
Behaviour-Refinement of Coalgebraic Specifications
with Coinductive Correctness Proofs

B a r t J acobs

Dep. Comp. Sci., Univ. Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
Emaih bart@cs.kun.nl

A b s t r a c t . A notion of refinement is defined in the context of coatgebraic spec-
ification of classes in object-oriented languages. It tells us when objects in a
"concrete" class behave exactly like (or: simulate) objects in an "abstract"
class. The definition of refinement involves certain selection functions between
procedure-inputs and attribute-outputs, which gives this notion considerable
flexibility. The coatgebraic approach allows us to use coinductive proof methods
in establishing refinements (via (bi)simulations). This is illustrated in several
examples.

1 I n t r o d u c t i o n

Refinement is an important notion in the stepwise construction of reliable software. It
is used to express that an abstract description is realised by a concrete one, typically by
filling-in some implementation details. This paper concentrates on refinement in an object-
oriented setting. What is typical there is re-use of classes1: one tries to refine towards
existing classes (available in some library). There are two important ways to construct
new classes from old: inheritance and aggregation. Inheritance involves specialisation and
puts classes in the "is-a" relationship, whereas aggregation involves using one class as a
component of another, in the "has-a" relationship (see [19, 14.5] for a discussion of when
to use "is-a" or "has-a"). Below we shall see examples of both inheritance and aggregation
(for class specifications).

But first we shall define a notion of refinement between class specifications, using the
"coalgebraic" specification format developed in [14, 13] (following [22J). Such a coalgebraic
specification consists of a (black box) state space (typically written as X) with a number
of attributes, capturing its data (like in instance variables), and a number of procedures
which may change the state (and hence the values of these attributes). These attributes
and procedures have to satisfy certain assertions (or constraints), which determine the
appropriate behaviour. What is typically coalgebraic in this approach is that we say nothing
about what is inside the state space X of a class (or about how to "algebraically" construct
its elements), but only something about what can be observed (via the attributes) about
an arbitrary state (i.e. inhabitant of X). Objects may be identified with such inhabitants.
This coalgebraic state space X corresponds to the (product of the) hidden sorts in hidden-
sorted algebra, see [6, 5, 18, 7, 1, 8].

In this setting we define what it means for a "concrete" class to refine an "abstract"
class. The idea is that every object of the concrete class (when considered with appro-
priately selected attributes and procedures) behaves exactly like an object of the abstract

1In this p a p e r we shall be concerned mos t ly with class specificat ions, in c o n t r a s t to implementa t ions .
It c an be a rgued t h a t re-use of specif icat ions is as i m p o r t a n t as re-use of imp lemen ta t i ons - - e spec i a l l y in
the long run , since imp lemen ta t ions are more suscept ible to change of technology.

788

class. The selection of attributes and procedures is essential because the concrete class may
have many more attributes and procedures than needed for realising the desired behaviour
of the abstract class. This selection is accomplished via two "selection" functions (the f, g
in Definition 3.1) and yields a form of hiding. This emphasis on simulation of behaviour
puts our notion of refinement firmly in the automata-theoretic tradition (where refinement
(also called implementation) is defined as inclusion between sets of traces, see e.g. [17]),
and not, in contrast, in the model-theoretic tradition (with emphasis on (behavioural) va-
lidity), see Section 5 for a brief comparison. In fact, the semantics of our coalgebraic class
specifications may be described in terms of certain deterministic automata, see [14, 22].
But coalgebraic specification is different from automata-theoretic specification in that it
does not describe states explicitly (e.g. in transition diagrams), but only implicitly via their
observable behaviour 2. This work is inspired by the earlier work on refinement in automata
theory and in hidden sorted algebra (notably [6, 7]).

What makes the (coalgebraic) notion of refinement particularly useful is that it comes
with a certain "coinductive" proof-technique. It allows us to answer the question of whether
we have indistinguishable behaviour (for objects of the concrete and abstract classes) by
giving an appropriate (hi)simulation relation on the state spaces. Showing that a given
relation is a (bi)simulation involves proof-obligations for each of the attributes and pro-
cedures individually, which substantially reduces the proof burden. Also the use of such
(bi)simulations is well-established in automata-theoretic approaches. Bisimilarity corre-
sponds to behavioural satisfaction in hidden-sorted algebra, see e.g. [7, 2]. Therefore,
coinduction can also be used as a proof-technique in hidden sorted algebra, see [7].

The contribution of the present paper lies in the following: it adapts these automata-
theoretic approaches to refinement to an object-oriented setting (interpreted coalgebraical-
ly), involving non-trivial class specifications with inheritance and aggregation, and non-
trivial correctness proofs. In doing so it clearly shows how to deal with different attributes
and procedures in different classes via the earlier mentioned selection functions. The result-
ing approach uses arguments in elementary predicate logic, which should be unproblematic,
both for humans and for computers. In fact, all the refinements in this paper have been
fully formalised and proved in PVS [21] 3. Details about such formalisations may appear

elsewhere.
The organisation of this paper is simple: we start in Section 2 by recalling the essentials

of coalgebraic specification of classes. Subsequently, we describe the associated notion of
refinement in Section 3, together with a coinductive proof-technique. Essentially, the re-
mainder of this paper is devoted to several (standard) examples, involving counters, buffers,
stacks and queues. Only in the final Section 5 we briefly compare our automata-theoretic
notion of behaviour-refinement to an alternative, model-based notion of refinement.

This paper is the fourth (after [10, 14, 13]) in a series of papers by the author on using
coalgebraic (in contrast to algebraic) notions in an object-oriented setting. The earlier
papers are more foundational in nature. The theoretical content of the present paper is of
very limited depth, and is hardly original, but it leads to applications of the earlier insights
to an important aspect of object-oriented software construction, namely to establishing
the correctness of various refinements. The eventual usefulness of this approach can only
be established in its actual use. What seems encouraging is that the coalgebraic style
of specifying classes is rather low level, and close to actual implementation. Therefore
it is easy to understand. Moreover, it has a well-defined mathematical semantics (see
notably [14]). Our (coalgebraic) notion of refinement scales up to a "hybrid" setting [12],
combining discrete and continuous behaviour. And in future work we plan to generalise the
present proof-techniques to include invariants (in a coalgebraic setting). This will allow us

2 In particular, there is no way of restricting one's attention to fir~ite state spaces in coalgebra.
3Using the proof tool actually revealed a few minor bugs in the original hand-written proofs.

789

to deal with "underspecified" classes (in which only part. of the behaviour is prescribed).
Such underspecifieation may be understood as a form of non-determinism, see [7]. Also
in this future work, a semantical justification (using terminal models) will be given of the
coalgebraic notion of refinement. But here we concentrate on actual use of coinductive
proof techniques for refinements.

2 C o a l g e b r a i c s p e c i f i c a t i o n

A coalgebraic class specification, as used in this paper, consists of three parts: methods,
assertions and creation conditions, see the figures below. The methods are either attributes
a t : X ---+ A or procedures proc: X x B ---+ X. The X is an (unknown) state space, on
which these methods act. The A and B are (known) constant sets: the set A gives the
observable at t r ibute values of a state space, and the set B serves as set of inputs (or
parameters) of the procedure proc. Procedures may change states, and the effect of such
changes may be visible via the attributes. The assertions in a coalgebraic specification
describe the behaviour of the methods. They are as in algebraic specification, except that
(1) an assertion only involves one single state, typically written as s (E X) , and (2) we
use the post-fix "dot" notation, instead of the functional notation: s.proc(b).at means
at(proc(s, b)). The creation conditions describe the attr ibute values for a newly created
object new of the class.

Suppose we have a class specification with attributes a t l : X ---4 A1, ..-, a t n : X ----4 A .
and procedures p roc l :X x B1 -----4 X, . . . , procm:X x B,~ ---4 X. The elements of the
attr ibute output sets Ai will be considered as observable values to which clients have
direct access. Hence we shall use actual equality a = a' between elements a, a ' E Ai. In
contrast, the state space X is seen as a black box to which clients only have l imited access
via the available operations. In particular, we cannot speak about equality s = t of states
s, t E X, but only about bisimilarity s ~ t. Bisimilarity means: indistinguishability (via
the coalgebraic operations). It need not be the same as equality, since two states may be
different (internally), but display the same (external) behaviour. Then they are not equal
r but bisimilar +-4.

We shall use the bisimilarity sign +-+ in assertions in specifications (between terms inhab-
iting the state space). The proof rules for +-+ are the equivalence relation rules (reflexivity,
symmetry and transitivity), plus the following two rules (for each i < n, j _< m and b E Bj).

s + + t s ~-~ t

s.ati = t .at i s.procj(b) ___~ t.procj (b)

(In fact, ___~ is the greatest relation satisfying these rules, so that s ___~ t can be identified
with s.procj,(bl) procj~(bn).at = t.procj, (b l) . - - . .procj , (bn) .a t for all sequences bl E
Bj , b~ E Bj, of procedure-inputs.)

Figure 1 gives two typical examples of coalgebraic specifications involving stacks (last-
in-first-out) and queues (first-in-first-out) for some data set A. Notice that the methods
(attributes plus procedures) are the same in both specifications, but that the assertions are
essentially different. The output type 1 + A of the top attributes is the set A augmented
with an extra element �9 E 1 = {,} for undefined 4. It allows us describe top as a partial
function .u -4 A.

In coalgebraic specification--like in algebraic specification--it is often convenient to
import an already existing specification into a new specification. This facilitates the incre-
mental construction of specifications. Coalgebraica]ly, this import-mechanism corresponds
to what is called inheritance, but algebraically it corresponds to parametrisation, see [13]

4One can read ~ as null.

790

c lass spec" Stack(A)
m e t h o d s :

push: X • A ---+ X
pop: X ~ .u
top: X ---+ 1 4- A

a s s e r t i o n s "
s .push(a) . top = a
s .push(a) .pop r s
s. top = * k s .pop ++ s

c r e a t i o n :
new. top ---- �9

e n d c lass s p e c

c lass spec : Queue(A)
m e t h o d s :

push : X x A ---+ X
pop: X ---+ X
t o p : X ---+ 1 + A

a s s e r t i o n s =
s. top = * t- s ,push(a) . top = a

s. top --- �9 l- s .push(a) .pop ++s
s. top --- �9 l- s .pop 4-+ s
s . top ~= * l- s .push(a) . top --- s. top

s. top r �9 I-

s .push(a) .pop __~ s .pop.push(a)
c r e a t i o n :

new. top = *
e n d c la s s s p e c

Figure 1: Stack and queue specifications

for details abou t the under ly ing semant ical duali t ies 5. We shall use inher i tance in some of
the examples la ter on, v ia the keyword " i n h e r i t s f r o m : T" in a specification C - - w i t h 7 ~
for ' pa ren t ' (somet imes called ancestor) and C for 'chi ld ' (also called descendant , or sub~
class). The specialised class specification C then au tomat ica l ly contains all the methods .
assertions and creat ion condi t ions of the general class specification "P. But C may add i~s
own (addi t ional) methods , assertions, and creation conditions.

3 B e h a v i o u r - r e f i n e m e n t s

In this section we define wha t it means for one "concrete" class specification g to refine an
"abs t rac t" class specification .4. Typical ly in such a s i tuat ion, g contains more implementa-
t ion details, or is more easily available t han .4. In an object-or iented se t t ing with a l ibrary
of classes at hand , one tries to refine towards existing classes, for example because (reliable)
implementa t ions of these are available. W h a t we will define is behaviour- ref inement in con-
t ras t to wha t may be called model-ref inement . Behaviour-ref inement is abou t imi ta t ion of
behaviour and model - ref inement is abou t validity of assertions, see Section 5.

Assume our abs t r ac t class specification .4 has n a t t r ibu tes and m procedures with the

following types.

X a t l a t n > proc1 prOcm
-~ A1, . . . , X An and X x B1 ~ X, . . . , X x B,~ --------> X

For convenience we shall form one set conta ining all these procedure- input types Bi via

disjoint union +:
B l + " - + B m = { (i , b) l i < m a n d b E B ~ }

and for ~ = (i, b) E B1 + .-- + B ~ we shall write s.proc(~) for s.proci(b). In this way we
th ink t h a t the rn procedures p r o c l : X x B1 ---'+ X, . . . , p rocm:X x Bm ---.4 X in A are
combined into one single procedure proc: X x (B1 + -" - + Brn) ~ X 6.

SRestrictlon versus extension via right versus left adjoints to forgetful functors.
6In a similar way one can combine the n attributes a t l : X ----4 A1, . . . , atn:X --~ An into a single

attribute at:X ----+ (.41 x x A~) using Cartesian products x. This will be used implicitly.

791

Similarly we assume we have a "concrete" class specification C, say with methods

at1 ark
X ~ C I , . . . , X " Ck

proc~
and X x D1 proc l ."~" , X x Dt X

These procedures can be combined into a single procedure proc: X x (D1 + - . �9 + Dr)) X .

3.1. D e f i n i t i o n . For an "abstract" and a "concrete" class specifications .A and C as above,
we say that C is a b e h a v i o u r - r e f i n e m e n t (or simply a r e f i n e m e n t) of.A if there are both

1. a reachable state r in C (i.e. a s tate-term r which can be obtained from the initial
state new in C via a number of procedure applications);

2. two "selection" functions 9, f between (combined) procedure-input and at tr ibute-
output sets

9
D I + . . - + D , < B I + . - . + B , ~

Cl x . . . x Ck ~- AI • . . . • An
f

such that the n-tuple of a t t r ibute values

(new.proc(~l) . . . - .proc(/3p) .at1 new.proc(/~l) . - . . .proc(~v).atn)

in A1 x - �9 - • .4,~ is tile same as the outcome of the selection

f(, .pro~(g(~)). . . ".P~o~(g(~p)).~h , ~.P~Or ".Pror

for all sequences /31 , . . . , 13p E B1 + . . . + B m of inputs (in class A).

The function 9 translates procedure-inputs in A into procedure-inputs in C, and f
translates at t r ibute-outputs in C back into attr ibute-outputs in ,4. The required equation
says that the f-selection of the observable attr ibute-outputs of a 9-selected procedure-
input sequence applied to r is the same as the observations resulting in .,4 from this same
procedure-input sequence. This shows that we can simulate (via f , 9) in the concrete
class C the observable behaviour in the abstract class A. The opposite direction of these
selection funct ions--contravar iant ly between inputs and covariantly between o u t p u t s - -
plays an impor tant role in a so-called behaviour-realisation adjunction (see [1 1]), giving a
canonical relation between au tomata displaying certain behaviour, and behaviours which
can be realised.

In many situations the above reachable state r in the concrete class C will simply be the
initial state new. And mostly, C will have more attributes and procedures than the abstract
class .4. The attribute-selection function f can then consist of a number of projection func-
tions selecting appropriate attributes. And the procedure-selection function .q can consist
of several coprojection functions (or insertions), selecting appropriate procedures. In this
way we hide the additional methods. In practice, the concrete class C will often simply
contain all the at tr ibutes and procedures of the abstract class .,4. This then determines the
selection functions f and .q in an obvious way. We shall see examples below.

We should mention that the above definition only really makes sense for class specifi-
cations in which the behaviour of the initial state new is completely determined. All ab-
stract and concrete example specifications below will be of this kind. Refinement between
"underspecified" classes (in which there may be several states satisfving the behavioural
constraints of new) will be studied in future work.

792

We conclude this section with a crucial coinductive proof technique for refinements. It
allows us to consider refinements step-by-step, instead of at once for all sequences 91, .-.,/3p
as in the previous deflnitionl Such a coinduction result may be found in various forms, see
e.g. [25, Theorem 3.2], [17, Proposition 12], and may be traced back to [15, 20]. See [16]
for an overview (concerning non-deterministic automata).

3.2. L e m m a . Consider abstract and concrete classes ..4 and C as in the previous defini-
tion, together with a reachable state r as in 1. and selection functions g. f as in 2. Then C
refines ..4 (via r,9, f) i f there is a bisimulation relation R C C x A satisfying

{ f (s .ah s.atk) = (t . a t l , . . . , t . a t ~) and
(r, new) E R and (s, t) E R ==~ (s.proc(g(,3)), t .proc(/])) C R. for all ~.

Proof . The result follows directly from the fact that for all sequences 31, . . . , .@

(r .p roc (g (f l l)) proc(9(/3 P)), n e w . p r o c (J l) . . - . . p r o c (f l p)) E R,

which is shown by induction on the length p of the sequence. []

The essence of this result is that bisimilar elements in a (state space of a) coalgebra
become equal when mapped to the terminal coalgebra, see e.g. [24, 14]. Hence we speak of
a "coinductive" proof 7.

4 E x a m p l e s o f r e f i n e m e n t s

We illustrate the eoalgebraic approach to (behaviour-) refinement in a number of (standard)
examples. First we show how counting to n 2 can be simulated via to counters counting
to n (just like counting to 100 can be done via two counters to 10 with a 'carry') . Then
we present a refinement of a reliable buffer via an unreliable buffer with a repeater, and
finally we consider various refinements of the stack and queue specifications in Figure 1 via

arrays.

4.1 C o u n t e r s

class spec: Count(n:N>0)
m e t h o d s :

val :X) {0, 1,2 n - 1}
next: X ~ X
clear: X ----+ X

a s s e r t i o n s :
s.val ~ n - t I- s.next.val = s.val + 1
s.val = n - 1 b s.next.val = 0
s.clear.val = 0

c r e a t i o n :
new.val = 0

e n d class spec

Figure 2: A specification of counters modulo n

Our starting point is the specification in Figure 2 of a simple counter counting modulo
n:N>0 = {m E N I m > 0}, via a next procedure, producing a state with the next value.

7The dual notion of "inductive" proof is based on initiality (of algebras).

793

This n is a parameter in the specification. Our aim is to refine counting up to n 2 via two
counters up to n, serving as first and second digit, see the double counter specification
DCount(n) in Figure 3. The auxiliary counters to n appear as at tr ibute components
Count(n) in the specification. This use of classes as components in another class is called
aggregation s. There is a new "global" at tr ibute dval defined in terms of the "local" val
attributes of the first and second digitg. Further there are methods dnext and dclear,
which--as we will show--behave as in Count(n2). We have added an additional rounding
procedure round which sets the first digit to 0, and which possibly increments the second
digit, depending on whether the first digit is closer to 0 or closer to n - 1. The ++ signs in
this specification refers to bisimilarity on Count(,) . And similarly, the new's on the right
hand side of the 1-~ sign in the creation clause refer to the initial state of the Count(n)
specification.

c lass spec : DCount(n:N>0)
m e t h o d s :

first: X ----+ Count(n)
second: X ----+ Count(n)
dnext: X ----+ X
dclear: X - - ~ X
r o u n d : X ---+ X
dval :X ~ {0, 1.2 n 2 - 1}

a s s e r t i o n s :
s.dnext.first ++ s.first.next
s.dclear.first ++ s.first.clear
s.dclear.second ~ s.second .clear

a s s e r t i o n s :
s.dval = n . (s.second.val) + s.first.val
s.first.val 5~ n - i l--

s.dnext.second ++ s.second
s.first.val = n - i l-

s.dnext.second ~-r s.second.next
s.round.first ~-~ s.first.clear

n l - s.first.val < ~S
s.round.second ~___ s.second

" l- s.first.val _> _~

s.round .second ~ s.second.next
c r e a t i o n :

new.first ++ new
new.second ~-~ new

e n d class s p e c

Figure 3: A specification of two coupled counters (both modulo n)

Intuitively, it may be clear that DCount(n) refines Count(n2). But we seek a formal
proof. Therefore we first define appropriate selection functions f , g between the (combined)
at tr ibute-outputs and procedure-inputs. In the Count(n?) specification the output type is
simply {0, 1 , . . . , n -~ - 1}. And the combined input type is 1 + 1, where 1 is the singleton
set {.}, which serves as trivial input set of both the next and of the clear procedure. This
set 1 + 1 may be identified with the two-element set {0, 1), where 0 stands for the trivial
input of next and 1 for the input of clear. In this way we can combine the three separate
methods in Count(n 2) into a single (coalgebraic) method X ---+ {0, 1 , n 2 - 1} x X {~

The combined output type of the DCount(n) class specification is {0, 1 , n 2 - 1} x'
Count(n) x Count(n). And the combined input type is 1 + 1 + 1 = {0, 1,2} where 0 stands
for input of dnext, 1 for input, of dclear, and 2 for input of round. We have to produce
selection functions

8So far we have used actual sets A as a t t r ibute-outputs , whereas in the class specification DCount(n)
we use other classes Count(n) as a t t r ibute-outputs . Semantically, one can read for Count(n) any carrier
set of a coalgebraic model of the Count(n) specification, see [14]. A canonical choice is to take the terminal
model, which in this case has carrier set (or s tate space) {0, 1 , n - 1}.

9The first digit in the specification corresponds to the first digit from the right as in decimal notat ion.

794

i + 14- I - {0, I,2} < g {0, I) = I + i

{0, 1 , . . . , n 2 - 1} • Count(n) x Count(n) ~ {0, 1 n - ~ 1} f

DCount(n) Count (n 2)

It is clear what these functions should be: f is the first projection, and g is the identity-
insertion {0, 1} r {0, 1,2}. These functions select the appropriate attributes and proce-
dures in DCount(n) which will be used in simulating the behaviour of Count(n2). And they
hide the other at tr ibutes first, second and the remaining procedure round. As reachable
state r in the concrete class DCount(n) we simply take the initial state new. A coinduction
proof that DCount(n) is a behaviour-refinement of Count(n 2) requires by Lemma 3.2 a
bisimulation relation R C_ DCount(n) • Count(n 2) satisfying

s.dval = t.val and

(new, new) E R and (s, t) E R =:> (s.dnext, t.next) E R and
(s.dclear, t.clear) E R.

A relation R C DCount(n) x Count(n 2) that does the job is:

R = {(s,t) I s.dval = t.val}. (1)

We show in detail that R is indeed a bisimulation.

1. In D C o u n t (n) we have new.dval - - n . (new.second.val) 4- new.first.val =- n - (new.val) +
new.val = n �9 0 4- 0 = 0. And the initial state new in Count(n 2) satisfies new.val = 0
by definition. Hence the pair of initial states (new, new) is in R.

2. If (s, t) E R, then s.dval = t.val by definition of R.

3. If (s,t) E R, then (s.dnext, t.next) E R holds: we distinguish the two cases (1)
s.first.val = n - 1 and (2) s.first.val ~s n - 1. In the first case we calculate:

s.dnext.val

= n �9 (s.dnext.second.val) + s.dnext. f i rst.val

= n . (s,second.next.val) 4- s.f irst.next.val

r n �9 0 4- 0 i f s.second.val = n - 1

n - (s.second.val 4- I) 4- 0 otherwise

0 if n - (s.second.val) + (n - 1) = n 2 - - 1

= n . (s.second.val) + (n - 1) + 1 otherwise

(*) f 0 i f t . v a l = n ~ - 1
= ~. t .val + 1 otherwise

_- t.next.val.

where the equation (*) holds since (s, t) E R. Similarly, in the second case s.first.val =~

n - 1 we get t.val :/: n 2 - 1, by assumption. Hence

s.dne• = n - (s.dnext.second.val) + s.dnext.first.val

= n - (s.second.val) + s.f irst.next.val

--- n - (s.second.val) 4- s.first.val 4- 1

(*=) t .va l4- 1

= t .next .val .

795

4. The final implication (s, t) E R :* (s.dclear, t.clear) E R holds, since one easily checks
that s.dclear.dval = 0 = t.clear.val.

Thus we have proved the following result.

4.1. P r o p o s i t i o n . The Count(n -~) specification in Figure 2 is refined by the DCount(n)
specification in Figure 3, via the relation (1). ~2

In the DCount specification (in Figure 3) we have chosen to use the special names dval,
dnext and dclear (with 'd') for the methods corresponding to val, next and clear in the
Count specification (in Figure 2). We did so in order to emphasise the difference. But, in
retrospect, we see that there is no compelling reason for using different names in DCount.
Even stronger, using the same names directly suggests how to define the selection functions
f, g. We shall follow this approach in our other examples below.

4.2 Buffers

Our next example is adapted from [3]. It involves buffers which may be empty or contain a
single element from a data set A. Figure 4 contains two class specifications describing two
such buffers. The first, Buffer(A), behaves as expected. The second buffer BufferuF(A)
is unreliable, in the sense that put t ing an element in the buffer may fail. But it may not
fail infinitely many times: it will succeed at some stage after a finite (but unspecified)
number of trials (via the existential quantifier below). This makes it an unreliable, but
fair buffer. Bufferuv(A) is an example of an underspecified class, involving a certain de-
gree of non-determinism. The success or failure of put t ing an element is indicated by an
acknowledgement at t r ibute a c k : X ~ {n.y}. with outcome n for failure and v for suc-
cess. We use the notat ion s.put(a)(n) as abbreviation: s.put(a)(~ is s, and s.put(a)l ~+l) is
s.put(a)(n) .put(a),

class spec: Buffer(A)
methods . -

push:X x A - - + X
empty: X ---+ X
display: X ---+ 1 + A

a s s e r t i o n s :
s.empty .d isp lay = ,
s.display = ,]-

s .push(a) .d isp iay = a
s.display = b b-

s.push (a) ~ s
c r e a t i o n :

new,disp lay = ,
e n d class spec

class spec: Bufferu~-(A)
m e t h o d s :

put: X x A ---+ X
empty: X ----+ X
display: X ---+ 1 + A
ack: -32 ----+ {n, y}

a s s e r t i o n s :
s.display = *,s.put(b).ack = y b

s.put(b).display _= b
s.display = *,s.put(b).ack = n b

s.put(b) ~_~ s
s.display = b ~- s .put (a) __~ s
s.disptay = , b- 3n > 0 s.put(a)(n),ack = y
s.empty,display = ,
s.empty.ack = y

c r e a t i o n :
new.display = ,
new.ack = n

e n d class spec

Figure 4: Buffer specifications

Our aim is to hide the unreliability of BufferuF(A) by adding an extra level. We do
this by first writing a specification of a class 1R-Buffer(A) "on top of,, BuffercF(A) which

796

hides the possible failure of the put by repeating this put until it. does succeed. And
secondly, by showing that this new class specification refines the "unproblematic" specifi-
cation Buffer(A). We shall use inheritance to make R-Buffer(A) a subclass specification of
BufferuF(A). This means that R-Buffer(A) has all the methods, assertions and creation
conditions of BufferuF(A), plus something extra, which is required explicitly.

c lass spec : R-Buffer(A)
i n h e r i t s f r o m : Bufferue(A)
m e t h o d s :

push:X x A - - + X
a s s e r t i o n s :

s.display = b F s.push(a) ++s
s.display = . ,s .put(a).ack = y I- s.push(a) ____~ s.put(a)
s.display = , ,s.put(a).ack = n l- s.push(a) ++ s.put(a).push(a)

e n d class s p e c

Figure 5: A buffer repeating the unreliable put

4.2. P r o p o s i t i o n . The R-Buffer(A) class specification in Figure 5 with repeating unreli-
able put refines the reliable Buffer(A) class specification f~vrn Figure 4.

Notice that the selection functions f, g from Definition 3.1 are trivial in this case by
our choice of method names: what we need is a relation R C R-Buffer(A) x Buffer(A)
which holds for the initial states: R(new, new) and also satisfies: R(s , t) implies both
R(s.empty, t.empty) and _R(s.push (a), t.push (a)).

P r o o f . Take R = {(s, t)] s.display = t.display}. Then it is easy to see that (new, new) C R
and (s, t) E R ~ (s.empty, t.empty) E R. The implication (s, t) E R =~ (s.push (a), t.push (a))
C R holds directly in case t.display = s.display = b. And if t.display = s.display = *, then
clearly t.push(a).display = a. But also s.push(a).display = a by the following argument.
Let n be least with s.put(a)(~).ack = y. Then for i < n we have s.put(a)(i).ack = n and
s.put(a)(i).display = , . Hence s.push(a).display = s.put(a)(n-1).put(a).display = a. []

This idea of putt ing a new layer on top of an unreliably functioning existing layer in
order to improve the quality of service is well-established and often used (e.g. in data-
storage or in communication). We have shown in a very simple example how our notion of
refinement can be used to formally show the correctness of such layered systems. The same
is done in terms of appropriate notions of refinement between au tomata (see e.g. [17, 23]).

4 . 3 S t a c k s

The standard way to refine stacks uses arrays, see e.g. [4, 7]: a stack is represented as
an initial segment of an array, with pushing and popping at the end of the segment. We
shall illustrate this in our coalgebraic setting, and therefore we first introduce a coalgebraic
specification Array(A) of (unbounded) arrays 1~ of some data set A, see Figure 6.

Using this Specification of arrays, we can write a refinement Stack1 (,4) of Stack(A) as in
Figure 7, with Array(A) as a component. There is another component I:~ in this Stack1 (A)
specification, given by the end attribute, referring to the end of the segment in the array.
Inserting an element will be done in the next position end + 1. The top, push and pop

10 This Array(A) specification contains one attribute tell, whose type we have written as X • ~ --"+ 1 -b A.
Formally, it should have been an attribute X ~ / 1 + A) N, but that is less readable.

797

class spec: Array(A)
m e t h o d s :

te l l :X x H ----+ 1 + .4
p u t : X x , 4 x I ~ - - + X
c lea r :X x 1~ ~ X

a s s e r t i o n s :
n = m k s .pu t (a ,n) . te l l (m) = a
n r m F s .pu t (a ,n) . te l l (m) = s. te l l (m)
n = m ~ s . c t e a r (.) . t e l l (m) = *

n # m t- s.clear(n).teIl(m) = s.tell(m)

c r e a t i o n :
new.tel l (n) = *

e n d class s p e c

Figure 6: Array specification

methods are defined in terms of the other methods. The specification uses the monus (or
truncated subtraction) function "-- given by x "-- y = max{x - y, 0}.

c lass spec : Stacki(A)
m e t h o d s :

end :X - - -+N
ar: X -'--+ Array(A)
t op :X ----+ I + A
push: X x A ---+ X
pop: X ---+ X

a s s e r t i o n s :
s.push(a).end = s.end + 1
s.push(a).ar ~ s.ar.put(a, s.end + 1)

a s s e r t i o n s :
s.pop.end = s.end • 1
s.pop.ar ~-~ s.ar
s.top = s.ar.tel l(s.end)

c r e a t i o n :
new.end = 0
new.ar <-~ new

e n d class s p e c

Figure 7: The refinement of stacks via arrays

We shall coinductively prove that the specification Stack1 (A) refines the earlier speci-
fication Stack(A). The proof requires a relation R _ Stack1 (A) x Stack(A) satisfying:

s.top = t.top and

(new, new) E R and (s, t) E R =:~ (s.pop, t.pop) E R and

(s.push(a),t.push(a)) E R.

The relation R C_ Stackl (A) x Stack(A) that we shall use is

R = {(s, t)] Vn E N s.pop('0.top = t.pop(n).top}. (2)

We check that R satisfies the four requirements.

1. The pair of initial states (new, new) is in R since in Stack1 (A) we get new.pop(n).top =
new.p~ = new.ar.tell(O) = new.tell(O) = , . And similarly,
in Stack(A) we have new.pop(n).top = . , by an easy induction on n C I'.~.

2. The second requirement (S, t) E R ~ s.top = t.top holds by taking n = 0 in R.

798

3. The third requirement (s, t) E R :=V (s.pop, t.pop) E R holds by definition of R.

4. The fourth requirement (s, t) E R ==~ (s.push(a),t.push(a)) E R is most complicated.
We shall prove s.push(a).pop('~).top = t .push(a).pop(') . top by induction on n E N.
The base case n = 0 holds, since

s.push(a).pop(~ = s.push(a).ar.tell(s.push(a).end)

= s.ar.put(a,s.end ur 1).tell(s.end 4- i)

= a

= t .push(a).pop (~ .top.

For the induction step we compute:

s.push (a).pop(n+l).tep = s.push(a).pop(n+l).ar.tell(s.push(a).pop(n+l).end)

= s.push(a).ar.tell((s.end 4- 1) "-- (n 4- 1))

= s.ar.put(a, s.end 4- 1).tell(s.end "-- n)

= s.ar.tell(s.end ~" n)

= s.pop(n).ar.tel l(s.pop (n) .end)

= s.pop (n) .top

(I H) t .pop (n).top

= t.push (a) .pop(n+l) .top.

Thus we have proved the following result.

4.3. P r o p o s i t i o n . The Stack(A) specification in Figure I is refined by the Stackl(A)
specification in Figure 7, via the relation (2). rn

class spee : Queuel(A)
m e t h o d s :

begin : X ----+ N
end :X - - + N
ar: X - -+ Array(A)
top: X ~ t + A
push:X x A - - + X
pop: X ~ X

a s s e r t i o n s :
s.begin < s.end
s.push(a).begin = s.begin
s.push(a).end = s.end + 1

a s s e r t i o n s :
s.push(a).ar

s.ar.put(a, s.end).clear(s.end + 1)
s.begin < s.end ~- s.pop.begin = s.begin 4- 1
s.begin = s.end H s.pop.begin = s.begin
s.pop.end = s.encl
s.pop.ar e+ s.ar
s.top = s.ar.tell(s.begin)

c r e a t i o n :
new.begin = 0
new.end = 0
new.ar e+ new

e n d class s p e e

Figure 8: The first refinement of queues, us ing segments in an array with begimling and

end

4 .4 Q u e u e s

We turn to refinement of the queue class specification in Figure 1. We shall do this in two
different ways, each t ime using arrays. In the first refinement we shall describe a queue

799

as a segment in an array, given by two coordinat.es for beginning and for end. In adding
an element to the end of the segment, we increment riffs end coordinate, and in popping
off an element at H~e front, we increment the begin coordinate. The segment representing
the queue thus moves upwards through the array. This will be different in our second
refinement, where we keep this segment at the beginning of the array. But we start with
the first refinement in Figure 8, which we shall call Queue1(.4).

4.4, L e m m a . Consider the specification Queuel(A), and write tsl = s.end - s.begin, for
an arbitrary state s. Then

s.pop(n).begin = min{s.begin + n,s.end}

s.pop(n).top i fn < Isl
s.push(a).pop(n).top = a ifn = Ist

, i f ~ > Isl.

4.5. P r o p o s i t i o n . The Queue(A) specification in Figure 1 is refined by the Queuel(A)
specification in Figure 8, via the relation R C Queue1 (A) x Queue(A) given by

R = {(s, t) I (gn E N s.pop(").too = t.pop{~).top) /X Isl > 0

A (Vn < Isl s.pop(n).top # ,) A (Vn >_ Isl s.pop(n).top = *) } .

P r o o f . Clearly. if (s, t) E R, then s.top = t.top. What remains to show is that R is appro-
priately closed under the operations. Essentially, this follows from the previous lemma. We
shall do part of the push-case. For (s, t) E R we need to show that (s.push(a). t .push'a)) E R;
we concentrate on s.push(a).pop('~).top = t.push(a).pop(,~).top, for all n E I,t. The formula
for the left hand side occurs in the previous lemma, so we compute the right hand side
accordingly (in Queue(A)):

�9 If n < [sl, then for each i < n we have t.pop(i).top _-_ s.pop(1).top r . . Hence
t-push(a).pop(n/-top = t-pop(n~,push(a).top = t.pop(n).top = s.push(a).pop(n) .top.

�9 In case n = js] we get t.pop(i).top 7~ , for i < Ist = n and t.pop(n).top = . . This
yields t .push(a).pop(n).top = t.pop(~).push(a).top = a = s.push(a).pop(~).top.

�9 Finally, if n > lsl, then we get t.push(a).pop(n).top = t.pop(ISl).push(a).pop(n-lsl)top
= t.pop(tSl).pop(~-Isl-1).top = t .pop(n-t) . top = s.pop(n-1).top = , . And in Queue1 (A)
we also have s.push(a).pop(~).top = . , by the above lamina. [3

The disadvantage of this first refinement is that it requires segments with both a be-
ginning and an end. It would be easier to use initial segments with 0 as beginning, so that
only an end at t r ibute is needed. Such segments have a fixed place (at the beginning) and
do not wander off into infinity (possibly using much memory space).

Using such initial segments with 0 as beginning forces us to shift the whole segment
one place forward if we wish to pop off an element. This requires an extra operation on
arrays, which we introduce via inheritance, giving us a class specification Shift.Array(A),
see Figure 9. It contains as main operations a shift, which takes an array and a parameter
n E N, and produces a new array- in which the first n elements are moved one position
forward. Doing so requires an auxiliary procedure aux_shift describing a loop. Lemma 4.6
sums up the main property of the shift method.

4.6. L a m i n a . In ShiftArray(A) one has

j < n k- s.shift(n).tell(j) = s.tetl(j + 1)

j _> n F s.shift(n).tell(j) = s.tell(j). Cl

800

class spec: ShiftArray(A)
i n h e r i t s f i 'om: Array(A)
m e t h o d s :

shift: X x N ---+ X
aux_shift:X x N x N ~ X

as se r t i ons :
s.shift(n) 6+ s.aux.shift(0, n)
i < n, s.tell(i + 1) # * k-

s.aux_shift(i, n) = s.put(s.tell(i + 1), i).aux_shift(i + 1, n)
i < n, s.tell(i + 1) = * ~-

s.aux_shift(i, n) = s.clear(i).aux_shift(i + 1, n)
i > n k- s.aux_shift(i, n) ++ s

e n d class spec

Figure 9: Arrays with an additional shift operation

class spec: queue2(A)
m e t h o d s :

end: X - -~ N
ar: X ---+ ShiftArray(A)
top:X--+ I + A
push :X x A - - - + X
pop: X ~ X

a s se r t i ons :
s.push(a).end = s.end + 1

asse r t ions :
s.push(a).ar ++

s.ar.put(a, s.end).clear(s.end + 1)
s.pop.end = s.end "- 1
s.pop.ar ~ s.ar.shi,Zt(s.end)
s.top = s.ar.tetl(O)

c rea t ion :
new.end = 0
new.ar ~ new

e n d class spec

Figure 10: The second refinement of queues, using initial segments in an array

Now we turn to the second refinement in Figure 10. It leads to the following result.

4.7. L e m m a . (i) Consider the Queue2(A) specification (in Figure 10), and let s be a state
satisfying s.ar.tell0n) = * for m >_ s.end. Then

s.pop(n) .ar . te l l (m) _-- { s.ar.tell(n, A- rn) otherwise.fin 4- m < s.end

(ii) Let s satisfy the same assumption as in (i). Then

{ s.pop (n).top i f n < s . e n d

s.push(a).pop(n).top = a i f n = s.end []
, otherwise.

4.8. P r o p o s i t i o n . The Queue2(A) specification in Figure 10 (also) refines the Queue(A)
specification in Figure 1, via the relation R C Queue~(A) x Queue(A) given by

R = {(s,t) [(Vn e H s.pop(n).top = t-pop(').top) A (Vn ~_ s.end s.ar.tell(n) = *)

A (Vn > s.end s.ar.tell(n) r *) } .

801

P r o o f . Obviously, if (s, t) E R, then s.top = t.top. The pair (new, new) of initial states
is in R because the initial state new in Queue2(A) satisfies new.ar.tett(m) = *, for all
m _> 0 = new.end. Hence new.pop(~).top = . , by Lemma 4.7 (i). Closure of R under pop
and push is easy. using Lemma 4.7 (and the formulation of t .push(a).pop(').top in the proof
of Proposition 4.5). []

The two requirements Vn > s.end s.ar.tell(n) = , and Vn > s.end s.ar.tell(n) 5s * in the
definition of R may be understood as an invariant for the specification Queue2(A). Similar
invariants are part of the definition of the refinement relation R in Proposition 4.5.

5 B e h a v i o u r - r e f i n e m e n t v e r s u s m o d e l - r e f i n e m e n t

Our notion of refinement (in Defni t ion 3.i) is based on sinmlation of behaviour, as is
usual for automata. There is an important alternative approach which is based on models
(especially on hidden-sorted algebras), see e.g. [9, 4, 8, 2, 6, 7, 18]. It defines a concrete
specification C to be a refinement of an abstract specification .4 if all models of ,4, after
appropriate restriction, are also models of C. We add two comments. This "appropriate
restriction" corresponds in our approach to the effect of the selection functions in Defini-
tion 3.1. And a model of a specification may be taken in a behavioural sense, which means
that the equations are required to hold only with respect to contexts of observable sort.
This leads to "context induction" as a proof-technique, see [8], but. also to coinduction,
see [7], We shall refer to this notion as "model-refinement" in contrast to "behaviour-
refinenlent" as used in this paper.

Our aim in this section is to briefly illustrate the difference between model-refinement
and behaviour-refinement via an example. This example involves a concrete specification
which is a behaviour-refinement, but not a model-refinement, of an abstract specification.
The difference arises because in behaviour-refinement one onlv considers reachable states.
Of course, this difference disappears if one restricts oneself to reachable states (as is often
done).

We define an abstract coalgebraic class specification .A with one at tr ibute val: X ---+
{0, 1} satisfying s.val = 1. And a concrete class specification C with two attr ibutes
val :X ~ {0,1}, coun t :X ---+ N and one procedure next :X ~ X, with four condi-
tional equations: s.count _< 10 ~- s.next.count = min{s.count + 1, 10}, s.count > 10 F
s.next.count = s.count + 1, s.count _< 10 ~- s.val = 1, s.count > 10 F- s.val = 0 with initial
state new.count = 0. Then C is a behaviour-refinement of A, but not a model-refinement
of A. The first, is easy to see, via the relation R C C x ,4 with R(s, t) given by s.val = t.val.
But C is not a model-refinement of.,4. Consider the model of t: consisting of state space N
with operations val:N ---~ {0,1} given by val(x) = 1 for x < 10 and val(x) = 0 for x > 10,
count:N -+ N by count(x) = x, and next:N --4 N g i v e n b y next(x) = x if x = 10 and
next(z) = x + 1 otherwise. This clearly forms a model of C. But it does not form a model
of.A, since the required equation val(x) = 1 does not hold for all x E N. (But it does hold
for all reachable z _< 10.)

R e f e r e n c e s

1. M. Bidoit and R. Hennicker. Proving the correctness of behavioural implementations. In V.S.
Alagar and M. Nivat, editors, Algebraic Methods and Software Technology, number 936 in
Lect. Notes Comp. Sci., pages 152-168. Springer, Berlin, 1995.

2. M. Bidoit, N. Hennicker, and M. Wirsing. Behavioural and abstractor specifications. Science
of Corn.put. Progr., 25:149-186, 1995.

3. M. Broy. Specification and refinement of a buffer of length one. Marktoberdorf Summerschool,
1994.

802

4. J.A. Goguen. An algebraic approach to refinement. In D. Bjorner, C.A.R. Hoare, and H. Lang-
maack, editors, VDM '90. VDM and Z--Formal Methods in Software Development, number
428 in Lect. Notes Comp. Sci., pages 12-28. Springer, Berlin, 1990.

5. J.A. Goguen and R. Diaconescu. Towards an algebraic semantics for the object paradigm.
In H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specification, number 785 in
Lect. Notes Comp. Sci., pages 1-29. Springer, Berlin, 1994.

6. J.A. Goguen and G. Malcom. Proof of correctness of object representations. In A.W. Roscoe,
editor, A Classical Mind. Essays in honour of C.A.R. Hoare, pages 119-142. Prentice Hall,
1994.

7. 3.A. Goguen and G. Malcom. An extended abstract of a hidden agenda. In J., A. Meystel,
and R. Quintero, editors, Proceedings of the Conference on Intelligent Systems: A Semiotic
Perspective, pages 159-167. Nat. Inst. Stand. & Techn., 1996.

8. R. Hennicker. Context induction: a proof principle for behavimtral abstractions and algebraic
implementations. Formal Aspects of Comp., 3(4):326-345, 1991.

9. C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271-281,
1972.

10. B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors, Algebraic
Methods and Software Technology, number 936 in Lect. Notes Comp. Sci., pages 245-260.
Springer, Berlin, 1995.

11. B. Jacobs. Automata and behaviours in categories of processes. CWI Techn. Rep. CS-R9607,
1996.

12. B. Jacobs. Coalgebraic specifications and models of deterministic hybrid systems. In M. Wirs-
ing and M. Nivat, editors, Algebraic Methods and Software Technology, number 1101 in Lect.
Notes Comp. Sci., pages 520-535. Springer, Berfin, 1996.

13. B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, European Conference
on Object-Oriented Programming. number 1098 in Lect. Notes Comp. Sci., pages 210-231.
Springer, Berlin, 1996.

14. B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer,
and H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83-103.
Kluwer Acad. Publ., 1996.

15. P. Lucas. Two constructive realizations of the block concept and their equivalence. Technical
Report 25.085, IBM Laboratory, Vienna, 1968.

16. N. Lynch and F. Vaandrager. Forward and backward simulations. I. Untimed systems. Inf. g_4
Comp., 121(2):214-233, 1995.

17. N.A. Lynch and M.R. Turtle. An introduction to input/output automata. CWI Quarterly,
2(3):219-246, 1989.

18. G. Malcolm and J.A. Goguen. Proving correctness of refinement and implementation. Techn.
Monogr. PRG 114, Oxford Univ., 1996.

19. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
20. R. Milner. An algebraic definition of simulation between programs. In Sec. Int. Joint Con].

on Artificial Intelligence, pages 481-489. British Comp. Soc. Press, London, 1971.
21. S. Owre, S. Rajah, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining specification,

proof checking, and model checking. In R. Alur and T.A. Henzinger, editors, Computer Aided
Verification, number 1102 in Lect. Notes Comp. Sci., pages 411-414. Springer, Berlin, 1996.

'22. H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct.

Comp. Sci., 5:129-152, 1995.
23. B. Rumpe and C. Klein. Automata describing object behaviour. In H. Kilov and W. Harvey,

editors, Specification of Behavioral Semantics in Object-Oriented Information modeling, pages

265-286. Kluwer Acad. Publ., 1996.
24. J. Rutten and D. Turi. On the foundations of final semantics: non-standard sets, metric spaces

and partial orders. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Semantics:
Foundations and Applications, number 666 in Lect. Notes Comp. Sci., pages 477-530. Springer,

Berlin, 1993.
25. O. Schoett. Behavioural correctness of data representations. Science of Coraput. Progr.,

14:43-57, 1990.

