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A b s t r a c t .  A notion of  refinement is defined in the context of  coatgebraic spec- 
ification of  classes in object-oriented languages. It tells us when objects in a 
"concrete" class behave exactly like (or: simulate) objects in an "abstract" 
class. The definition of  refinement involves certain selection functions between 
procedure-inputs and attribute-outputs, which gives this notion considerable 
flexibility. The coatgebraic approach allows us to use coinductive proof methods 
in establishing refinements (via (bi)simulations). This is illustrated in several 
examples. 

1 I n t r o d u c t i o n  

Refinement is an important notion in the stepwise construction of reliable software. It 
is used to express that an abstract description is realised by a concrete one, typically by 
filling-in some implementation details. This paper concentrates on refinement in an object- 
oriented setting. What  is typical there is re-use of classes1: one tries to refine towards 
existing classes (available in some library). There are two important  ways to construct 
new classes from old: inheritance and aggregation. Inheritance involves specialisation and 
puts classes in the "is-a" relationship, whereas aggregation involves using one class as a 
component of another, in the "has-a" relationship (see [19, 14.5] for a discussion of when 
to use "is-a" or "has-a"). Below we shall see examples of both inheritance and aggregation 
(for class specifications). 

But first we shall define a notion of refinement between class specifications, using the 
"coalgebraic" specification format developed in [14, 13] (following [22J). Such a coalgebraic 
specification consists of a (black box) state space (typically written as X) with a number 
of attributes, capturing its data (like in instance variables), and a number of procedures 
which may change the state (and hence the values of these attributes). These attributes 
and procedures have to satisfy certain assertions (or constraints), which determine the 
appropriate behaviour. What is typically coalgebraic in this approach is that we say nothing 
about what is inside the state space X of a class (or about how to "algebraically" construct 
its elements), but only something about what can be observed (via the attributes) about 
an arbitrary state (i.e. inhabitant of X). Objects may be identified with such inhabitants. 
This coalgebraic state space X corresponds to the (product of the) hidden sorts in hidden- 
sorted algebra, see [6, 5, 18, 7, 1, 8]. 

In this setting we define what it means for a "concrete" class to refine an "abstract" 
class. The idea is that every object of the concrete class (when considered with appro- 
priately selected attributes and procedures) behaves exactly like an object of the abstract 

1In this  p a p e r  we shall  be  concerned  mos t ly  with class specificat ions,  in c o n t r a s t  to implementa t ions .  
It c an  be  a rgued  t h a t  re-use of  specif icat ions is as i m p o r t a n t  as re-use of  imp lemen ta t i ons - - e spec i a l l y  in 
the  long run ,  since imp lemen ta t ions  are more  suscept ible  to change  of technology.  
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class. The selection of attributes and procedures is essential because the concrete class may 
have many more attributes and procedures than needed for realising the desired behaviour 
of the abstract class. This selection is accomplished via two "selection" functions (the f, g 
in Definition 3.1) and yields a form of hiding. This emphasis on simulation of behaviour 
puts our notion of refinement firmly in the automata-theoretic tradition (where refinement 
(also called implementation) is defined as inclusion between sets of traces, see e.g. [17]), 
and not, in contrast, in the model-theoretic tradition (with emphasis on (behavioural) va- 
lidity), see Section 5 for a brief comparison. In fact, the semantics of our coalgebraic class 
specifications may be described in terms of certain deterministic automata, see [14, 22]. 
But coalgebraic specification is different from automata-theoretic specification in that it 
does not describe states explicitly (e.g. in transition diagrams), but only implicitly via their 
observable behaviour 2. This work is inspired by the earlier work on refinement in automata 
theory and in hidden sorted algebra (notably [6, 7]). 

What makes the (coalgebraic) notion of refinement particularly useful is that it comes 
with a certain "coinductive" proof-technique. It allows us to answer the question of whether 
we have indistinguishable behaviour (for objects of the concrete and abstract classes) by 
giving an appropriate (hi)simulation relation on the state spaces. Showing that a given 
relation is a (bi)simulation involves proof-obligations for each of the attributes and pro- 
cedures individually, which substantially reduces the proof burden. Also the use of such 
(bi)simulations is well-established in automata-theoretic approaches. Bisimilarity corre- 
sponds to behavioural satisfaction in hidden-sorted algebra, see e.g. [7, 2]. Therefore, 
coinduction can also be used as a proof-technique in hidden sorted algebra, see [7]. 

The contribution of the present paper lies in the following: it adapts these automata- 
theoretic approaches to refinement to an object-oriented setting (interpreted coalgebraical- 
ly), involving non-trivial class specifications with inheritance and aggregation, and non- 
trivial correctness proofs. In doing so it clearly shows how to deal with different attributes 
and procedures in different classes via the earlier mentioned selection functions. The result- 
ing approach uses arguments in elementary predicate logic, which should be unproblematic, 
both for humans and for computers. In fact, all the refinements in this paper have been 
fully formalised and proved in PVS [21] 3. Details about such formalisations may appear 

elsewhere. 
The organisation of this paper is simple: we start in Section 2 by recalling the essentials 

of coalgebraic specification of classes. Subsequently, we describe the associated notion of 
refinement in Section 3, together with a coinductive proof-technique. Essentially, the re- 
mainder of this paper is devoted to several (standard) examples, involving counters, buffers, 
stacks and queues. Only in the final Section 5 we briefly compare our automata-theoretic 
notion of behaviour-refinement to an alternative, model-based notion of refinement. 

This paper is the fourth (after [10, 14, 13]) in a series of papers by the author on using 
coalgebraic (in contrast to algebraic) notions in an object-oriented setting. The earlier 
papers are more foundational in nature. The theoretical content of the present paper is of 
very limited depth, and is hardly original, but it leads to applications of the earlier insights 
to an important aspect of object-oriented software construction, namely to establishing 
the correctness of various refinements. The eventual usefulness of this approach can only 
be established in its actual use. What seems encouraging is that the coalgebraic style 
of specifying classes is rather low level, and close to actual implementation. Therefore 
it is easy to understand. Moreover, it has a well-defined mathematical semantics (see 
notably [14]). Our (coalgebraic) notion of refinement scales up to a "hybrid" setting [12], 
combining discrete and continuous behaviour. And in future work we plan to generalise the 
present proof-techniques to include invariants (in a coalgebraic setting). This will allow us 

2 In particular, there is no way of restricting one's attention to fir~ite state spaces in coalgebra. 
3Using the proof tool actually revealed a few minor bugs in the original hand-written proofs. 



789 

to deal with "underspecified" classes (in which only part. of the behaviour is prescribed). 
Such underspecifieation may be understood as a form of non-determinism, see [7]. Also 
in this future work, a semantical justification (using terminal models) will be given of the 
coalgebraic notion of refinement. But here we concentrate on actual use of coinductive 
proof techniques for refinements. 

2 C o a l g e b r a i c  s p e c i f i c a t i o n  

A coalgebraic class specification, as used in this paper, consists of three parts: methods,  
assertions and creation conditions, see the figures below. The  methods are either attributes 
a t : X  ---+ A or procedures proc: X x B ---+ X.  The X is an (unknown) state space, on 
which these methods act. The A and B are (known) constant sets: the set A gives the 
observable at t r ibute values of a state space, and the set B serves as set of inputs (or 
parameters) of the procedure proc. Procedures may change states, and the effect of such 
changes may be visible via the attributes. The assertions in a coalgebraic specification 
describe the behaviour of the methods. They are as in algebraic specification, except that  
(1) an assertion only involves one single state, typically written as s (E X) ,  and (2) we 
use the post-fix "dot" notation, instead of the functional notation: s.proc(b).at means 
at(proc(s, b)). The creation conditions describe the attr ibute values for a newly created 
object new of the class. 

Suppose we have a class specification with attributes a t l : X  ---4 A1, ..-,  a t n : X  ----4 A .  
and procedures p roc l :X  x B1 -----4 X,  . . . ,  procm:X x B,~ ---4 X. The elements of the 
attr ibute output  sets Ai will be considered as observable values to which clients have 
direct access. Hence we shall use actual equality a = a' between elements a, a '  E Ai. In 
contrast, the state space X is seen as a black box to which clients only have l imited access 
via the available operations. In particular, we cannot speak about equality s = t of states 
s, t E X,  but only about  bisimilarity s ~ t. Bisimilarity means: indistinguishability (via 
the coalgebraic operations). It need not be the same as equality, since two states may be 
different (internally), but  display the same (external) behaviour. Then they are not equal 
r  but bisimilar +-4. 

We shall use the bisimilarity sign +-+ in assertions in specifications (between terms inhab- 
iting the state space). The proof rules for +-+ are the equivalence relation rules (reflexivity, 
symmetry and transitivity),  plus the following two rules (for each i < n, j _< m and b E Bj). 

s + + t  s ~-~ t 

s.ati = t .at i  s.procj(b) ___~ t.procj (b) 

(In fact, ___~ is the greatest relation satisfying these rules, so that  s ___~ t can be identified 
with s.procj,(bl) . . . . .  procj~(bn).at = t.procj, (b l ) . - - . .procj , (bn) .a t  for all sequences bl E 
Bj . . . . .  , b~ E Bj,  of procedure-inputs.) 

Figure 1 gives two typical examples of coalgebraic specifications involving stacks (last- 
in-first-out) and queues (first-in-first-out) for some data set A. Notice that  the methods  
(attributes plus procedures) are the same in both specifications, but that  the assertions are 
essentially different. The output  type 1 + A of the top attributes is the set A augmented 
with an extra element �9 E 1 = {,} for undefined 4. It allows us describe top as a partial 
function .u -4 A. 

In coalgebraic specification--like in algebraic specification--it  is often convenient to 
import  an already existing specification into a new specification. This facilitates the incre- 
mental construction of specifications. Coalgebraica]ly, this import-mechanism corresponds 
to what is called inheritance, but algebraically it corresponds to parametrisation, see [13] 

4One can read ~ as null. 
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c lass  spec"  Stack(A) 
m e t h o d s :  

push: X • A ---+ X 
pop: X ~ .u 
top: X ---+ 1 4- A 

a s s e r t i o n s "  
s .push(a ) . top  = a 
s .push(a ) .pop  r s 
s. top = * k s .pop ++ s 

c r e a t i o n :  
new. top ---- �9 

e n d  c lass  s p e c  

c lass  spec :  Queue(A) 
m e t h o d s :  

push : X x A ---+ X 
pop: X ---+ X 
t o p : X  ---+ 1 + A  

a s s e r t i o n s =  
s. top = * t- s ,push(a ) . top  = a 

s. top --- �9 l- s .push(a) .pop ++s  
s. top --- �9 l- s .pop 4-+ s 
s . top ~= * l- s .push(a ) . top  --- s. top 

s. top r �9 I- 

s .push(a) .pop  __~ s .pop.push(a)  
c r e a t i o n :  

new. top = * 
e n d  c la s s  s p e c  

Figure 1: Stack and  queue specifications 

for details  abou t  the under ly ing semant ical  duali t ies 5. We shall  use inher i tance  in some of 
the examples la ter  on, v ia  the keyword " i n h e r i t s  f r o m :  T"  in a specification C - - w i t h  7 ~ 
for ' pa ren t '  ( somet imes  called ancestor)  and C for 'chi ld '  (also called descendant ,  or sub~ 
class). The  specialised class specification C then au tomat ica l ly  contains  all the methods .  
assertions and  creat ion condi t ions  of the  general class specification "P. But  C may add i~s 
own (addi t ional)  methods ,  assertions,  and creation conditions.  

3 B e h a v i o u r - r e f i n e m e n t s  

In this  section we define wha t  it means  for one "concrete" class specification g to refine an 
"abs t rac t"  class specification .4. Typical ly  in such a s i tuat ion,  g contains  more implementa-  
t ion details, or is more  easily available t han  .4. In an object-or iented se t t ing  with a l ibrary 
of classes at  hand ,  one tries to refine towards existing classes, for example  because (reliable) 
implementa t ions  of these are available. W h a t  we will define is behaviour- ref inement  in con- 
t ras t  to wha t  may be called model-ref inement .  Behaviour-ref inement  is abou t  imi ta t ion  of 
behaviour  and  model - ref inement  is abou t  validity of assertions, see Section 5. 

Assume our abs t r ac t  class specification .4 has n a t t r ibu tes  and m procedures with the 

following types. 

X a t l  a t  n > proc1 prOcm 
-~ A1, . . . ,  X An and X x B1 ~ X, . . . ,  X x B,~ --------> X 

For convenience we shall  form one set conta ining all these procedure- input  types Bi via 

disjoint union  +:  
B l + " - + B m  = { ( i , b )  l i < m a n d b E B ~ }  

and for ~ = (i, b) E B1 + .--  + B ~  we shall  write s.proc(~) for s.proci(b). In this  way we 
th ink  t h a t  the  rn procedures  p r o c l : X  x B1 ---'+ X,  . . . ,  p rocm:X x Bm ---.4 X in A are 
combined into one single procedure proc: X x (B1 + -" - + Brn) ~ X 6. 

SRestrictlon versus extension via right versus left adjoints to forgetful functors. 
6In a similar way one can combine the n attributes a t l : X  ----4 A1,  . . . ,  atn:X --~ An into a single 

attribute at:X ----+ (.41 x .... x A~) using Cartesian products x. This will be used implicitly. 
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Similarly we assume we have a "concrete" class specification C, say with methods 

at1 ark 
X ~ C I , . . . , X  " Ck 

proc~ 
and X x D1 proc l  ."~" . . . .  , X x Dt X 

These procedures can be combined into a single procedure proc: X x (D1 + - .  �9 + Dr) ) X .  

3.1. D e f i n i t i o n .  For an "abstract" and a "concrete" class specifications .A and C as above, 
we say that  C is a b e h a v i o u r - r e f i n e m e n t  (or simply a r e f i n e m e n t )  of.A if there are both 

1. a reachable state r in C (i.e. a s tate-term r which can be obtained from the initial 
state new in C via a number of procedure applications); 

2. two "selection" functions 9, f between (combined) procedure-input and at tr ibute-  
output  sets 

9 
D I + . . - + D ,  < B I + . - . + B , ~  

Cl x . . .  x Ck ~- AI  • . . .  • An 
f 

such that  the n-tuple of a t t r ibute  values 

(new.proc(~l) . . . - .proc(/3p) .at1 . . . . .  new.proc(/~l ) . - . . .proc(~v ).atn) 

in A1 x - �9 - • .4,~ is tile same as the outcome of the selection 

f( , .pro~(g(~)). . .  ".P~o~(g(~p)).~h . . . .  , ~.P~Or ".Pror 

for all sequences /31 , . . . ,  13p E B1 + . . .  + B m of inputs (in class A). 

The function 9 translates procedure-inputs in A into procedure-inputs in C, and f 
translates at t r ibute-outputs  in C back into attr ibute-outputs in ,4. The required equation 
says that  the f-selection of the observable attr ibute-outputs of a 9-selected procedure- 
input sequence applied to r is the same as the observations resulting in .,4 from this same 
procedure-input sequence. This shows that  we can simulate (via f ,  9) in the concrete 
class C the observable behaviour in the abstract class A. The opposite direction of these 
selection funct ions--contravar iant ly  between inputs and covariantly between o u t p u t s - -  
plays an impor tant  role in a so-called behaviour-realisation adjunction (see [1 1]), giving a 
canonical relation between au tomata  displaying certain behaviour, and behaviours which 
can be realised. 

In many situations the above reachable state r in the concrete class C will simply be the 
initial state new. And mostly, C will have more attributes and procedures than the abstract 
class .4. The attribute-selection function f can then consist of a number of projection func- 
tions selecting appropriate attributes. And the procedure-selection function .q can consist 
of several coprojection functions (or insertions), selecting appropriate procedures. In this 
way we hide the additional methods.  In practice, the concrete class C will often simply 
contain all the at tr ibutes and procedures of the abstract class .,4. This then determines the 
selection functions f and .q in an obvious way. We shall see examples below. 

We should mention that  the above definition only really makes sense for class specifi- 
cations in which the behaviour of the initial state new is completely determined. All ab- 
stract and concrete example specifications below will be of this kind. Refinement between 
"underspecified" classes (in which there may be several states satisfving the behavioural 
constraints of new) will be studied in future work. 
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We conclude this section with a crucial coinductive proof technique for refinements. It 
allows us to consider refinements step-by-step, instead of at once for all sequences 91, .-.,/3p 
as in the previous deflnitionl Such a coinduction result may be found in various forms, see 
e.g. [25, Theorem 3.2], [17, Proposition 12], and may be traced back to [15, 20]. See [16] 
for an overview (concerning non-deterministic automata).  

3.2. L e m m a .  Consider abstract and concrete classes ..4 and C as in the previous defini- 
tion, together with a reachable state r as in 1. and selection functions g. f as in 2. Then C 
refines ..4 (via r,9, f )  i f  there is a bisimulation relation R C C x A satisfying 

{ f (s .ah  . . . . .  s.atk) = ( t . a t l , . . . , t . a t ~ )  and 
(r, new) E R and (s, t) E R ==~ (s.proc(g(,3)), t .proc( / ] ) )  C R. for all ~. 

Proof .  The result follows directly from the fact that for all sequences 31, . . . ,  .@ 

( r .p roc (g ( f l l ) )  . . . .  .proc(9(/3 P )), n e w . p r o c ( J l ) . . - . . p r o c ( f l p ) )  E R, 

which is shown by induction on the length p of the sequence. [] 

The essence of this result is that  bisimilar elements in a (state space of a) coalgebra 
become equal when mapped to the terminal  coalgebra, see e.g. [24, 14]. Hence we speak of 
a "coinductive" proof 7. 

4 E x a m p l e s  o f  r e f i n e m e n t s  

We illustrate the eoalgebraic approach to (behaviour-) refinement in a number  of (standard) 
examples. First we show how counting to n 2 can be simulated via to counters counting 
to n (just like counting to 100 can be done via two counters to 10 with a 'carry') .  Then 
we present a refinement of a reliable buffer via an unreliable buffer with a repeater, and 
finally we consider various refinements of the stack and queue specifications in Figure 1 via 

arrays. 

4.1 C o u n t e r s  

class spec:  Count(n:N>0) 
m e t h o d s :  

val :X ) {0, 1,2 . . . . .  n - 1} 
next: X ~ X 
clear: X ----+ X 

a s s e r t i o n s :  
s.val ~ n - t I- s.next.val = s.val + 1 
s.val = n - 1 b s.next.val = 0 
s.clear.val = 0 

c r e a t i o n :  
new.val = 0 

e n d  class spec  

Figure 2: A specification of counters modulo n 

Our starting point is the specification in Figure 2 of a simple counter counting modulo 
n:N>0 = {m E N I m > 0}, via a next procedure, producing a state with the next value. 

7The dual notion of "inductive" proof is based on initiality (of algebras). 
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This n is a parameter  in the specification. Our aim is to refine counting up to n 2 via two 
counters up to n, serving as first and second digit, see the double counter specification 
DCount(n) in Figure 3. The auxiliary counters to n appear as at tr ibute components 
Count(n) in the specification. This use of classes as components in another class is called 
aggregation s. There is a new "global" at tr ibute dval defined in terms of the "local" val 
attributes of the first and second digitg. Further there are methods dnext and dclear, 
which--as  we will show--behave as in Count(n2). We have added an additional rounding 
procedure round which sets the first digit to 0, and which possibly increments the second 
digit, depending on whether the first digit is closer to 0 or closer to n - 1. The ++ signs in 
this specification refers to bisimilarity on Count( , ) .  And similarly, the new's on the right 
hand side of the 1-~ sign in the creation clause refer to the initial state of the Count(n) 
specification. 

c lass  spec :  DCount(n:N>0) 
m e t h o d s :  

first: X ----+ Count(n) 
second: X ----+ Count(n) 
dnext: X ----+ X 
dclear: X - - ~  X 
r o u n d : X  ---+ X 
dval :X ~ {0, 1.2 . . . . .  n 2 - 1} 

a s s e r t i o n s :  
s.dnext.first ++ s.first.next 
s.dclear.first ++ s.first.clear 
s.dclear.second ~ s.second .clear 

a s s e r t i o n s :  
s.dval = n . (s.second.val) + s.first.val 
s.first.val 5~ n - i l-- 

s.dnext.second ++ s.second 
s.first.val = n -  i l- 

s.dnext.second ~-r s.second.next 
s.round.first ~-~ s.first.clear 

n l -  s.first.val < ~S 
s.round.second ~___ s.second 

" l- s.first.val _> _~ 

s.round .second ~ s.second.next 
c r e a t i o n :  

new.first ++ new 
new.second ~-~ new 

e n d  class s p e c  

Figure 3: A specification of two coupled counters (both modulo n) 

Intuitively, it may be clear that DCount(n) refines Count(n2). But we seek a formal 
proof. Therefore we first define appropriate selection functions f ,  g between the (combined) 
at tr ibute-outputs  and procedure-inputs. In the Count(n?) specification the output  type is 
simply {0, 1 , . . . ,  n -~ - 1}. And the combined input type is 1 + 1, where 1 is the singleton 
set {.}, which serves as trivial input set of both the next and of the clear procedure. This 
set 1 + 1 may be identified with the two-element set {0, 1), where 0 stands for the trivial 
input of next and 1 for the input of clear. In this way we can combine the three separate 
methods in Count(n 2) into a single (coalgebraic) method X ---+ {0, 1 . . . .  , n 2 - 1} x X {~ 

The combined output  type of the DCount(n) class specification is {0, 1 . . . .  , n 2 - 1} x' 
Count(n) x Count(n).  And the combined input type is 1 + 1 + 1 = {0, 1,2} where 0 stands 
for input of dnext, 1 for input, of dclear, and 2 for input of round. We have to produce 
selection functions 

8So far we have used actual  sets A as a t t r ibute-outputs ,  whereas in the class specification DCount(n)  
we use other  classes Count(n)  as a t t r ibute-outputs .  Semantically, one can read for Count(n)  any carrier  
set of a coalgebraic model  of the Count(n)  specification, see [14]. A canonical choice is to take the terminal  
model, which in this case has carrier set (or s tate space) {0, 1 . . . .  , n - 1}. 

9The first digit in the specification corresponds to the first digit from the right as in decimal notat ion.  
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i +  14- I -  {0, I,2} < g {0, I ) =  I + i  

{0, 1 , . . . , n  2 -  1} • Count(n)  x Count(n) ~ {0, 1 . . . . .  n - ~  1} f 

DCount(n)  Count (n 2 ) 

It is clear what these functions should be: f is the first projection, and g is the identity- 
insertion {0, 1} r {0, 1,2}. These functions select the appropriate attributes and proce- 
dures in DCount(n) which will be used in simulating the behaviour of Count(n2). And they 
hide the other at tr ibutes first, second and the remaining procedure round. As reachable 
state r in the concrete class DCount(n)  we simply take the initial state new. A coinduction 
proof that  DCount(n) is a behaviour-refinement of Count(n 2) requires by Lemma 3.2 a 
bisimulation relation R C_ DCount(n)  • Count(n 2) satisfying 

s.dval = t.val and 

(new, new) E R and (s, t) E R =:> (s.dnext, t.next) E R and 
(s.dclear, t.clear) E R. 

A relation R C DCount(n)  x Count(n  2) that  does the job is: 

R = {(s,t) I s.dval = t.val}. (1) 

We show in detail that  R is indeed a bisimulation. 

1. In D C o u n t ( n )  we have new.dval - -  n .  (new.second.val) 4- new.first.val =- n - (new.val) + 
new.val = n �9 0 4- 0 = 0. And the initial state new in Count(n 2) satisfies new.val = 0 
by definition. Hence the pair of initial states (new, new) is in R. 

2. If (s, t) E R, then s.dval = t.val by definition of R. 

3. If (s,t) E R, then (s.dnext, t.next) E R holds: we distinguish the two cases (1) 
s.first.val = n - 1 and (2) s.first.val ~s n - 1. In the first case we calculate: 

s.dnext.val 

= n �9 (s.dnext.second.val)  + s.dnext. f i rst.val 

= n .  (s,second.next.val) 4- s.f irst.next.val 

r n �9 0 4- 0 i f  s.second.val = n - 1 

n - (s.second.val 4- I) 4- 0 otherwise 

0 if n -  (s.second.val) + (n - 1) = n 2 - -  1 

= n .  (s.second.val) + ( n -  1) + 1 otherwise 

(*) f 0 i f t . v a l = n  ~ - 1  
= ~. t .val + 1 otherwise 

_- t.next.val. 

where the equation (*) holds since (s, t) E R. Similarly, in the second case s.first.val =~ 

n - 1 we get t.val :/: n 2 - 1, by assumption. Hence 

s.dne• = n - (s.dnext.second.val) + s.dnext.first.val 

= n -  (s.second.val) + s.f irst.next.val 

--- n - (s.second.val) 4- s.first.val 4- 1 

(*=) t .va l4-  1 

= t .next .val .  
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4. The final implication (s, t) E R :* (s.dclear, t.clear) E R holds, since one easily checks 
that s.dclear.dval = 0 = t.clear.val. 

Thus we have proved the following result. 

4.1. P r o p o s i t i o n .  The Count(n -~) specification in Figure 2 is refined by the DCount(n) 
specification in Figure 3, via the relation (1). ~2 

In the DCount specification (in Figure 3) we have chosen to use the special names dval, 
dnext and dclear (with 'd') for the methods corresponding to val, next and clear in the 
Count specification (in Figure 2). We did so in order to emphasise the difference. But, in 
retrospect, we see that  there is no compelling reason for using different names in DCount.  
Even stronger, using the same names directly suggests how to define the selection functions 
f,  g. We shall follow this approach in our other examples below. 

4.2 Buffers  

Our next example is adapted from [3]. It involves buffers which may be empty or contain a 
single element from a data set A. Figure 4 contains two class specifications describing two 
such buffers. The first, Buffer(A), behaves as expected. The second buffer BufferuF(A) 
is unreliable, in the sense that put t ing an element in the buffer may fail. But it may not 
fail infinitely many times: it will succeed at some stage after a finite (but unspecified) 
number of trials (via the existential  quantifier below). This makes it an unreliable, but  
fair buffer. Bufferuv(A) is an example of an underspecified class, involving a certain de- 
gree of non-determinism. The success or failure of put t ing an element is indicated by an 
acknowledgement at t r ibute a c k : X  ~ {n.y}. with outcome n for failure and v for suc- 
cess. We use the notat ion s.put(a)(n) as abbreviation: s.put(a)(~ is s, and s.put(a)l ~+l) is 
s.put(a)(n)  .put(a), 

class spec:  Buffer(A) 
methods . -  

push:X x A - - + X  
empty: X ---+ X 
display: X ---+ 1 + A 

a s s e r t i o n s :  
s.empty .d isp lay = , 
s.display = , ]- 

s .push(a) .d isp iay = a 
s.display = b b- 

s.push (a) ~ s  
c r e a t i o n :  

new,disp lay = , 
e n d  class spec  

class spec:  Bufferu~-(A) 
m e t h o d s :  

put: X x A ---+ X 
empty: X ----+ X 
display: X ---+ 1 + A 
ack: -32 ----+ {n, y} 

a s s e r t i o n s :  
s.display = *,s.put(b).ack = y b 

s.put(b).display _= b 
s.display = *,s.put(b).ack = n b 

s.put(b) ~_~ s 
s.display = b ~- s .put (a)  __~ s 
s.disptay = , b- 3n > 0 s.put(a)(n),ack = y 
s.empty,display = ,  
s.empty.ack = y 

c r e a t i o n :  
new.display = , 
new.ack = n 

e n d  class spec  

Figure 4: Buffer specifications 

Our aim is to hide the unreliability of BufferuF(A) by adding an extra level. We do 
this by first writing a specification of a class 1R-Buffer(A) "on top of,, BuffercF(A) which 
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hides the possible failure of the put by repeating this put until it. does succeed. And 
secondly, by showing that  this new class specification refines the "unproblematic" specifi- 
cation Buffer(A). We shall use inheritance to make R-Buffer(A) a subclass specification of 
BufferuF(A). This means that  R-Buffer(A) has all the methods, assertions and creation 
conditions of BufferuF(A), plus something extra, which is required explicitly. 

c lass  spec :  R-Buffer(A) 
i n h e r i t s  f r o m :  Bufferue(A) 
m e t h o d s :  

push:X x A - - + X  
a s s e r t i o n s :  

s.display = b F s.push(a) ++s 
s.display = . ,s .put(a).ack = y I- s.push(a) ____~ s.put(a) 
s.display = , ,s.put(a).ack = n l- s.push(a) ++ s.put(a).push(a) 

e n d  class  s p e c  

Figure 5: A buffer repeating the unreliable put 

4.2. P r o p o s i t i o n .  The R-Buffer(A) class specification in Figure 5 with repeating unreli- 
able put refines the reliable Buffer(A) class specification f~vrn Figure 4. 

Notice that the selection functions f,  g from Definition 3.1 are trivial in this case by 
our choice of method names: what we need is a relation R C R-Buffer(A) x Buffer(A) 
which holds for the initial states: R(new, new) and also satisfies: R(s , t )  implies both 
R(s.empty, t.empty) and _R(s.push (a), t.push (a)). 

P r o o f .  Take R = {(s, t) ] s.display = t.display}. Then it is easy to see that  (new, new) C R 
and (s, t) E R ~ (s.empty, t.empty) E R. The implication (s, t) E R =~ (s.push (a), t.push (a)) 
C R holds directly in case t.display = s.display = b. And if t.display = s.display = *, then 
clearly t.push(a).display = a. But also s.push(a).display = a by the following argument. 
Let n be least with s.put(a)(~).ack = y. Then for i < n we have s.put(a)(i).ack = n and 
s.put(a)(i).display = , .  Hence s.push(a).display = s.put(a)(n-1).put(a).display = a. [] 

This idea of putt ing a new layer on top of an unreliably functioning existing layer in 
order to improve the quality of service is well-established and often used (e.g. in data- 
storage or in communication).  We have shown in a very simple example how our notion of 
refinement can be used to formally show the correctness of such layered systems. The same 
is done in terms of appropriate notions of refinement between au tomata  (see e.g. [17, 23]). 

4 . 3  S t a c k s  

The standard way to refine stacks uses arrays, see e.g. [4, 7]: a stack is represented as 
an initial segment of an array, with pushing and popping at the end of the segment. We 
shall illustrate this in our coalgebraic setting, and therefore we first introduce a coalgebraic 
specification Array(A) of (unbounded) arrays 1~ of some data set A, see Figure 6. 

Using this Specification of arrays, we can write a refinement Stack1 (,4) of Stack(A) as in 
Figure 7, with Array(A) as a component.  There is another component  I:~ in this Stack1 (A) 
specification, given by the end attribute,  referring to the end of the segment in the array. 
Inserting an element will be done in the next position end + 1. The top, push and pop 

10 This Array(A) specification contains one attribute tell, whose type we have written as X • ~ --"+ 1 -b A. 
Formally, it should have been an attribute X ~ / 1 + A) N, but that is less readable. 
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class  spec:  Array(A) 
m e t h o d s :  

te l l :X x H ----+ 1 + .4 
p u t : X  x , 4 x I ~ - - + X  
c lea r :X  x 1~ ~ X 

a s s e r t i o n s :  
n = m k s .pu t (a ,n ) . te l l (m)  = a 
n r m F s .pu t (a ,n ) . te l l (m)  = s. te l l (m) 
n = m ~ s . c t e a r ( . ) . t e l l ( m )  = * 

n # m t- s.clear(n).teIl(m) = s.tell(m) 

c r e a t i o n :  
new.tel l (n) = * 

e n d  class s p e c  

Figure 6: Array specification 

methods are defined in terms of the other methods. The specification uses the monus (or 
truncated subtraction) function "-- given by x "-- y = max{x - y, 0}. 

c lass  spec :  Stacki(A) 
m e t h o d s :  

end :X - - -+N 
ar: X -'--+ Array(A) 
t op :X  ----+ I + A  
push: X x A ---+ X 
pop: X ---+ X 

a s s e r t i o n s :  
s.push(a).end = s.end + 1 
s.push(a).ar ~ s.ar.put(a, s.end + 1) 

a s s e r t i o n s :  
s.pop.end = s.end • 1 
s.pop.ar ~-~ s.ar 
s.top = s.ar.tel l(s.end) 

c r e a t i o n :  
new.end = 0 
new.ar <-~ new 

e n d  class  s p e c  

Figure 7: The refinement of stacks via arrays 

We shall coinductively prove that  the specification Stack1 (A) refines the earlier speci- 
fication Stack(A). The proof requires a relation R _ Stack1 (A) x Stack(A) satisfying: 

s.top = t.top and 

(new, new) E R and (s, t) E R =:~ (s.pop, t.pop) E R and 

(s.push(a),t.push(a)) E R. 

The relation R C_ Stackl (A) x Stack(A) that  we shall use is 

R = {(s, t) ] Vn E N s.pop('0.top = t.pop(n).top}. (2) 

We check that  R satisfies the four requirements. 

1. The pair of initial states (new, new) is in R since in Stack1 (A) we get new.pop( n).top = 
new.p~ = new.ar.tell(O) = new.tell(O) = , .  And similarly, 
in Stack(A) we have new.pop(n).top = . ,  by an easy induction on n C I'.~. 

2. The second requirement (S, t) E R ~ s.top = t.top holds by taking n = 0 in R. 
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3. The third requirement (s, t) E R :=V (s.pop, t.pop) E R holds by definition of R. 

4. The fourth requirement (s, t) E R ==~ (s.push(a),t.push(a)) E R is most complicated. 
We shall prove s.push(a).pop('~).top = t .push(a).pop( ') . top by induction on n E N. 
The base case n = 0 holds, since 

s.push(a).pop(~ = s.push(a).ar.tell(s.push(a).end) 

= s.ar.put(a,s.end ur 1).tell(s.end 4- i )  

= a 

= t .push(a).pop (~ .top. 

For the induction step we compute:  

s.push (a).pop(n+l).tep = s.push(a).pop(n+l).ar.tell(s.push(a).pop(n+l).end) 

= s.push(a).ar.tell((s.end 4- 1) "-- (n 4- 1)) 

= s.ar.put(a, s.end 4- 1).tell(s.end "-- n) 

= s.ar.tell(s.end ~" n) 

= s.pop(n).ar.tel l(s.pop (n) .end) 

= s.pop (n) .top 

(I H) t .pop (n).top 

= t.push (a) .pop(n+l)  .top. 

Thus we have proved the following result. 

4.3. P r o p o s i t i o n .  The Stack(A) specification in Figure I is refined by the Stackl(A) 
specification in Figure 7, via the relation (2). rn 

class  spee :  Queuel(A) 
m e t h o d s :  

begin : X ----+ N 
end :X - - + N  
ar: X - -+  Array(A) 
top: X ~ t + A 
push:X x A - - +  X 
pop: X ~ X 

a s s e r t i o n s :  
s.begin < s.end 
s.push(a).begin = s.begin 
s.push(a).end = s.end + 1 

a s s e r t i o n s :  
s.push(a).ar 

s.ar.put(a, s.end).clear(s.end + 1) 
s.begin < s.end ~- s.pop.begin = s.begin 4- 1 
s.begin = s.end H s.pop.begin = s.begin 
s.pop.end = s.encl 
s.pop.ar e+ s.ar 
s.top = s.ar.tell(s.begin) 

c r e a t i o n :  
new.begin = 0 
new.end = 0 
new.ar e+ new 

e n d  class s p e e  

Figure 8: The first refinement of queues, us ing  segments in an array with begimling and 

end 

4 .4  Q u e u e s  

We turn to refinement of the queue class specification in Figure 1. We shall do this in two 
different ways, each t ime using arrays. In the first refinement we shall describe a queue 
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as a segment in an array, given by two coordinat.es for beginning and for end. In adding 
an element to the end of the segment, we increment riffs end coordinate, and in popping 
off an element at H~e front, we increment the begin coordinate. The segment representing 
the queue thus moves upwards through the array. This will be different in our second 
refinement, where we keep this segment at the beginning of the array. But we start  with 
the first refinement in Figure 8, which we shall call Queue1(.4). 

4.4,  L e m m a .  Consider the specification Queuel(A),  and write tsl = s.end - s.begin, for 
an arbitrary state s. Then 

s.pop(n).begin = min{s.begin + n,s.end} 

s.pop(n).top i fn  < Isl 
s.push(a).pop(n).top = a ifn = Ist 

, i f ~  > Isl. 

4.5. P r o p o s i t i o n .  The Queue(A) specification in Figure 1 is refined by the Queuel(A)  
specification in Figure 8, via the relation R C Queue1 (A) x Queue(A) given by 

R = {(s, t) I (gn E N s.pop(").too = t.pop{~).top) /X Isl > 0 

A (Vn < Isl s.pop(n).top # , )  A (Vn >_ Isl s.pop(n).top = * ) } .  

P r o o f .  Clearly. if (s, t) E R, then s.top = t.top. What  remains to show is that  R is appro- 
priately closed under the operations. Essentially, this follows from the previous lemma. We 
shall do part of the push-case. For (s, t) E R we need to show that (s.push(a). t .push'a))  E R; 
we concentrate on s.push(a).pop('~).top = t.push(a).pop(,~).top, for all n E I,t. The formula 
for the left hand side occurs in the previous lemma, so we compute the right hand side 
accordingly (in Queue(A)): 

�9 If n < [sl, then for each i < n we have t.pop(i).top _-_ s.pop(1).top r . .  Hence 
t-push(a).pop(n/-top = t-pop(n~,push(a).top = t.pop(n).top = s.push(a).pop(n) .top. 

�9 In case n = js] we get t.pop(i).top 7~ , for i < Ist = n and t.pop(n).top = . .  This 
yields t .push(a).pop(n).top = t.pop(~).push(a).top = a = s.push(a).pop(~).top. 

�9 Finally, if n > lsl, then we get t.push(a).pop(n).top = t.pop(ISl).push(a).pop(n-lsl)top 
= t.pop(tSl).pop(~-Isl-1).top = t .pop(n-t) . top = s.pop(n-1).top = , .  And in Queue1 (A) 
we also have s.push(a).pop(~).top = . ,  by the above lamina. [3 

The disadvantage of this first refinement is that it requires segments with both a be- 
ginning and an end. It would be easier to use initial segments with 0 as beginning, so that 
only an end at t r ibute is needed. Such segments have a fixed place (at the beginning) and 
do not wander off into infinity (possibly using much memory space). 

Using such initial segments with 0 as beginning forces us to shift the whole segment 
one place forward if we wish to pop off an element. This requires an extra operation on 
arrays, which we introduce via inheritance, giving us a class specification Shift.Array(A), 
see Figure 9. It contains as main operations a shift, which takes an array and a parameter  
n E N, and produces a new array- in which the first n elements are moved one position 
forward. Doing so requires an auxiliary procedure aux_shift describing a loop. Lemma  4.6 
sums up the main property of the shift method. 

4.6. L a m i n a .  In ShiftArray(A) one has 

j < n k- s.shift(n).tell(j) = s.tetl(j + 1) 

j _> n F s.shift(n).tell(j) = s.tell(j). Cl 
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class spec:  ShiftArray(A) 
i n h e r i t s  f i 'om: Array(A) 
m e t h o d s :  

shift: X x N ---+ X 
aux_shift:X x N x N ~ X 

as se r t i ons :  
s.shift(n) 6+ s.aux.shift(0, n) 
i < n, s.tell(i + 1) # * k- 

s.aux_shift(i, n) = s.put(s.tell(i + 1), i).aux_shift(i + 1, n) 
i < n, s.tell(i + 1) = * ~- 

s.aux_shift(i, n) = s.clear(i).aux_shift(i + 1, n) 
i > n k- s.aux_shift(i, n) ++ s 

e n d  class spec  

Figure 9: Arrays with an additional shift operation 

class spec:  queue2(A) 
m e t h o d s :  

end: X - -~  N 
ar: X ---+ ShiftArray(A) 
top:X--+ I + A  
push :X  x A - - - + X  
pop: X ~ X 

a s se r t i ons :  
s.push(a).end = s.end + 1 

asse r t ions :  
s.push(a).ar ++ 

s.ar.put(a, s.end).clear(s.end + 1) 
s.pop.end = s.end "- 1 
s.pop.ar ~ s.ar.shi,Zt(s.end) 
s.top = s.ar.tetl(O) 

c rea t ion :  
new.end = 0 
new.ar ~ new 

e n d  class spec  

Figure 10: The second refinement of queues, using initial segments in an array 

Now we turn to the second refinement in Figure 10. It leads to the following result. 

4.7. L e m m a .  (i) Consider the Queue2(A) specification (in Figure 10), and let s be a state 
satisfying s.ar.tell0n) = * for m >_ s.end. Then 

s.pop(n) .ar . te l l (m ) _-- { s.ar.tell(n, A- rn) otherwise.fin 4- m < s.end 

(ii) Let s satisfy the same assumption as in (i). Then 

{ s.pop (n).top i f n < s . e n d  

s.push(a).pop(n).top = a i f n  = s.end [] 
, otherwise. 

4.8. P r o p o s i t i o n .  The Queue2(A) specification in Figure 10 (also) refines the Queue(A) 
specification in Figure 1, via the relation R C Queue~(A) x Queue(A) given by 

R = {(s,t) [ (Vn e H s.pop(n).top = t-pop(').top) A (Vn ~_ s.end s.ar.tell(n) = *) 

A (Vn > s.end s.ar.tell(n) r * ) } .  
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P r o o f .  Obviously, if (s, t) E R, then s.top = t.top. The pair (new, new) of initial states 
is in R because the initial state new in Queue2(A) satisfies new.ar.tett(m) = *, for all 
m _> 0 = new.end. Hence new.pop(~).top = . ,  by Lemma 4.7 (i). Closure of R under pop 
and push is easy. using Lemma 4.7 (and the formulation of t .push(a).pop(').top in the proof 
of Proposition 4.5). [] 

The two requirements Vn > s.end s.ar.tell(n) = , and Vn > s.end s.ar.tell(n) 5s * in the 
definition of R may be understood as an invariant for the specification Queue2(A). Similar 
invariants are part of the definition of the refinement relation R in Proposition 4.5. 

5 B e h a v i o u r - r e f i n e m e n t  v e r s u s  m o d e l - r e f i n e m e n t  

Our notion of refinement (in Defni t ion 3.i) is based on sinmlation of behaviour, as is 
usual for automata.  There is an important  alternative approach which is based on models 
(especially on hidden-sorted algebras), see e.g. [9, 4, 8, 2, 6, 7, 18]. It defines a concrete 
specification C to be a refinement of an abstract specification .4 if all models of ,4, after 
appropriate restriction, are also models of C. We add two comments. This "appropriate 
restriction" corresponds in our approach to the effect of the selection functions in Defini- 
tion 3.1. And a model of a specification may be taken in a behavioural sense, which means 
that the equations are required to hold only with respect to contexts of observable sort. 
This leads to "context induction" as a proof-technique, see [8], but. also to coinduction, 
see [7], We shall refer to this notion as "model-refinement" in contrast to "behaviour- 
refinenlent" as used in this paper. 

Our aim in this section is to briefly illustrate the difference between model-refinement 
and behaviour-refinement via an example. This example involves a concrete specification 
which is a behaviour-refinement, but  not a model-refinement, of an abstract specification. 
The difference arises because in behaviour-refinement one onlv considers reachable states. 
Of course, this difference disappears if one restricts oneself to reachable states (as is often 
done). 

We define an abstract coalgebraic class specification .A with one at tr ibute val: X ---+ 
{0, 1} satisfying s.val = 1. And a concrete class specification C with two attr ibutes 
val :X ~ {0,1}, coun t :X  ---+ N and one procedure next :X ~ X, with four condi- 
tional equations: s.count _< 10 ~- s.next.count = min{s.count + 1, 10}, s.count > 10 F 
s.next.count = s.count + 1, s.count _< 10 ~- s.val = 1, s.count > 10 F- s.val = 0 with initial 
state new.count = 0. Then C is a behaviour-refinement of A, but not a model-refinement 
of A. The first, is easy to see, via the relation R C C x ,4 with R(s, t) given by s.val = t.val. 
But C is not a model-refinement of.,4. Consider the model of t: consisting of state space N 
with operations val:N ---~ {0,1} given by val(x) = 1 for x < 10 and val(x) = 0 for x > 10, 
count:N -+ N by count(x) = x, and next:N --4 N g i v e n b y  next(x) = x if x = 10 and 
next(z) = x + 1 otherwise. This clearly forms a model of C. But it does not form a model 
of.A, since the required equation val(x) = 1 does not hold for all x E N. (But it does hold 
for all reachable z _< 10.) 
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