~k(eili~ , (14) ej~2), 

k----1 
h 

C~(w,,wj) = m cwk(w~,w~), (151 
k = l  

h 

C~(~ili2,~jlj2) m k k = C,k(ei~i~ , ej,j2 ). (16) 
k=l 

5 S y n t h e s i s  o f  F D G s  f r o m  u n l a b e l l e d  A R G s  

Algorithm 1 shows the incremental method that is proposed to synthesize an 
FDG from a sequence of ARGs without an a-priori common labelling. The algo- 
rithm uses the procedure described in Section 4.1 to transform an ARG G into 
an equivalent FDG H whose only outcome graph is G~ as well as the procedure 
described in Section 4.2 to synthesize an FDG from two FDGs for which a com- 
mon labelling is known. The synthesis method relies on (and is parametrized by) 
a matching algorithm M (G, F) that is supposed to return an optimal labelling 
between an ARG G and an FDG F according to some given optimization cri- 
terion. Several such algorithms A4 may be used. For instance, a method A41 is 
defined by minimizing the increment of entropy resulting from the merge of F 
and (an FDG equivalent to) G [3, 8]; note that an entropy measure, reflecting the 
variability of outcome graphs, can be computed for any FDG based on the prob- 
ability density functions in R~ and R, similarly to the case of random graphs [7]. 
An alternative method M2 is defined by maximizing a matching quality using 
a relaxation labelling scheme with a support function that involves both local 
attributes and contextual information [4]. 

Algorithm 1: Incremental FDG synthesis from unlabelled ARGs 
Inputs: A sequence of ARGs GI , . . . ,  Gm (m ~ 1) belonging to the same class 

of patterns. 
An ARG-to-FDG matching algorithm M(G, F) that finds an "opti- 

mal" labelling according to some optimization criterion. 
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O u t p u t :  An FDG Fm that generates the ARGs G1, . . . ,  G,~ and other "simi- 
lar" ARGs as outcome graphs. 

beg in  
i := 1 { i counts the number of ARGs in the sequence } 
read_ARG(G1) { read the first ARG in the sequence} 
F1 := FDG-synthesis_fromdabelled_ARGs(G1) { build the first FDG from 

G1 using the synthesis procedure described in Section 4.1 with z = 1 } 
while  no t  end of sequence of ARGs do 

i := i + 1; read-ARG(Gi) { read the next ARG } 
let Pi : Gi -+ Fi-1 be the optimal labelling found by M(Gi ,  Fi-1) 
i f  Pi is not bijective t h e n  

let p~ : G~ --+ F[_ 1 be a bijective mapping that extends #i by extending 
Gi to G~ and Fi-1 to F[_ 1 with null vertices and arcs appropriately 

else 
[A~ :~-- I£i; G~ :-. Gi; F~_ 1 : =  F i _  1 

end_if  
Hi := FDG.synthesis_from_labelled_ARGs(G~) { build an FDG from G~ 

using the synthesis procedure described in Section 4.1 with z =- 1 } 
let ~i : G~ --+ Hi be the bijective mapping constructed in the previous 

synthesis 
let ¢i : Hi --~ F/_ 1 be the bijective mapping determined by the composition 

F~ := FDG_synthesis_from_labelled_FDGs(Hi, F[_I, ¢i) { using the syn- 
thesis procedure described in Section 4.2 with h - 2 and a common 
labelling based on ¢i } 

end_while  
end_a lgor i thm 

A drawback of the above incremental approach is that, given a set of un- 
labelled ARGs {G1, . . . ,  Gin}, different FDGs could be synthesized from them 
depending on the order of presentation. To infer a unique FDG, a hierarchical 
synthesis process could be followed by merging successively pairs of FDGs with 
minimal distance, as in [3], whenever a distance measure between FDGs could 
be computed. Such a distance measure may be given by the minimal increment 
of entropy yielded by the synthesis of two FDGs (similarly to random graphs 
[3]) or derived from the matching quality of an optimal labelling found through 
relaxation [4]. 

6 C o n c l u s i o n s  

FDGs are a type of compact representation of a set of ARGs that borrow from 
random graphs the capability of probabilistic modelling of structural and at- 
tribute information, while improving the capacity of first-order random graphs 
to record structural relationships that consistently appear through the data. The 
synthesis of an FDG from a set of commonly labelled graphs, either ARGs or 
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FDGs, has been described precisely. Then, a general incremental algorithm to 
synthesize an FDG from a sequence of unlabelled ARGs has been proposed (as- 
suming that  the input graphs constitute a sample of a single class of patterns).  
Specific synthesis methods are obtained when an ARG-to-FDG matching algo- 
r i thm is selected to find optimal labellings. An efficient matching method based 
on relaxation labelling that  uses a new support function is reported elsewhere 
[4], which may be applied in the synthesis process. Both non-incremental syn- 
thesis and clustering of ARGs using FDGs may be approached by a hierarchical 
process that  requires a distance measure between FDGs, but  these problems 
have not been discussed enough here because they need further study. 
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