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Abs t r ac t .  We show how the formal description language LOTOS can 
be used to define software architectures and how patterns over LOTOS 
can serve to characterize architectural styles. We characterize styles by 
giving characteristics of the involved processes, a top-level communica- 
tion pattern, and constraints that are sufficient conditions for a concrete 
architectural description to be an instance of a given style. Three style 
characterizations are presented and illustrated by an example. 

1 I n t r o d u c t i o n  

Architectural  styles are a mechanism to make system design knowledge explicit 
and thus amenable to reuse. They characterize designs in terms of the system 
components  and the connectors that  enable communicat ion between compo- 
nents [AAG93]. Problems are how to represent styles in such a way that  unam- 
biguous criteria can be stated to decide whether a given design conforms to some 
style and how a style representation can help to develop concrete architectures. 

Informal  circle-and-line drawings have shown their l imitations and today, for- 
mal  languages are proposed to represent software architectures. New languages 
for architectural descriptions have been developed, but they are still in a matur -  
ing phase, and few are provided with tools [Cle96]. 

In this paper,  we address these problems in three ways: first, we demonstra te  
tha t  LOTOS [BB87] is a suitable language to express architectural designs. Sec- 
ond, we contribute to a clarification of the meaning of architectural styles by 
characterizing such styles as LOTOS patterns.  Third, we show how the pat terns  
can support  designers in the development of concrete software architectures. 

L O T O S  as a n  Architectural Description L a n g u a g e .  Using LOTOS to 
express architectural designs has several advantages: 

- LOTOS consists of two parts,  an algebraic specification language to define 
data,  and a process algebra to define the behavior of a system. Hence, the 
communicat ion between system components in an architecture can be de- 
scribed using the process algebraic parts  of LOTOS,  and the algebraic spec- 
ification language can be used to specify the da ta  t ransformations tha t  are 

performed by the system. 
- Architectural descriptions in LOTOS are formal and hence have an unam- 

biguous semantics. They can be subject to proofs and analyses. 
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- Existing tools, such as CADP (Caesar/Aldebaran Distribution Package) 
[FGM+92], can be employed to analyze and animate architectures defined 
in LOTOS. 

- LOTOS is an ISO standard. The use of a standardized language relieves 
system designers of the burden to learn an extra architectural description 
language. These can be quite rich and complex, see e.g. [LKA+95]. 

S t y l e  C h a r a c t e r i z a t i o n s .  We characterize an architectural style by (i) re- 
quirements on the processes specifying the components of a system, (ii) a com- 
munication pattern defining its top-level behavior, and (iii) constraints, which 
provide sufficient conditions for an architectural description to be an instance of 
the style. These conditions can be checked mechanically. 

D e s i g n  S u p p o r t .  The style characterizations provide designers with patterns 
that  simply have to be instantiated to obtain a concrete architecture. An instanti- 
ation can be performed recursively such that  an architecture can combine several 
architectural styles. Architectures can be mechanically checked for conformance 
with the style. Furthermore, the architectural descriptions can be analyzed and 
animated using existing tools. No new tools need to be developed. 

In Section 2, we explain the general approach we take to express architectural 
designs in LOTOS and styles as LOTOS patterns. The approach is illustrated 
by characterizing three architectural styles: repository (Section 3), pipe/filter 
(Section 4) and event-action (Section 5). In Section 6, we present three different 
designs for a robot, following the three architectural styles. The tool CADP is 
used to compare the alternative designs. The concluding section discusses our 
approach in the context of related work. 

2 Expressing Architectural Designs and Styles with 
LOTOS 

Architectural designs and styles are usually described in terms of components 
and connectors between them. In our approach, system components are modeled 
as processes. These processes usually perform some data  transformation. They 
may consist of another architectural description, representing the design of a 
subsystem. In this way, hierarchical composition of architectures is possible. 
Connectors are no separate syntactic entities but are realized by the kind of 
communication that  takes place between the component processes. 

LOTOS specifications are composed of interacting processes. They can be 
parameterized by abstract data types. A process can exchange typed values with 
another process and call functions to transform data. Communication between 
processes i n  LOTOS is synchronous, i.e. two processes must participate in a 
common action at the same time. Gates are used to synchronize processes and 
to exchange data. To synchronize, two processes must contain an action via the 
same gate g. To exchange data, one of them must contain an action g ? v: t 
which reads a value v of type t via gate g. The other process must contain an 
action g ! exp that writes a value exp of type t onto the gate g. It is also 
possible to read or write more than one value in the same action. 

We use this kind of communication by rendez-vous to describe the communi- 
cation between the components of a system. Data are described using abstract 
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data  types with conditional equations and an initial semantics. They are used for 
describing process parameters and values exchanged by the processes via gates. 

Each architectural description must be a valid LOTOS expression, regardless 
of the style it belongs to. It consists of two parts. The behavior part describes 
the overall behavior of the architecture, i.e. the interaction of its parts. The local 
definitions part contains the definition of the processes involved in the behavior 
part  and the necessary definitions of abstract data  types. The syntactical struc- 
ture of an architectural description is 

behaviour behav_e~r~" where ~ocaZ_def_~ist 

LOTOS patterns are obtained from LOTOS by abstraction, i.e. by replacing 
concrete LOTOS expressions by metavariables. Both parts of an architectural 
description, i.e., behav_e$p~" as well as l o c a l _ g e l _ l i s t ,  can be subject to ab- 
straction. In the following, concrete LOTOS expressions are set in t e l e t y p e ,  
and metavariables are set in i t a l i c s  teletype.  

A characterization of an architectural style consists of 
- c o m p o n e n t  c h a r a c t e r i s t i c s ,  which describe properties of the involved 

component processes; 
- a c o m m u n i c a t i o n  p a t t e r n ,  which characterizes the top-level behavior of 

the system by a LOTOS pattern; 
- c o n s t r a i n t s ,  which, when fulfilled, guarantee that  an architectural descrip- 

tion conforms to the style. 

Such representations make style characteristics explicit and can serve as a guide- 
line for designers. In the following, we present characterizations of three different 

architectural styles. 

3 Repository Style 

Garlan and Shaw [GS93] describe the repository style as follows: 

" In a repository style there are two distinct kinds of components: a 
central data  structure represents the current state, and a collection of 
independent  components operate on the central data  store." 

In our modeling, we suppose that  the central data  structure - the shared memory 
- contains data  accessible via indices selecting parts of the stored data. 

C o m p o n e n t  C h a r a c t e r i s t i c s  

We consider three kinds of components operating on the shared memory: com- 
ponents that  only read (part of) the memory, components that  only change the 
memory, and components that  do both. There is no interaction between com- 
ponents: they behave independently and communicate only with the repository 

and the environment. 
The three kinds of components are illustrated in Fig. 1. The system interface 

is represented by black squares. If a component wants to change the shared 
memory, it sends the message WR (write request). This causes the shared memory 
to set a lock. Only then can the new value be passed, using the gate W (write). 
If a component wants to read the shared memory, it sends the message RR (read 
request). If no lock is set the value is passed via the gate R (read). It may happen 
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Fig.  1. General view of repository style architecture 

[] [is_locked = true 
-> ( W .7 who: id .7 

Shared_Memory 
[] R .7 who: id .7 

W .7 who: id .7 
Shared_Memory 

endproc 

t ha t  a value to be wri t ten into the shared memory  depends on a value tha t  was 
read previously. In this case, no other  write operat ion should be allowed between 
the read and the write action. For this purpose,  the message RWR (read/wri te  
request) is used. 

Each process sending a request must  also send a unique identification. This  
prevents other  processes f rom accessing the m e m o r y  during a t ransact ion.  The  
process implement ing  the shared m e m o r y  is defined as follows: 

process  Shared_Memory [RR, R, WR, W, RWR] 
(sm: shared_memory, i s_ locked :  B00L, for_whom: i d ) :  n o e x i t  := 
[is_locked = false ] 

-> ( RR ? who: id; R .7 who: id .7 j : index ; R ! who ! get(sm, j); 
Shared_Memory [RR, R, WR, W, RWR] (sm, false, for_nobody) 

[] WR ? who: id; 

Shared_Memory [RR, R, WR, W, RWR] (sm, true, who) 
[] RWR .7 who: id; 

Shared_Memory [RR, R, WR, W, RWR] (sm, true, who) ) 
] 

j : index .7 nv: value [who=for_whom] ; 
[RR, R, WR, W, RWR](store(sm,j,nv),false,for_nobody) 
j : index ; R ! who ! get(sm, j); 
nv: value [who=for_whom]; 

[RR, R, WR, W, RWR](store(sm,j,nv),false,for_nobody)) 

The  process Shared_Memory has the gates RR, R, WR, W, RWR and the parame-  
ters sm representing the memory,  i s _ l o c k e d  and for_whom. It  does not  terminate ,  
as indicated by the keyword n o e x i t .  I f  the lock is not set, either a read request 
can be served, or the lock can be set because of  a write or read/wr i te  request. 
I f  the lock is set, either a new value and an index are read via the gate  W, or 
the par t  of  the reposi tory stored under  index j is ou tpu t  on gate  R, followed by 
reading a new value via gate W. These actions can only take place if the same 
process t ha t  sent the request part icipates in them,  as expressed by the guard  
[who=for_whom]. The  new value of  the shared m e m o r y  becomes the new param-  
eter of  the process, and the lock is reset 1. The  constant  f o r _ n o b o d y  indicates 
t ha t  access to the shared m e m o r y  is not  reserved for a part icular  process. 

The  process Shared_Memory is the same for all instant ia t ions of  the repos- 
i tory architecture,  except for the type of  informat ion to be stored. This  type  

i To keep our presentation concise, we do not permit parallel write or read/write ac- 
tions on different parts of the shared memory, i.e. on different indices. The definition 
of such an optimization is straightforward. 



822 

shared_memory has to be defined algebraically. We need an initial value i n i t ,  a 
function s t o r e  changing the shared memory,  and a function g e t  reading it. The 
types id, index  and v a l u e  of the values that  can be stored under an index are 
also defined algebraically. 

Each repository architecture consists of a process Shared_Memory as defined 
above and an arbi trary number  of independent components.  Each of these is 
either a read  process ,  a w r i t e  p r oces s  or a r e a d ~ w r i t e  process .  

A read process does not use the gates WR, W, RWR and contains an arbi trary 
(positive) number  of read behaviors but neither write nor read/wri te  behaviors. 
A read behavior is defined by the pat tern 

RR ! m e  ; 

R ! m e  ! i n d e x  ; 
R ? who:  i d  ? v : v a l u e  [who = me]  

where me is the identification of the process and i n d e $  is the index to be read. 
A write process does not use the gates RR, R, RWR and contains an arbi t rary 

(positive) number  of write behaviors but neither read nor read/wri te  behaviors. 
A write behavior is defined by the pat tern 

WR ! m e  ; 

W ! me  ! i n d e x  ! v 

where v is the new value to be stored under index i n d e ~ .  
A read/wri te  process may  use three behavioral patterns.  It  contains at least 

one read/wri te  behavior or read as well as write behaviors. A read/wri te  behavior 
is defined by the pat tern  

RWR! m e  ; 

R ! m e  ! i n d e x  ; 
R ? who:  i d  ? v : v a l u e  [who = m e ]  

followed by writing access to the shared memory  in all subsequent branches 2 of 
the process according to the pat tern 

W ! m e  ! i n d e x  ! n v  

for the same index i n d e z  and a new value n v .  

C o m m u n i c a t i o n  P a t t e r n  
The communicat ion between the shared memory  and the independent compo- 
nents is expressed by the following pattern,  where for better  readability we use 
" . . . "  instead of an inductive definition: 

hide RR, R, WR, W, RWR in 
Shared_Memory [RR, R, WR, W, RWR] (init of shared_memory,false,formobody) 

[[ RR, R, WR, W, RWR ]I 
( C o m p o n e n ~ _ l  [ g a t e _ ~ i s ~ _ l ]  

I I I  . . .  
I II C o m p o n e n ~ _ n  [ g a ~ e _ t i s t _ n ]  ) 

2 T h i s  c o n d i t i o n  c a n  b e  d e c i d e d  b y  a p r e d i c a t e  de f i ned  i n d u c t i v e l y  over  t h e  s y n t a x  of  

the behavior expression following the first part of the pattern. 
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Fig. 2. A pipe/filter architecture 

All components behave independently of each other (the operator I l l  involves 
no communication at all). For every r onent_i ,  i t s  g at e_l is t_i must contain 
the gates I~R and R if it is a read process and WR and W if it is a write process. 
A read/wri te  process may contain RR, R as well as WR, W, or RWR, R and W. The 
repository and the independent components must synchronize on these gates, 
as expressed by the synchronization list I [RR, R, WR, W, RWR] ]. The h ide  clause 
hides communications via the gates RR, It, WR, W, RWR from the environment. 

C o n s t r a i n t s  
Constraints are expressed in terms of the two parts of an architectural descrip- 
tion, behav_eapr and local_def_list ,  see Section 2. For the repository style, 
we have the constraints that  the behav_e$pw must conform to the communica- 
tion pattern given above, and that  each process occurring in behav_e$p~, except 
Shared~eraory ,  must be a read, a write or a read/write process as defined above. 

4 Pipe/Filter Style 

The characteristics of pipe/filter style are the following [GS93]: 
"In a pipe and filter style each component has a set of inputs and a set of 
outputs. A component reads streams of data on its inputs and produces 
streams of data on its outputs, [. . .]  Components are termed "filters". 
The connectors of this style serve as conduits for the streams, trans- 
mitting outputs of one filter to inputs of another. Hence connectors are 
termed "pipes". [ . . .]  filters must be independent entities: in particular, 
they should not share state with other filters. " 

Garlan et al. [GKMM96] additionally state the topological constraint that  pipes 
are directional and that  at most one pipe can be connected to a given "port" of 
a filter. Figure 2 shows an example of a pipe/filter architecture. A filter (in this 
case F i l t e r _ 3 )  may have several incoming and several outgoing pipes. Cycles 
are also allowed, see [GS93]. In the LOTOS characterization of this style, a pipe 
between two filters is a synchronous communication via some gate. 

C o m p o n e n t  C h a r a c t e r i s t i c s  

A filter is modeled by a process that takes its inputs from the incoming pipes, 
transforms them according to its task, and delivers the results via the outgoing 
pipes. Communication with the environment is also possible. 

Hence, a component of this style is not characterized by some specific behav- 
ior but by its gates. These are divided into the lists in_pipe_l i s t ,  out_~ipe_l i s t  
and ear_gate_list.  A filter process does not write on gates of its in_pipe_l is~ 
and does not read from gates of its out_pipe_list. 
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C o m m u n i c a t i o n  P a t t e r n  

Two filters communicate  via their common pipes. For example, the filters F i l -  
t e r _ l  and F i l t e r _ 2  in the smallest box of the architecture shown in Fig. 2 
exhibit the communicat ion behavior 

F i l t e r_ l  [env_l ,pipe_12 ,pipe_13] [ [pipe_12] I Fi l ter_2 [pipe_12,pipe..23] 

When adding the third filter F i l t e r _ 3  synchronizing with the previous system 
via the pipes pipe_13 and pipe_23, the following behavior is obtained: 

F i l t e r l  [env_l, pipe_12, pipe_13] 
I [pipe_12] I Fi l ter_2 [pipe_12, pipe_23] ) 
[[pipe_13, pipe_23]l Fil ter_3 [env_3, pipe_13, pipe_23, pipe_34, pipe_35] 

Hence, the general communicat ion pat tern of the pipe/fil ter has the form 

hide p i p e _ l i s t _ l ,  p ipe_ l i s t _2  . . . .  p ipe_ l i s t_n -1  in 
(. . . ( ( F i l t e r _ l  [ g a t e _ l i s t _ l ]  I [ p i p e - l i s t - 1 ]  ] F i l t e r _ 2 [ g a t e _ l i s t _ 2 ] )  

I [p ipe_l i s t_2]  ] F i l t e r _ 3  [ga~e_list_3] ) 
. . o  

[ [ p i p e _ l i s t _ n - I l l  F i l t e r _ n  [ga t e_ l i s t _n] )  

C o n s t r a i n t s  
Again, we state the constraints in terms of the top-level behavior b e h a v _ e s p r  

and the l o c a l _ c l e f _ l i s t :  

- All synchronization lists p i p e _ l i s t _ l ,  . . . ,  p i p e _ l  i z t _ n - 1  occurring in b e -  
h a v _ e $ p ,  are disjoint, i.e., a pipe connects only two filters. 

- Each gate occurring in some synchronization list of behav_eapr  occurs ex- 
actly twice in the gates of the processes F i  l t e~ '_ l ,  . . . ,  F i  Ztee_n defined in 
l o c a l _ d e f _ Z i s t ,  i.e., a pipe cannot be re-used as an external gate. 

- Each of the processes F i l t e r _ l ,  . . . ,  F i l t e r _ n  that  occur in behav_eap~" 
must  conform to the characterization given above. The gates of a process 
representing pipes are exactly the ones that  occur in some synchronization 
list. The direction of the pipe can be determined from the process definition. 

Note that ,  in our definition, pipes and filters have no buffers like in [AAG93], be- 
cause - according to the synchronous communicat ion of LOTOS - no da ta  can be 
lost. The buffered version - which we consider to be closer to an implementat ion 
- could also be expressed in LOTOS. 

5 E v e n t - A c t i o n  S t y l e  

According to Krishnamurthy and Rosenblum [KR95], 
"An  event-action system is a software system in which events occurring 
in the environment of the system trigger actions in response to the events. 
The  triggered actions may generate other events, which trigger actions, 

and so on." 

Garlan and Shaw [GS93] mention that  " The main invariant in this style is that  
announcers of events do not know which components will be affected by those 

events." 
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C o m p o n e n t  C h a r a c t e r i s t i c s  
An event-action architecture consists of components that react to events. When 
an event has happened, actions are carried out and other events may be sent. 
An event manager is responsible for distributing all events that have occurred 
to all components that have to react to that event. Figure 8 shows an example 
of an event architecture. The event manager has the following form3: 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: : �9 : , . ~ .  ~ : . ,  ~. ~ : i : / : . ~  
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::::::::::: : : : : . :  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
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Fig. 3. An event-action architecture 

process Event_Manager [EVENTS, IN_l, OUT_I .... IN_n, OUT_n] : fune := 
EVE21TS ? e: even~; exit(e) 

[] OUT_I ? e: even~; exit(e) 
[] ... 

[] OUT_n ? e: even~; exit(e) 
>> accept e: even~ in 

[p_l(e)] -> IN_l,1 ! e ; ... IN_l,nl ! e ; 

Event_Manager [EVENTS, IN_l, OUT_I .... Ii~_n, OUT_n] 
[] ... 

[] [p_k(e)] -> I Ir  ! e ; . . .  I N _ k , n k  ! e ; 

Event_Manager [EVEI~TS, I N _ l ,  OUT_I . . . .  IN_n ,  OUT_n] 
endproc 

This definition consists of two processes, separated by >>. The accep t  clause 
means that an event e is passed from the first process (via the e x i t  clauses) to 
the second one. In the first process, the event manager reads incoming events, 
either from the environment via the gate E V E N T S  or from some other component 
via some gate OUT_i .  It then decides how to distribute the events, according to 
the predicates p_j.  The event manager may have functionality e x i t  or noex i t .  
The data  type e v e n t  must be defined algebraically. It can be structured to allow 
the handling of complex events. 

Each event-action architecture consists of a process E v e n t ~ a n a g e r  as de- 
scribed above and an arbitrary number of independent components. Each such 
component C o m p o n e n t _ i  has a gate IN_i and contains an action 

IN_i ? e: event 

If the component generates events, it has a gate g U T _ i ,  which is used to send 
events to the event manager. In this case, the process behavior contains actions 
of the form: 

OUT_ i ! e 

The process does not write on I N _ i  and does not read from OUT_i .  

3 In this definition, there is only one gate EVENTS. The pattern can easily be generalized 
to allow for several external gates. 
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C o m m u n i c a t i o n  P a t t e r n  
The communication between the event manager and the independent compo- 
nents takes place according to the pattern 

hide IN_l, OUT_I .... IN_n, OUT_n in 
Event_Manager [EVENTS, IN_l, OUT_I .... IN_n, OUT_n] 

l [IN_I , OUT_I .... IN_n, OUT_n] l 
( Componen~_l [IN_I , OUT_I, ear_gate_l is t_l]  

III . . .  
III Component_n [IN_n, OUT_n, env_gate_list_n] ) 

C o n s t r a i n t s  
The behav_eap~" and Zoca~_def_Zis t  making up the architectural description 
of an event-action system must satisfy the following constraints: 

- behav_eapr  must conform to the communication pattern given above. 
- Each of the processes that occurs in behav_eap~', except gvent_Nanager, 

must conform to the description given in the component characterization. 

6 E x a m p l e  
We illustrate our approach by specifying a robot. This robot can make the move- 
ments shown in Fig. 4: it can advance by moving its right or its left leg; it can 
stand still; and it can smile or not. In the following, we develop three alternative 
specifications, one for each style presented above. These three specifications use 

the same robot definition. 

init chg_smile advance advance chg_smile stand chg_smile 

Fig. 4. The movements of the robot 

The robot can be modeled as an automaton with three states: s t and ing ,  l e f t _up  
and r igh t_up  as shown in Fig. 5. To each state a boolean value is associated 
indicating whether the robot is smiling or not. The initial state is standing and 
smiling. The robot is defined by an abstract data type r o b o t  where the states 
are defined as constants and the movements as transitions from one state to 
another, except for smiling which is defined by a boolean value: true for smiling. 
For each state a predicate is defined deciding if the robot is in this state. 

The movements are defined by the type mvt with three constants re_stand, 
re_advance and m_chg_smile. The robot will be asked to execute several move- 
ments collected in a list. This list is defined by an abstract data type re_list  
with a constant empty, a function add adding an element to the end of the list, a 
function rm-f i r s t  removing the first element of a list, a function f i r s t  selecting 
the first element of a list, and a predicate is_empty. A constant init_list is 
used to define the list of movements initially given to the robot. 

We have the same interface for all architectures. The initial state of the 
robot and the movements to be performed are read via a gate START. A data 
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~1~ ~ chg_smi l e  var iab le  s tanding(s)  _ ~ s tand  
s: boo l  

chg._smile@�9 ~ ~ �9 @ 
left_up(s) advance right_up(s) 

chg_smi l e  

Fig. 5. The robot automaton 

type value is defined as the Cartesian product of the types robot and re_list. 
Its constructor function is make, and its selector functions are the_robot and 
t h e _ l i s t .  Via a gate OUTPUT, the current state of the robot is made visible to 
the environment. The top-level behavior 

START !make(init of robot,init_list) ; exit [ [START] [ (behav_expr) 
is the same for all three architectures. They are only distinguished by different 
definitions of behav_e~p~ and the associated ~ oca Z_def_~ i s t .  

6.1 T h e  r o b o t  spec i f i ca t i on  us ing  t h e  r e p o s i t o r y  s ty l e  

Our first robot design follows the repository style. The shared memory is to hold 
the current state of the robot and the list of movements to be executed, i.e. items 
of type va lue .  We need only one index index l .  The initial state and the initial 
list are written into the shared memory by a write process Init_sm. 

process Init_sm [START, W, WR] : exit := 
START ? vv: value; 
WR ! id_Init_sm; W ! id_Init_sm ! indexl ! vv; exit 

endproc 

Furthermore~ we need three components Stand, Chg_Smile and Advance to ex- 
ecute the corresponding movements~ as illustrated in Fig. 6. 

START OUTPUT 
::::::::::::::::::::::::::::::::::::::::::::::::::::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :i:i:i:i:i::i : : : : i  i 
::::::::::::::::::::::::::::::::::: ~ ~, .~ ::::::::::::::::::::::::::::::::::: ,~ e ~ ,~:: ;: : 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ] 
i:i i iiiiiiiil 

i iii 

Fig. 6. The repository architecture~ 

These components try in parallel to access the shared~.memory to execute the 
movement they are responsible for. They all are read/Write processes. Each of 
them first reads the list of movements, denoted ml. If~he first movement is the 
one it is responsible for, it is executed, the robot state changed (variable ro ro )  
and the rest of the movement list is written back into the shared memory. If the 
movement cannot be executed by the component that has been granted access, 
it writes back the unchanged state to unlock the shared memory. 

According to our characterization, the overall behavior of the repository robot 
specification is 
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hide RR, R, WR, W, RWR in 

Shared_Memory [RR, R, WR, W, RWR] (init of shared_memory,false,for_nobody) 
[[ RR, R, WR, W, RWR ][  

( In i t_sm [START, W, WR] 
I I I  Stand [OUTPUT, R, W, RWR] 
/ l l  Chg_Smile [OUTPUT, R, W, RWR] 
Ill Advance [OUTPUT, R, W, RWR] ) 

Of  the  processes implemen t ing  the movement s ,  we only present  Advance.  The  
others  are defined analogously.  

process Advance [OUTPUT, R, W, RWR] : exit := 
RWR ! id_Advance; R ! id_Advance ! indexl ; 
R ? for_whom: id ? v: value [for_whom=id_Advance]; 
(let ml: m_list = the_list(v), roro: robot -- the_robot(v) in 

[is_empty(ml)= true ] -> W ! id_Advance ! v ; exit 

[] [is_empty(ml)= false] -> 
( [first(ml) equal re_advance = true ] 

-> OUTPUT ! advance(roro) ; 
W ! id_advance ! make(advance(roro), rm_first(ml)) ; 

Advance [OUTPUT, R, W, RWR] 

[] [first(ml) equal re_advance = false] 
-> W ! id_Advance ! v ; 

Advance [OUTPUT, R, W, RWR] )) 

el~dproc 

This  archi tecture  has the d i sadvantage  t ha t  the sys tem imp lemen ta t i on  mus t  
gua ran tee  t ha t  each componen t  is given the chance to access the shared memory .  
Otherwise,  an infinite n u m b e r  of  unsuccessful accesses is possible. 

6 .2  T h e  r o b o t  s p e c i f i c a t i o n  u s i n g  t h e  p i p e / f i l t e r  s t y l e  

In the p ipe / f i l te r  model ing,  we can make  sure t ha t  each componen t  is given 
the  possibi l i ty  to execute its m o v e m e n t  if required. We have a line of  filters, 
see Fig. 7, where each filter inspects  the m o v e m e n t  list. I f  it can execute  the  
m o v e m e n t ,  it does so and hands  the new robot  s ta te  and the new m o v e m e n t  list 
to the  next  filter. Otherwise,  it passes on the  unchanged  data .  Again,  we need 
an init ial izing componen t ,  called here Init_pf. 

START OUT~IIUT 
�9 . . . . . . . . -  - �9 . ~  . . . . .  . . . . : . - . . . . . ' . ' . ' . - . - . ' . ' . . : . : . : - : . : -  . ' . / ;  4 .  4 < - V " : . ~ . Y ~ T ? ~ - ~ " : ' ~ 1 5 ~ : ~ 4 : ~ : : > :  : ' :  : : : : : : : : : : : : : : : : : : : : : : : :  

:: [:::::::::::::::::::::::::::::::::::::::: !; ::P0 ::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::1~:: !!::!::i::::iiiiii !!::::i:;iiii!::i::iiiii :Pi ~;;;~ ~;;~;~;~;;;~" :'::':" 
:::: ::::::::iii~B~r ~i::!i::i~:: ~ i i~ .................................................................... ~i-i ~ " :~:' ~ ~~i~!:i::: ~:~''';::~: .................. : ~: i!:i~:":i ':" :: i: :: : ~  ........... ~ ' :  :: 

I iii!!!!!iii!i!!iiiiii!i!ii i ! ! i i ! i i i i i i:i:i:i:i:i:i:i:iti~i~ 2 :~: :~:~: i: t $ ~ ~::-::~::~:~ :-:v:-:v:v: 7: ~ : 

Fig.  7. The pipe/filter architecture 

process Init_pf [START, P0] : exit := 
START 7 vv: value; PO ! vv ; exit 

endproc 

According to  the  style character izat ion,  the  overall  behavior  of the  process is 
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hide  P0, P1, P2, P3 in 
( Init_pf [START, PO] 
I[ PO 31 Stand [PO, PI, P3, OUTPUT] 
][ PI, P3 11 Advance [Pi, P2, OUTPUT] 
[[P2]I Chg_Smile [P2, P3, OUTPUT] ) 

The Advance filter is defined as follows. 

process Advance [PI, P2, OUTPUT] : exit := 
Pi .7 v: value; 
(let ml: m_list = the_list(v), roro: robot = the_robot(v) 
in [is_empty(ml)= true ] -> (exit) 
[] [is_empty(ml)= falsel -> 

( [first(ml) equal m_advance = true ] 
-> OUTPUT ! advance(roro) ; 

P2 ! make (advance(roro) , rm_first (ml)) ; 
Advance [PI, P2, OUTPUT] 

[1 [first(ml) equal m_advance = falsel 
-> P2 ! v ; 

Advance [PI, P2, OUTPUT] )) 
endproc 

This solution is bet ter  than  the repository architecture because it always 
terminates .  It  is not  ideal, however, because each componen t  mus t  inspect the 
data ,  even if it cannot  process them. 

6 .3  T h e  r o b o t  s p e c i f i c a t i o n  u s i n g  t h e  e v e n t - a c t i o n  s t y l e  

The  event-act ion architecture,  see Fig. 8, does not  have the disadvantages of  
the previous architectures. The  event manager  inspects the movemen t  list and 
passes on the da t a  only to the component  tha t  can process them. Events are 
i tems of  type  v a l u e .  The  initial state of  the robot  and the movemen t  list are 
given to the event manager .  An  initialization componen t  is not  required. The  
event manager  is defined as follows. 

S T A R T  OUTPUT 
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Fig. 8. The event-action architecture 

p rocess  Event_Manager [START, I n s t a n d ,  0u t_s tand ,  In_chg_smile,  
0ut chg_smile,  In_advance,  0ut_advancel :  e x i t  := 

START ? v: value; exit(v) 
[] Out_stand ? v: value; exit(v) 
[1 Out_advance ? v: value; exit (v) 
[10ut_chg_smile ? v: value; exit(v) 
>> accept v: value in 
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(let ml: m_list = the_list(v), roro: robot = the_robot(v) in 
[is_empty(ml)= true ] -> (exit) 

[] ([is_empty(ml)= false] -> 
( [first (ml) = re_stand] 

-> In_stand ! v ; 
Event_Manager [START, In_stand, Out_stand, 

In_chg_smile, Out_chg_smile, In_advance, Out_advance] 
[3 [first (ml) = re_advance] 

-> In_advance ! v ; 
Event_Manager [START, In_stand, Out_stand, In_chg_smile, 

Out_chg_smile, In_advance, Out_advance] 
[3 [first (ml) = m_chg_smile] 

-> In_chg smile ! v ; 
Event_Manager [START, In_stand, Out_stand, In_chg_smile, 

Out_chg_smile, In_advance, Out_advance] )) ) 

endproc 

In accordance with the event-action style, we have the following overall behavior: 

hide In_stand, Out_stand, In_chg_smile, 
0ut_chg_smile, In_advance, Out_advance in 

EventManager [START, In_stand, Out_stand, In_chg_smile, 
0ut_chg_smile, In_advance, Out_advance] 

][In_stand, Out_stand, In_chg_smile, 
0ut_chg_smile, Inadvance, Out_advance] J 

( Stand [OUTPUT, Instand, Out_stand] 
111 Advance [0UTPUT, In advance, Out_advance] 
ill Chg_Smile [0UTPUT, In_chg_smile, Out_chg_smile] ) 

Note that  the components executing the movements are much simpler now. 
p r o c e s s  Advance [OUTPUT, I n _ a d v a n c e ,  0 u t _ a d v a n c e ]  : n o e x i t  := 

I n _ a d v a n c e  ? v:  v a l u e ;  
( let ml: m_list = the_list(v), roro: robot = the_robot(v) 

in OUTPUT ! advance(roro) ; 
0ut_advance ! make (advance (roro) , rm_first (ml)) ; 
Advance [OUTPUT, In_advance, Out_advance] ) 

e n d p r o c  

6.4 C o m p a r i n g  t h e  t h r e e  spec i f ica t ions  w i t h  A l d e b a r a n  

Under the assumption of fairness for the repository solution, all the above spec- 
ifications exhibit the same behavior to the environment. The tool CADP (Cae- 
sar/Aldebaran Distribution Package) [FGM+92] generates the same automaton 
minimized with respect to safety equivalence [Fer89] (i.e. internal transitions are 
not considered) for all the thtee architectures, where we use the movement list 
shown in Fig. 4. Stepwise execution of the three alternative architectures is also 
possible. This shows that  existing LOTOS tools can help to animate and compare 
architectural descriptions, thus providing valuable support for their validation, 

7 D i s c u s s i o n  

Two of the style characterizations given in this paper, repository and event- 
action, contain a distinguished component (Shared_Memory and Event~anager, 
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respectively). This results in a relatively detailed characterization of the other 
components of the architecture because one can state requirements concerning 
the communication of the other components with the distinguished one. Fur- 
ther constraints are not necessary. In contrast, the pipe/filter style does not 
have a distinguished component. This allows only a weak characterization of the 
components, but leads to non-trivial constraints concerning the communication 
between the different components. 

Formal descriptions of architectural styles and concrete architectural designs 
are important  because only architectural descriptions with a formal semantics 
make it possible to precisely answer the questions stated by Clements [Cle96]: 
What  are the components? How do they behave? What  do the connections mean? 

Our work shows that  LOTOS is a language suitable to express individual 
architectures and that  LOTOS patterns in combination with constraints are 
suitable to characterize architectural styles. Our style characterizations do not 
only provide a semantical foundation of architectural styles. Their schematic 
nature also makes it possible to use them as templates for the development of 
concrete architectures. The formal nature of the architectural descriptions and 
the availability of tools makes it possible to formally analyze and to animate 
them. In addition, our approach allows for hierarchical composition of architec- 
tural descriptions and definition of substyles by adding further constraints or 
adding further detail to the patterns. 

We are not the first to formally characterize architectural styles or to use 
a process algebra to specify the behavioral aspects of software architectures. 
Abowd, Allen and Garlan [AAG93] use the specification language Z to formally 
define architectural styles. Concrete designs, however, are described in a different 
language. Thus, there is no direct way from a style definition to an instance of 
the style. 

Allan and Garlan lAG94] use CSP to formalize architectural connection. In 
their approach, connectors are defined as processes. In contrast to our work 
where components are modeled as processes, this yields several de-centralized 
behaviors in one architectural description instead of one central behavioral de- 
scription characterizing the whole system, as proposed in this work. Moriconi 
and Qian [MQ94] use CSP to show that  an architectural description is a cor- 
rect refinement of another. Both of these approaches are not concerned with 
architectural styles but with architectural descriptions in general. 

The work presented here forms the basis for future work in several directions. 
First, a notion of architecture refinement will be defined, based on the notion of 
behavioral equivalence in LOTOS. Second, concepts for the machine-supported 
development of architectures as instances of styles will be developed. This can 
be done in such a way that (i) the developed architectures can be guaranteed to 
conform to the chosen style and (ii) dead-ends are avoided as far as possible. 

Two development frameworks, designed by the authors, are good candidates 
for accommodating architecture development. The first is a knowledge represen- 
ration mechanism called strategies [HSZ95]. They form a generic framework in 
which development knowledge for various software development activities can 
be expressed. This framework can be instantiated to support the development 
of LOTOS specifications representing architectural designs. The resulting design 
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can be guaranteed to conform with the chosen style because strategies guarantee 
semantic properties of the developed product.  

The  second framework to model developments [SL93,L6v95] aims at provid- 
ing specifiers with active tools to support  them during the development process. 
It  is language-independent and therefore can be used with existing specification 
languages. The resulting specifications can be verified and refined using existing 
tools. In this framework, developments are formalized as a stepwise application 
of development operators. 

Experimenting with different models for machine support  will help to find 
appropriate  ways to support  architectural design processes. 

Acknowledgment. Thanks to Thomas  Santen, Martin Simons and Jeanine Sou- 
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