
Using LOTOS Patterns to Characterize
Architectural Styles

Mari t ta Heisel I and Nicole L6vy 2

1 FG Softwaretechnik, Technische Universits Berlin, Sekr. FR 5-6, Franklinstr.
28/29, D-10587 Berlin, Germany, heisel@cs.tu-berlin.de

2 CRIN-CNRS, BP. 239, F-54506 Vandceuvre-les-Nancy, France, nlevy@loria.fr

Abs t r ac t . We show how the formal description language LOTOS can
be used to define software architectures and how patterns over LOTOS
can serve to characterize architectural styles. We characterize styles by
giving characteristics of the involved processes, a top-level communica-
tion pattern, and constraints that are sufficient conditions for a concrete
architectural description to be an instance of a given style. Three style
characterizations are presented and illustrated by an example.

1 I n t r o d u c t i o n

Architectural styles are a mechanism to make system design knowledge explicit
and thus amenable to reuse. They characterize designs in terms of the system
components and the connectors that enable communicat ion between compo-
nents [AAG93]. Problems are how to represent styles in such a way that unam-
biguous criteria can be stated to decide whether a given design conforms to some
style and how a style representation can help to develop concrete architectures.

Informal circle-and-line drawings have shown their l imitations and today, for-
mal languages are proposed to represent software architectures. New languages
for architectural descriptions have been developed, but they are still in a matur -
ing phase, and few are provided with tools [Cle96].

In this paper, we address these problems in three ways: first, we demonstra te
tha t LOTOS [BB87] is a suitable language to express architectural designs. Sec-
ond, we contribute to a clarification of the meaning of architectural styles by
characterizing such styles as LOTOS patterns. Third, we show how the pat terns
can support designers in the development of concrete software architectures.

L O T O S as a n Architectural Description L a n g u a g e . Using LOTOS to
express architectural designs has several advantages:

- LOTOS consists of two parts, an algebraic specification language to define
data, and a process algebra to define the behavior of a system. Hence, the
communicat ion between system components in an architecture can be de-
scribed using the process algebraic parts of LOTOS, and the algebraic spec-
ification language can be used to specify the da ta t ransformations tha t are

performed by the system.
- Architectural descriptions in LOTOS are formal and hence have an unam-

biguous semantics. They can be subject to proofs and analyses.

819

- Existing tools, such as CADP (Caesar/Aldebaran Distribution Package)
[FGM+92], can be employed to analyze and animate architectures defined
in LOTOS.

- LOTOS is an ISO standard. The use of a standardized language relieves
system designers of the burden to learn an extra architectural description
language. These can be quite rich and complex, see e.g. [LKA+95].

S t y l e C h a r a c t e r i z a t i o n s . We characterize an architectural style by (i) re-
quirements on the processes specifying the components of a system, (ii) a com-
munication pattern defining its top-level behavior, and (iii) constraints, which
provide sufficient conditions for an architectural description to be an instance of
the style. These conditions can be checked mechanically.

D e s i g n S u p p o r t . The style characterizations provide designers with patterns
that simply have to be instantiated to obtain a concrete architecture. An instanti-
ation can be performed recursively such that an architecture can combine several
architectural styles. Architectures can be mechanically checked for conformance
with the style. Furthermore, the architectural descriptions can be analyzed and
animated using existing tools. No new tools need to be developed.

In Section 2, we explain the general approach we take to express architectural
designs in LOTOS and styles as LOTOS patterns. The approach is illustrated
by characterizing three architectural styles: repository (Section 3), pipe/filter
(Section 4) and event-action (Section 5). In Section 6, we present three different
designs for a robot, following the three architectural styles. The tool CADP is
used to compare the alternative designs. The concluding section discusses our
approach in the context of related work.

2 Expressing Architectural Designs and Styles with
LOTOS

Architectural designs and styles are usually described in terms of components
and connectors between them. In our approach, system components are modeled
as processes. These processes usually perform some data transformation. They
may consist of another architectural description, representing the design of a
subsystem. In this way, hierarchical composition of architectures is possible.
Connectors are no separate syntactic entities but are realized by the kind of
communication that takes place between the component processes.

LOTOS specifications are composed of interacting processes. They can be
parameterized by abstract data types. A process can exchange typed values with
another process and call functions to transform data. Communication between
processes i n LOTOS is synchronous, i.e. two processes must participate in a
common action at the same time. Gates are used to synchronize processes and
to exchange data. To synchronize, two processes must contain an action via the
same gate g. To exchange data, one of them must contain an action g ? v: t
which reads a value v of type t via gate g. The other process must contain an
action g ! exp that writes a value exp of type t onto the gate g. It is also
possible to read or write more than one value in the same action.

We use this kind of communication by rendez-vous to describe the communi-
cation between the components of a system. Data are described using abstract

820

data types with conditional equations and an initial semantics. They are used for
describing process parameters and values exchanged by the processes via gates.

Each architectural description must be a valid LOTOS expression, regardless
of the style it belongs to. It consists of two parts. The behavior part describes
the overall behavior of the architecture, i.e. the interaction of its parts. The local
definitions part contains the definition of the processes involved in the behavior
part and the necessary definitions of abstract data types. The syntactical struc-
ture of an architectural description is

behaviour behav_e~r~" where ~ocaZ_def_~ist

LOTOS patterns are obtained from LOTOS by abstraction, i.e. by replacing
concrete LOTOS expressions by metavariables. Both parts of an architectural
description, i.e., behav_e$p~" as well as l o c a l _ g e l _ l i s t , can be subject to ab-
straction. In the following, concrete LOTOS expressions are set in t e l e t y p e ,
and metavariables are set in i t a l i c s teletype.

A characterization of an architectural style consists of
- c o m p o n e n t c h a r a c t e r i s t i c s , which describe properties of the involved

component processes;
- a c o m m u n i c a t i o n p a t t e r n , which characterizes the top-level behavior of

the system by a LOTOS pattern;
- c o n s t r a i n t s , which, when fulfilled, guarantee that an architectural descrip-

tion conforms to the style.

Such representations make style characteristics explicit and can serve as a guide-
line for designers. In the following, we present characterizations of three different

architectural styles.

3 Repository Style

Garlan and Shaw [GS93] describe the repository style as follows:

" In a repository style there are two distinct kinds of components: a
central data structure represents the current state, and a collection of
independent components operate on the central data store."

In our modeling, we suppose that the central data structure - the shared memory
- contains data accessible via indices selecting parts of the stored data.

C o m p o n e n t C h a r a c t e r i s t i c s

We consider three kinds of components operating on the shared memory: com-
ponents that only read (part of) the memory, components that only change the
memory, and components that do both. There is no interaction between com-
ponents: they behave independently and communicate only with the repository

and the environment.
The three kinds of components are illustrated in Fig. 1. The system interface

is represented by black squares. If a component wants to change the shared
memory, it sends the message WR (write request). This causes the shared memory
to set a lock. Only then can the new value be passed, using the gate W (write).
If a component wants to read the shared memory, it sends the message RR (read
request). If no lock is set the value is passed via the gate R (read). It may happen

821

:::i:!::: : ::::::i ::: :
: : : : : : : : : : : : : : : : : : : : : ~ : ~ :::: : : : ::::::::::::::::::::::::::::::::::::::: ::::

: : : :~ :i:::::i: : : i : : : : ~ : ~ : ~R: i ! ~ [i [: [i i i i ~ i : i i i I [~IH

...................................... ~ ~ s ~ : ~ % . , ,,~:
: : : : : : : : : : : : : : :+ : : : . : : :::::::::::::::::::::::::::::::::: : : : : : :
: : ~ ~ : : : : : : : : : : : : : : : : : : : :

Fig. 1. General view of repository style architecture

[] [is_locked = true
-> (W .7 who: id .7

Shared_Memory
[] R .7 who: id .7

W .7 who: id .7
Shared_Memory

endproc

t ha t a value to be wri t ten into the shared memory depends on a value tha t was
read previously. In this case, no other write operat ion should be allowed between
the read and the write action. For this purpose, the message RWR (read/wri te
request) is used.

Each process sending a request must also send a unique identification. This
prevents other processes f rom accessing the m e m o r y during a t ransact ion. The
process implement ing the shared m e m o r y is defined as follows:

process Shared_Memory [RR, R, WR, W, RWR]
(sm: shared_memory, i s_ locked : B00L, for_whom: i d) : n o e x i t :=
[is_locked = false]

-> (RR ? who: id; R .7 who: id .7 j : index ; R ! who ! get(sm, j);
Shared_Memory [RR, R, WR, W, RWR] (sm, false, for_nobody)

[] WR ? who: id;

Shared_Memory [RR, R, WR, W, RWR] (sm, true, who)
[] RWR .7 who: id;

Shared_Memory [RR, R, WR, W, RWR] (sm, true, who))
]

j : index .7 nv: value [who=for_whom] ;
[RR, R, WR, W, RWR](store(sm,j,nv),false,for_nobody)
j : index ; R ! who ! get(sm, j);
nv: value [who=for_whom];

[RR, R, WR, W, RWR](store(sm,j,nv),false,for_nobody))

The process Shared_Memory has the gates RR, R, WR, W, RWR and the parame-
ters sm representing the memory, i s _ l o c k e d and for_whom. It does not terminate ,
as indicated by the keyword n o e x i t . I f the lock is not set, either a read request
can be served, or the lock can be set because of a write or read/wr i te request.
I f the lock is set, either a new value and an index are read via the gate W, or
the par t of the reposi tory stored under index j is ou tpu t on gate R, followed by
reading a new value via gate W. These actions can only take place if the same
process t ha t sent the request part icipates in them, as expressed by the guard
[who=for_whom]. The new value of the shared m e m o r y becomes the new param-
eter of the process, and the lock is reset 1. The constant f o r _ n o b o d y indicates
t ha t access to the shared m e m o r y is not reserved for a part icular process.

The process Shared_Memory is the same for all instant ia t ions of the repos-
i tory architecture, except for the type of informat ion to be stored. This type

i To keep our presentation concise, we do not permit parallel write or read/write ac-
tions on different parts of the shared memory, i.e. on different indices. The definition
of such an optimization is straightforward.

822

shared_memory has to be defined algebraically. We need an initial value i n i t , a
function s t o r e changing the shared memory, and a function g e t reading it. The
types id, index and v a l u e of the values that can be stored under an index are
also defined algebraically.

Each repository architecture consists of a process Shared_Memory as defined
above and an arbi trary number of independent components. Each of these is
either a read process , a w r i t e p r oces s or a r e a d ~ w r i t e process .

A read process does not use the gates WR, W, RWR and contains an arbi trary
(positive) number of read behaviors but neither write nor read/wri te behaviors.
A read behavior is defined by the pat tern

RR ! m e ;

R ! m e ! i n d e x ;
R ? who: i d ? v : v a l u e [who = me]

where me is the identification of the process and i n d e $ is the index to be read.
A write process does not use the gates RR, R, RWR and contains an arbi t rary

(positive) number of write behaviors but neither read nor read/wri te behaviors.
A write behavior is defined by the pat tern

WR ! m e ;

W ! me ! i n d e x ! v

where v is the new value to be stored under index i n d e ~ .
A read/wri te process may use three behavioral patterns. It contains at least

one read/wri te behavior or read as well as write behaviors. A read/wri te behavior
is defined by the pat tern

RWR! m e ;

R ! m e ! i n d e x ;
R ? who: i d ? v : v a l u e [who = m e]

followed by writing access to the shared memory in all subsequent branches 2 of
the process according to the pat tern

W ! m e ! i n d e x ! n v

for the same index i n d e z and a new value n v .

C o m m u n i c a t i o n P a t t e r n
The communicat ion between the shared memory and the independent compo-
nents is expressed by the following pattern, where for better readability we use
" . . . " instead of an inductive definition:

hide RR, R, WR, W, RWR in
Shared_Memory [RR, R, WR, W, RWR] (init of shared_memory,false,formobody)

[[RR, R, WR, W, RWR]I
(C o m p o n e n ~ _ l [g a t e _ ~ i s ~ _ l]

I I I . . .
I II C o m p o n e n ~ _ n [g a ~ e _ t i s t _ n])

2 T h i s c o n d i t i o n c a n b e d e c i d e d b y a p r e d i c a t e de f i ned i n d u c t i v e l y over t h e s y n t a x of

the behavior expression following the first part of the pattern.

823

�9 ::::::::: : ~ : : : : ::::::::::::::::::::::::::::::::::: ~i~.~ ii::]

]]lliii ',', !1

Fig. 2. A pipe/filter architecture

All components behave independently of each other (the operator I l l involves
no communication at all). For every r onent_i , i t s g at e_l is t_i must contain
the gates I~R and R if it is a read process and WR and W if it is a write process.
A read/wri te process may contain RR, R as well as WR, W, or RWR, R and W. The
repository and the independent components must synchronize on these gates,
as expressed by the synchronization list I [RR, R, WR, W, RWR]]. The h ide clause
hides communications via the gates RR, It, WR, W, RWR from the environment.

C o n s t r a i n t s
Constraints are expressed in terms of the two parts of an architectural descrip-
tion, behav_eapr and local_def_list , see Section 2. For the repository style,
we have the constraints that the behav_e$pw must conform to the communica-
tion pattern given above, and that each process occurring in behav_e$p~, except
Shared~eraory , must be a read, a write or a read/write process as defined above.

4 Pipe/Filter Style

The characteristics of pipe/filter style are the following [GS93]:
"In a pipe and filter style each component has a set of inputs and a set of
outputs. A component reads streams of data on its inputs and produces
streams of data on its outputs, [. . .] Components are termed "filters".
The connectors of this style serve as conduits for the streams, trans-
mitting outputs of one filter to inputs of another. Hence connectors are
termed "pipes". [. . .] filters must be independent entities: in particular,
they should not share state with other filters. "

Garlan et al. [GKMM96] additionally state the topological constraint that pipes
are directional and that at most one pipe can be connected to a given "port" of
a filter. Figure 2 shows an example of a pipe/filter architecture. A filter (in this
case F i l t e r _ 3) may have several incoming and several outgoing pipes. Cycles
are also allowed, see [GS93]. In the LOTOS characterization of this style, a pipe
between two filters is a synchronous communication via some gate.

C o m p o n e n t C h a r a c t e r i s t i c s

A filter is modeled by a process that takes its inputs from the incoming pipes,
transforms them according to its task, and delivers the results via the outgoing
pipes. Communication with the environment is also possible.

Hence, a component of this style is not characterized by some specific behav-
ior but by its gates. These are divided into the lists in_pipe_l i s t , out_~ipe_l i s t
and ear_gate_list. A filter process does not write on gates of its in_pipe_l is~
and does not read from gates of its out_pipe_list.

824

C o m m u n i c a t i o n P a t t e r n

Two filters communicate via their common pipes. For example, the filters F i l -
t e r _ l and F i l t e r _ 2 in the smallest box of the architecture shown in Fig. 2
exhibit the communicat ion behavior

F i l t e r_ l [env_l ,pipe_12 ,pipe_13] [[pipe_12] I Fi l ter_2 [pipe_12,pipe..23]

When adding the third filter F i l t e r _ 3 synchronizing with the previous system
via the pipes pipe_13 and pipe_23, the following behavior is obtained:

F i l t e r l [env_l, pipe_12, pipe_13]
I [pipe_12] I Fi l ter_2 [pipe_12, pipe_23])
[[pipe_13, pipe_23]l Fil ter_3 [env_3, pipe_13, pipe_23, pipe_34, pipe_35]

Hence, the general communicat ion pat tern of the pipe/fil ter has the form

hide p i p e _ l i s t _ l , p ipe_ l i s t _2 p ipe_ l i s t_n -1 in
(. . . ((F i l t e r _ l [g a t e _ l i s t _ l] I [p i p e - l i s t - 1]] F i l t e r _ 2 [g a t e _ l i s t _ 2])

I [p ipe_l i s t_2]] F i l t e r _ 3 [ga~e_list_3])
. . o

[[p i p e _ l i s t _ n - I l l F i l t e r _ n [ga t e_ l i s t _n])

C o n s t r a i n t s
Again, we state the constraints in terms of the top-level behavior b e h a v _ e s p r

and the l o c a l _ c l e f _ l i s t :

- All synchronization lists p i p e _ l i s t _ l , . . . , p i p e _ l i z t _ n - 1 occurring in b e -
h a v _ e $ p , are disjoint, i.e., a pipe connects only two filters.

- Each gate occurring in some synchronization list of behav_eapr occurs ex-
actly twice in the gates of the processes F i l t e~ '_ l , . . . , F i Ztee_n defined in
l o c a l _ d e f _ Z i s t , i.e., a pipe cannot be re-used as an external gate.

- Each of the processes F i l t e r _ l , . . . , F i l t e r _ n that occur in behav_eap~"
must conform to the characterization given above. The gates of a process
representing pipes are exactly the ones that occur in some synchronization
list. The direction of the pipe can be determined from the process definition.

Note that , in our definition, pipes and filters have no buffers like in [AAG93], be-
cause - according to the synchronous communicat ion of LOTOS - no da ta can be
lost. The buffered version - which we consider to be closer to an implementat ion
- could also be expressed in LOTOS.

5 E v e n t - A c t i o n S t y l e

According to Krishnamurthy and Rosenblum [KR95],
"An event-action system is a software system in which events occurring
in the environment of the system trigger actions in response to the events.
The triggered actions may generate other events, which trigger actions,

and so on."

Garlan and Shaw [GS93] mention that " The main invariant in this style is that
announcers of events do not know which components will be affected by those

events."

825

C o m p o n e n t C h a r a c t e r i s t i c s
An event-action architecture consists of components that react to events. When
an event has happened, actions are carried out and other events may be sent.
An event manager is responsible for distributing all events that have occurred
to all components that have to react to that event. Figure 8 shows an example
of an event architecture. The event manager has the following form3:

::: : �9 : , . ~ . ~ : . , ~. ~ : i : / : . ~

::
::: ::
::::::::::: : : : : . : : ::
: : : : i : ! :

EVF2Cr~ ::::::::::: ::: ~J~i~i~i ~ ~ :::::::::::: F -SULT2
:i~i~ ~:~:~:~:~:~:~:~:~:17:!::: ,'~ ~ i:~:~:,

:: ::
::: : : : :~:: :.::::::::::::::::::::::::::
::: :i:i:~:~:~:.fi~.~:id:i;~ ~ i ~ . ~ i ~ ~'[:: :i:i:i:i:i:i E S U L T 3

i:;:i~ i iili i iiii-i-:-i~ ::-::L - ~

Fig. 3. An event-action architecture

process Event_Manager [EVENTS, IN_l, OUT_I IN_n, OUT_n] : fune :=
EVE21TS ? e: even~; exit(e)

[] OUT_I ? e: even~; exit(e)
[] ...

[] OUT_n ? e: even~; exit(e)
>> accept e: even~ in

[p_l(e)] -> IN_l,1 ! e ; ... IN_l,nl ! e ;

Event_Manager [EVENTS, IN_l, OUT_I Ii~_n, OUT_n]
[] ...

[] [p_k(e)] -> I Ir ! e ; . . . I N _ k , n k ! e ;

Event_Manager [EVEI~TS, I N _ l , OUT_I IN_n , OUT_n]
endproc

This definition consists of two processes, separated by >>. The accep t clause
means that an event e is passed from the first process (via the e x i t clauses) to
the second one. In the first process, the event manager reads incoming events,
either from the environment via the gate E V E N T S or from some other component
via some gate OUT_i . It then decides how to distribute the events, according to
the predicates p_j. The event manager may have functionality e x i t or noex i t .
The data type e v e n t must be defined algebraically. It can be structured to allow
the handling of complex events.

Each event-action architecture consists of a process E v e n t ~ a n a g e r as de-
scribed above and an arbitrary number of independent components. Each such
component C o m p o n e n t _ i has a gate IN_i and contains an action

IN_i ? e: event

If the component generates events, it has a gate g U T _ i , which is used to send
events to the event manager. In this case, the process behavior contains actions
of the form:

OUT_ i ! e

The process does not write on I N _ i and does not read from OUT_i .

3 In this definition, there is only one gate EVENTS. The pattern can easily be generalized
to allow for several external gates.

826

C o m m u n i c a t i o n P a t t e r n
The communication between the event manager and the independent compo-
nents takes place according to the pattern

hide IN_l, OUT_I IN_n, OUT_n in
Event_Manager [EVENTS, IN_l, OUT_I IN_n, OUT_n]

l [IN_I , OUT_I IN_n, OUT_n] l
(Componen~_l [IN_I , OUT_I, ear_gate_l is t_l]

III . . .
III Component_n [IN_n, OUT_n, env_gate_list_n])

C o n s t r a i n t s
The behav_eap~" and Zoca~_def_Zis t making up the architectural description
of an event-action system must satisfy the following constraints:

- behav_eapr must conform to the communication pattern given above.
- Each of the processes that occurs in behav_eap~', except gvent_Nanager,

must conform to the description given in the component characterization.

6 E x a m p l e
We illustrate our approach by specifying a robot. This robot can make the move-
ments shown in Fig. 4: it can advance by moving its right or its left leg; it can
stand still; and it can smile or not. In the following, we develop three alternative
specifications, one for each style presented above. These three specifications use

the same robot definition.

init chg_smile advance advance chg_smile stand chg_smile

Fig. 4. The movements of the robot

The robot can be modeled as an automaton with three states: s t and ing , l e f t _up
and r igh t_up as shown in Fig. 5. To each state a boolean value is associated
indicating whether the robot is smiling or not. The initial state is standing and
smiling. The robot is defined by an abstract data type r o b o t where the states
are defined as constants and the movements as transitions from one state to
another, except for smiling which is defined by a boolean value: true for smiling.
For each state a predicate is defined deciding if the robot is in this state.

The movements are defined by the type mvt with three constants re_stand,
re_advance and m_chg_smile. The robot will be asked to execute several move-
ments collected in a list. This list is defined by an abstract data type re_list
with a constant empty, a function add adding an element to the end of the list, a
function rm-f i r s t removing the first element of a list, a function f i r s t selecting
the first element of a list, and a predicate is_empty. A constant init_list is
used to define the list of movements initially given to the robot.

We have the same interface for all architectures. The initial state of the
robot and the movements to be performed are read via a gate START. A data

827

~1~ ~ chg_smi l e var iab le s tanding(s) _ ~ s tand
s: boo l

chg._smile@�9 ~ ~ �9 @
left_up(s) advance right_up(s)

chg_smi l e

Fig. 5. The robot automaton

type value is defined as the Cartesian product of the types robot and re_list.
Its constructor function is make, and its selector functions are the_robot and
t h e _ l i s t . Via a gate OUTPUT, the current state of the robot is made visible to
the environment. The top-level behavior

START !make(init of robot,init_list) ; exit [[START] [(behav_expr)
is the same for all three architectures. They are only distinguished by different
definitions of behav_e~p~ and the associated ~ oca Z_def_~ i s t .

6.1 T h e r o b o t spec i f i ca t i on us ing t h e r e p o s i t o r y s ty l e

Our first robot design follows the repository style. The shared memory is to hold
the current state of the robot and the list of movements to be executed, i.e. items
of type va lue . We need only one index index l . The initial state and the initial
list are written into the shared memory by a write process Init_sm.

process Init_sm [START, W, WR] : exit :=
START ? vv: value;
WR ! id_Init_sm; W ! id_Init_sm ! indexl ! vv; exit

endproc

Furthermore~ we need three components Stand, Chg_Smile and Advance to ex-
ecute the corresponding movements~ as illustrated in Fig. 6.

START OUTPUT
:::

::: :i:i:i:i:i::i : : : : i i
::::::::::::::::::::::::::::::::::: ~ ~, .~ ::::::::::::::::::::::::::::::::::: ,~ e ~ ,~:: ;: :

:

::]
i:i i iiiiiiiil

i iii

Fig. 6. The repository architecture~

These components try in parallel to access the shared~.memory to execute the
movement they are responsible for. They all are read/Write processes. Each of
them first reads the list of movements, denoted ml. If~he first movement is the
one it is responsible for, it is executed, the robot state changed (variable ro ro)
and the rest of the movement list is written back into the shared memory. If the
movement cannot be executed by the component that has been granted access,
it writes back the unchanged state to unlock the shared memory.

According to our characterization, the overall behavior of the repository robot
specification is

828

hide RR, R, WR, W, RWR in

Shared_Memory [RR, R, WR, W, RWR] (init of shared_memory,false,for_nobody)
[[RR, R, WR, W, RWR][

(In i t_sm [START, W, WR]
I I I Stand [OUTPUT, R, W, RWR]
/ l l Chg_Smile [OUTPUT, R, W, RWR]
Ill Advance [OUTPUT, R, W, RWR])

Of the processes implemen t ing the movement s , we only present Advance. The
others are defined analogously.

process Advance [OUTPUT, R, W, RWR] : exit :=
RWR ! id_Advance; R ! id_Advance ! indexl ;
R ? for_whom: id ? v: value [for_whom=id_Advance];
(let ml: m_list = the_list(v), roro: robot -- the_robot(v) in

[is_empty(ml)= true] -> W ! id_Advance ! v ; exit

[] [is_empty(ml)= false] ->
([first(ml) equal re_advance = true]

-> OUTPUT ! advance(roro) ;
W ! id_advance ! make(advance(roro), rm_first(ml)) ;

Advance [OUTPUT, R, W, RWR]

[] [first(ml) equal re_advance = false]
-> W ! id_Advance ! v ;

Advance [OUTPUT, R, W, RWR]))

el~dproc

This archi tecture has the d i sadvantage t ha t the sys tem imp lemen ta t i on mus t
gua ran tee t ha t each componen t is given the chance to access the shared memory .
Otherwise, an infinite n u m b e r of unsuccessful accesses is possible.

6 .2 T h e r o b o t s p e c i f i c a t i o n u s i n g t h e p i p e / f i l t e r s t y l e

In the p ipe / f i l te r model ing, we can make sure t ha t each componen t is given
the possibi l i ty to execute its m o v e m e n t if required. We have a line of filters,
see Fig. 7, where each filter inspects the m o v e m e n t list. I f it can execute the
m o v e m e n t , it does so and hands the new robot s ta te and the new m o v e m e n t list
to the next filter. Otherwise, it passes on the unchanged data . Again, we need
an init ial izing componen t , called here Init_pf.

START OUT~IIUT
�9 - - �9 . ~ : . - ' . ' . ' . - . - . ' . ' . . : . : . : - : . : - . ' . / ; 4 . 4 < - V " : . ~ . Y ~ T ? ~ - ~ " : ' ~ 1 5 ~ : ~ 4 : ~ : : > : : ' : :

:: [:: !; ::P0 ::: :::1~:: !!::!::i::::iiiiii !!::::i:;iiii!::i::iiiii :Pi ~;;;~ ~;;~;~;~;;;~" :'::':"
:::: ::::::::iii~B~r ~i::!i::i~:: ~ i i~ .. ~i-i ~ " :~:' ~ ~~i~!:i::: ~:~''';::~: : ~: i!:i~:":i ':" :: i: :: : ~ ~ ' : ::

I iii!!!!!iii!i!!iiiiii!i!ii i ! ! i i ! i i i i i i:i:i:i:i:i:i:i:iti~i~ 2 :~: :~:~: i: t $ ~ ~::-::~::~:~ :-:v:-:v:v: 7: ~ :

Fig. 7. The pipe/filter architecture

process Init_pf [START, P0] : exit :=
START 7 vv: value; PO ! vv ; exit

endproc

According to the style character izat ion, the overall behavior of the process is

829

hide P0, P1, P2, P3 in
(Init_pf [START, PO]
I[PO 31 Stand [PO, PI, P3, OUTPUT]
][PI, P3 11 Advance [Pi, P2, OUTPUT]
[[P2]I Chg_Smile [P2, P3, OUTPUT])

The Advance filter is defined as follows.

process Advance [PI, P2, OUTPUT] : exit :=
Pi .7 v: value;
(let ml: m_list = the_list(v), roro: robot = the_robot(v)
in [is_empty(ml)= true] -> (exit)
[] [is_empty(ml)= falsel ->

([first(ml) equal m_advance = true]
-> OUTPUT ! advance(roro) ;

P2 ! make (advance(roro) , rm_first (ml)) ;
Advance [PI, P2, OUTPUT]

[1 [first(ml) equal m_advance = falsel
-> P2 ! v ;

Advance [PI, P2, OUTPUT]))
endproc

This solution is bet ter than the repository architecture because it always
terminates . It is not ideal, however, because each componen t mus t inspect the
data , even if it cannot process them.

6 .3 T h e r o b o t s p e c i f i c a t i o n u s i n g t h e e v e n t - a c t i o n s t y l e

The event-act ion architecture, see Fig. 8, does not have the disadvantages of
the previous architectures. The event manager inspects the movemen t list and
passes on the da t a only to the component tha t can process them. Events are
i tems of type v a l u e . The initial state of the robot and the movemen t list are
given to the event manager . An initialization componen t is not required. The
event manager is defined as follows.

S T A R T OUTPUT

: : : : : : : ~ ~ 7 . ~ ~ ~'.~ ~ .4 - . ~ : :~ '4~7 ,~ ~ r ~ �9 ~ �9 ~ -. �9 ,: : , : : . : : : : : : : : .

{:i:i:i:i:i:i:!:!:i: ::::::::::::::::::::::::::: ,:i : : ~tit::s~t:::::::::: i:Tii~ii: :: : :
: : : : : : : : : :~ : : : : : : : : , : : . ~ : : , . : : . : , : : : : : : : : : : : : : . . , . . . , . , . , , , . , , . : , : . , : : : : : : : : : : :
:::::::::::::::::::::::::: ====================='~:~:~: , : : : : : : : : : : : : : : : : : : : : : : : : :

.~ ~ - ~ ~,.. ::::::: ,

: , : ,:,:,:<:,:,:,:,:,::,:,:,:,:,::,:,~:,::<:,;:,:,:,:::I'w',~.~.l,~ : : : : :
: : : : : : : : : : : : : : : : : : : :: : :

: :: : :: : : :: :::::i::::iii::iiiii::iiiiii::::i!::ii'i!:~:/:~,!~:~i~.'~:~i:~,:~: 4~$~4ii~~::::i::::iii;:::::::
i::i

Fig. 8. The event-action architecture

p rocess Event_Manager [START, I n s t a n d , 0u t_s tand , In_chg_smile,
0ut chg_smile, In_advance, 0ut_advancel : e x i t :=

START ? v: value; exit(v)
[] Out_stand ? v: value; exit(v)
[1 Out_advance ? v: value; exit (v)
[10ut_chg_smile ? v: value; exit(v)
>> accept v: value in

830

(let ml: m_list = the_list(v), roro: robot = the_robot(v) in
[is_empty(ml)= true] -> (exit)

[] ([is_empty(ml)= false] ->
([first (ml) = re_stand]

-> In_stand ! v ;
Event_Manager [START, In_stand, Out_stand,

In_chg_smile, Out_chg_smile, In_advance, Out_advance]
[3 [first (ml) = re_advance]

-> In_advance ! v ;
Event_Manager [START, In_stand, Out_stand, In_chg_smile,

Out_chg_smile, In_advance, Out_advance]
[3 [first (ml) = m_chg_smile]

-> In_chg smile ! v ;
Event_Manager [START, In_stand, Out_stand, In_chg_smile,

Out_chg_smile, In_advance, Out_advance])))

endproc

In accordance with the event-action style, we have the following overall behavior:

hide In_stand, Out_stand, In_chg_smile,
0ut_chg_smile, In_advance, Out_advance in

EventManager [START, In_stand, Out_stand, In_chg_smile,
0ut_chg_smile, In_advance, Out_advance]

][In_stand, Out_stand, In_chg_smile,
0ut_chg_smile, Inadvance, Out_advance] J

(Stand [OUTPUT, Instand, Out_stand]
111 Advance [0UTPUT, In advance, Out_advance]
ill Chg_Smile [0UTPUT, In_chg_smile, Out_chg_smile])

Note that the components executing the movements are much simpler now.
p r o c e s s Advance [OUTPUT, I n _ a d v a n c e , 0 u t _ a d v a n c e] : n o e x i t :=

I n _ a d v a n c e ? v: v a l u e ;
(let ml: m_list = the_list(v), roro: robot = the_robot(v)

in OUTPUT ! advance(roro) ;
0ut_advance ! make (advance (roro) , rm_first (ml)) ;
Advance [OUTPUT, In_advance, Out_advance])

e n d p r o c

6.4 C o m p a r i n g t h e t h r e e spec i f ica t ions w i t h A l d e b a r a n

Under the assumption of fairness for the repository solution, all the above spec-
ifications exhibit the same behavior to the environment. The tool CADP (Cae-
sar/Aldebaran Distribution Package) [FGM+92] generates the same automaton
minimized with respect to safety equivalence [Fer89] (i.e. internal transitions are
not considered) for all the thtee architectures, where we use the movement list
shown in Fig. 4. Stepwise execution of the three alternative architectures is also
possible. This shows that existing LOTOS tools can help to animate and compare
architectural descriptions, thus providing valuable support for their validation,

7 D i s c u s s i o n

Two of the style characterizations given in this paper, repository and event-
action, contain a distinguished component (Shared_Memory and Event~anager,

831

respectively). This results in a relatively detailed characterization of the other
components of the architecture because one can state requirements concerning
the communication of the other components with the distinguished one. Fur-
ther constraints are not necessary. In contrast, the pipe/filter style does not
have a distinguished component. This allows only a weak characterization of the
components, but leads to non-trivial constraints concerning the communication
between the different components.

Formal descriptions of architectural styles and concrete architectural designs
are important because only architectural descriptions with a formal semantics
make it possible to precisely answer the questions stated by Clements [Cle96]:
What are the components? How do they behave? What do the connections mean?

Our work shows that LOTOS is a language suitable to express individual
architectures and that LOTOS patterns in combination with constraints are
suitable to characterize architectural styles. Our style characterizations do not
only provide a semantical foundation of architectural styles. Their schematic
nature also makes it possible to use them as templates for the development of
concrete architectures. The formal nature of the architectural descriptions and
the availability of tools makes it possible to formally analyze and to animate
them. In addition, our approach allows for hierarchical composition of architec-
tural descriptions and definition of substyles by adding further constraints or
adding further detail to the patterns.

We are not the first to formally characterize architectural styles or to use
a process algebra to specify the behavioral aspects of software architectures.
Abowd, Allen and Garlan [AAG93] use the specification language Z to formally
define architectural styles. Concrete designs, however, are described in a different
language. Thus, there is no direct way from a style definition to an instance of
the style.

Allan and Garlan lAG94] use CSP to formalize architectural connection. In
their approach, connectors are defined as processes. In contrast to our work
where components are modeled as processes, this yields several de-centralized
behaviors in one architectural description instead of one central behavioral de-
scription characterizing the whole system, as proposed in this work. Moriconi
and Qian [MQ94] use CSP to show that an architectural description is a cor-
rect refinement of another. Both of these approaches are not concerned with
architectural styles but with architectural descriptions in general.

The work presented here forms the basis for future work in several directions.
First, a notion of architecture refinement will be defined, based on the notion of
behavioral equivalence in LOTOS. Second, concepts for the machine-supported
development of architectures as instances of styles will be developed. This can
be done in such a way that (i) the developed architectures can be guaranteed to
conform to the chosen style and (ii) dead-ends are avoided as far as possible.

Two development frameworks, designed by the authors, are good candidates
for accommodating architecture development. The first is a knowledge represen-
ration mechanism called strategies [HSZ95]. They form a generic framework in
which development knowledge for various software development activities can
be expressed. This framework can be instantiated to support the development
of LOTOS specifications representing architectural designs. The resulting design

832

can be guaranteed to conform with the chosen style because strategies guarantee
semantic properties of the developed product.

The second framework to model developments [SL93,L6v95] aims at provid-
ing specifiers with active tools to support them during the development process.
It is language-independent and therefore can be used with existing specification
languages. The resulting specifications can be verified and refined using existing
tools. In this framework, developments are formalized as a stepwise application
of development operators.

Experimenting with different models for machine support will help to find
appropriate ways to support architectural design processes.

Acknowledgment. Thanks to Thomas Santen, Martin Simons and Jeanine Sou-
qui~res for their comments on this work.

R e f e r e n c e s

[AAG93]

[AG94]

[BB87]

[Cle96]

[Fer89]

[FGM+92]

[GKMM96]

[Gs93]

[HSZ95]

[KR95]

[L~v95]

[LI<A+95]

[MQ94]

[SL93]

G. Abowd, R. Allan, and D. Garlan. Using style to understand descriptions
of software architecture. Proc. ACM SIGSOFT'93, Dec. 1993.
R. Allan and D. Garlan. Formalizing architectural connection. In Proe.
16th Int. Conf. on Software Engineering. ACM Press, 1994.
T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-
guage LOTOS. Computer Networks and ISDN Systems, 14:25-59, 1987.
P. Clements. A survey of architecture description languages. In Proc. of
the 8th IWSSD, pages 16-25, March 1996. IEEE.
J.C. Fernandez. Aldebaran: A tool for verification of communicating pro-
cesses. Rapport SPECTRE C14, Laboratoire de Gdnie Informatique - -
Institut IMAG, Grenoble, September 1989.
J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A Toolbox for the Verification of LOTOS Programs. In Lori A.
Clarke, editor, Proc. of the l~th ICSE, May 1992. ACM.
D. Garlan, A. Kompanek, R. Melton, and R. Monroe. Architectural Style:
An Object-Oriented Approach. In Submitted for publication, February

1996.
D. Garlan and M. Shaw. An introduction to software architecture. Ad-
vances in Software Engineering and Knowledge Engineering, World Scien-
tific Publishing Company, 1, 1993.
M. Heisel, T. Santen, and D. Zimmermarm. Tool support for formal soft-
ware development: A generic architecture. In W. Schgfer, P. Botella, eds,
Proc. 5-th ESEC, LNCS 989, pages 272-293, 1995.
B. Krishnamurthy and D. Rosenblum. Yeast: a general purpose event-
action system. IEEE Trans. Software Eng., 21(10):845-857, Oct. 1995.
N. L6vy. Improving PROPLANE: a specifications development framework.
In Proc. Second IFA C Int. Workshop on Safety and Reliability in Emerging
Control Technologies, pages 229-240, Nov. 1995.
D. Luckham, 3. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and analysis of system architecture using Rapide. IEEE
Trans. Software Eng., 21(4):336-355, April 1995.
M. Moriconi and X. Qian. Correctness and composition of software ar-
chitectures. In David Wile, editor, Proc. of the second A CM SIGSOFT
Syrup., pages 164-174. ACM Press, 1994.
J. Souqui~res and N. L6vy. Description of Specification Developments. In
Proc. [EEE Int. Syrup. on Requirements Engineering, Jan. 1993.

