
A c t i o n R e f i n e m e n t as an I m p l e m e n t a t i o n R e l a t i o n

Arend Rensink 1 and Roberto Gorrieri '~

1 Institut fiir Informatik, University of Hildesheim, Postfach 101363, D-31113
Hildesheim; emaih rensink@informatik.uni-hildesheim.de

2 Dipartimento di Scienze delFInformazione, University of Bologna, Porta San
Donato 5, 1-40127 Bologna; email: gorrieri@cs.unibo.it

This work has been partially supported by the Vigoni exchange program and the
HCM network EXPRESS ("Expressiveness of Languages for Concurrency").

Abs t r ac t . We propose a theory of process refinement which relates
behavioural descriptions belonging to conceptually different abstraction
levels, through a so-called vertical implementation relation. The theory
is based on action refinement, which permits to relate abstract actions
of the implementation to concrete computations of the implementation;
it is developed in the standard interleaving approach. A number of proof
rules is shown to be sound for the particular vertical implementation
relation (based on observation congruence) we study in this paper. We
give an illustrative example.

1 I n t r o d u c t i o n

There is a long tradition in defining process refinement theories (cf. [9] for an
overview), essentiMly based on the idea that , given two processes S and I , I
is an implementat ion of S if I is more deterministic (equivalent) according to
the chosen semantics. Still, both S and I belong conceptually to the same ab-
straction level, as the actions they perform belong to the same alphabet. In
the development of software components, however, it is quite often required to
compare systems belonging to different abstract ion levels. To the best of our
knowledge, the only theory that has been developed to this aim is the work on
action refinement (e.g., [2, 3, 7, 10, 18, 19, 20]) and interface refinement [4].

Given a refinement function r mapping abstract actions to concrete pro-
cesses, the developed theories say that the implementat ion of a specification S is
given by the syntactic substitution of concrete processes r(a) for actions a in S
[2, 3, 11, 16] or by the semantic substitution of the model of concrete processes
r(a) for actions a in the semantics of S [7, 10, 12, 18]. The basic assumption
of these theories is that there is only one possible implementat ion for a given
specification; in other words, the action refinement function is used as a pre-
scriptive tool to specify the only way abstract actions are to be implemented.

Consequences of this are the following:

- The refinement function can be used as an operator of the language, as it
defines also a function on processes. Hence, it becomes immediately relevant
to investigate the so-called congruence problem: find an equivalence relation
such that , if two processes St and $2 are equivalent, then Mso r(S1) and

773

r(S2) are equivalent. Dating back to [5], it is clear that it is necessary to
move to non-interleaving semantics: the parallel execution of actions a and
b, denoted a III b, is interleaving equivalent to their sequential simulation
a;b + b;a; however, if we refine a to the sequence al;a2, then we obtain
a l ; a 2 I]] b and al;a2;b + b; al;a2 which are not equivalent at all. Most of the
work in action refinement has been devoted to this problem.

- Because of the strong relation to the syntactical structure of the specifica-
tion S, the implementation r (S) is rigidly defined. One of the typical con-
straints is that the possible causal relation between two abstract actions is
preserved among all the actions of the two implementing processes. For in-
stance, if S = a; b and r(a) = al; a2, then the only possible implementation
is r (S) = al;a2;b. As pointed out in [14], this can be a serious drawback,
because in general a causal relation at an abstract level could be partially
forgotten at the concrete one: if only al is to be considered a cause for b,
then al ; (a2 HI b) implements a; b (via r). Some investigations of less rigid
forms of action refinement can be found in [8, 13, 21]. Still, in all these ap-
proaches, specification and refinement function completely determining the
implementation.

Our research starts by removing the basic assumption: more than one imple-
mentation is possible for a given specification. This seems quite natural, even
if the implementation of the abstract action is completely specified via r; for
instance, if an abstract action represents a communication, the way the actual
implementing protocol is defined should not be relevant at the high level of the
specification. Considering the example above, a HI b is implemented as al ; a2 111 b
(via r) in the traditional approach, but we also admit the more sequential process
al; a2; b + b; al; a2 as a possible implementation. Similarly, we consider al; a2 III b
a legal implementation for a; b + b; a (via r).

As a consequence, the congruence problem simply disappears: since one single
specification may admit non-equivalent implementations, afor t ior i implement-
ations of two equivalent specifications need be equivalent themselves. Further-
more, the syntactic structure needs not to be preserved rigidly.

We advocate the use of vertical implementat ion relations (up to a refinement
function), a concept first proposed in [171, as a means to relate processes be-
longing to conceptually different abstraction levels. They are built on top of an
existing horizontal implementation relation, called its basis, such as those men-
tioned above, but in addition use the refinement function to set a Correspondence
between abstract actions and concrete computations. After introductory defini-
tions (Sect. 2), the core of the paper (Sect. 3) discusses a set of properties any
vertical implementation relation __U_ ~ (where r is the refinement function con-
sidered) should satisfy. They can be divided into two main groups. The first
group states the interplay between K" and its chosen basis <: in particular, ~id
(vertical implementation under the identity function) collapses to <, and K r and
< compose, meaning that < o [-" o ~ = ___r The second group defines a set of
congruence-like properties; e.g., if Si _K ~ Ii for i = 1, 2, then $1 +5'2 __K T/1 +I2. In
Sect. 4 we then propose a specific vertical implementation relation <~, with the

774

following main features: it is defined in the standard interleaving approach, i t s

basis is observation congruence _~ (cf. [15]), and it enjoys all the proof rules for
E_ *'. Finally, in Sect. 5 we apply the resulting theory to an example taken from
[4]. Because of space limitations, proofs have been omitted from this paper.

Evaluation. The approach to action refinement proposed in this paper is quite
new, in the following respects:

- We allow a given abstract specification to have different, incomparable im-
plementations under a given, fixed refinement function. This immediately
implies that refinement cannot be treated as an operator; hence the stand-
ard congruence problem of traditional action refinement disappears.

- We integrate action refinement with interleaving semantics. The only re-
motely similar work we are aware of is [6], which establishes restrictions under
which interleaving models are still compositional with respect to traditional
refinement; and [12], which considers a different type of action refinement,
for which interleaving semantics is already compositional.

- We directly compare systems on different levels of abstraction, using the
concept of vertical implementation that extends the standard notion of "ho-
rizontM" implementation relation.

- We give algebraic proof rules for vertical implementation. The only compar-
able concept in traditional action refinement seems to be its t reatment as
syntactic substitution, studied by Aceto and Hennessy in [2, 3] and compared
with semantic refinement in [11].

- We allow vertical implementation to be collapsed to the well-known observa-
tional congruence relation, by hiding all the actions that were refined. This
is reminiscent of interface refinement as in [4]; it makes it possible to mix
action refinement with established methods for "horizontal" implementation.

Many of the basic ideas behind the approach of this paper were already present
in [12, 17], but the technical material, including the algebraic proof rules and
the notion of vertical bisimulation, appear here for the first time.

2 D e f in i t i ons

We assume a universe of action names U, ranged over by a, b, c, and an invisible
action T ~ U. Subsets of U are denoted A, A, C, C (for abstract and concrete
actions, respectively). We denote A~ = A U {T} for any A C_ U. U~ is ranged
over by c~, r V. In addition we use a set of process names X. We define a family
of languages LA, ranged over by t ,u ,v , S,I; A C_ U is the set of actions that

may be used within terms.

t : : = 0 / 1 l a t t ; t l t + t l t l l A t l t [r I ~ x . t .

Here, a E A~, A C A, r A -+ A and x E X. Renaming functions r are extended
when necessary with the mapping r ~ 7. In addition, we use t III u = t lie u to

775

Table 1. Structural operational semantics

t ` / u ` / t ` / u ` / t ` / u , /

1`/ (t + , ,) ` / (t; , ,) ` / (t II~ ~*)`/

t -% t' u -% u'

c~ - % 1 t + u -% t' t + u -% u'

t -% t' a ~ A u -% u' ct ~ A

t llAU-% t'llAu t IIAU-% t llAu'

t -% t' a ~t A t -% t' a E A

t /A -% t'/A t/A ~ t'/A

to" t`/ t`/

(t/A),/ tiC]`/ (~x. t) , /

t --% t' t ` / u --% u'

t;u --% t ' ;u t;u -% u'

t - - % t ~ u ~ u ~ c~EA

t llA u m t' IIA u'

t - % t ~ t - % t ~

t[r r t'[r ~*x. t -% t'[#x, fix]

denote synchronisation-less parallelism. We also use A(t) to denote the set of
actions syntact ical ly occurr ing in t (taking care to define this appropr ia te ly for
recursive terms.) For the t rea tment of process names and recursion, we rely
on the s tandard notion of guardedness: all recursive terms are assumed to be
guarded. A stronger criterion tha t we will need in the course of the paper is
visible guardedness, which holds if all process names are guarded by a visible
action, and no process name or recursion occurs in the context of hiding.

The language LA has an operat ional semantics expressed by a t ransi t ion re-
lation -* C L A x A r x LA and a te rminat ion predicate `/C_ LA: see Table 1.
There are two slightly nons tandard aspects: the semantic rule for recursion re-
fleets the fact tha t we assume guardedness; and following Aceto and Hennessy
[1], a choice is te rmina ted only if both operands are terminated. The lat ter has
the following consequence:

P r o p o s i t i o n 1. For all t E LA, if t`~ then ~ E A r . t -%.

This plays a crucial role in our definition of vertical bisimulation. The basic, one-
step transi t ions are extended to r -abs t rac t ing transi t ions in the usual fashion:

t ~l-..~n> u :4=> t _2+* ai>_2_~* .o. _2_+* ~ > _ ~ * u

An impor tan t proper ty of visible guardedness is the following:

P r o p o s i t i o n 2. I / t is visibly guarded, then for all ~ E A*, there is only a finite
number of t' such that t ~ t'.

In general, a t ransi t ion system is a tuple T = (L, S, 4 , , / , q} where ~ C_
S x L x S is the transi t ion relation, q E S is the initial s tate and `/ C S a
terminat ion predicate, which is such tha t s , / i m p l i e s ~g E L. s e . We write
s ~ s' for (s, a, s') C --~ and s ` / f o r s E ,/. We denote the components of T by
LT, ST etc., dropping the index whenever this does not give rise to confusion.
Obviously, for every term t E LA, the operat ional semantics gives rise to a
t ransi t ion system with terminat ion {AT,LA, 7 , `/,t} where ~ and ,,/ are the
smallest predicates satisfying the rules in Table 1.

776

A widely accepted ~--abstracting interleaving equivalence relation is observa-
tion congruence; see [15], in our case extended to take termination into account;
see also [1]. As the name suggests, the resulting relation is a congruence over L.
The definition relies on a function :: U~ -~ U* such that § = s and 5 = a for all
a E U .

D e f i n i t i o n 3. Let T, U be transition systems with termination. A weak bisim-
ulation relation between T and U is a binary relation p C_ ST • Su such that for

all (ST, sU) E p
1. If ST --% SIT then 3su ~ s~u such that

^

2. If su -% s~ then EST =% S~T such that
3. If ST, / then 9su ~ S~u such that s~,/.
4. If s u , / t h e n 3sT ~ s~T such that s}g .

T and U are called observation equivalent,
ulation relation p such that (qT, qu) C p,
T _~ U, if in addition

5. If qT ~ ST then 3qu ~ su such that
6. If qu -~ sv then 3qT ~ ST such that

e p;

e p;

denoted T ~ U, if there is a bisim-
and observation congruent, denoted

(ST,SU) C p;
(ST , SU) C p.

Refinement Functions. A refinement function maps abstract actions to concrete
processes, where the notions of abstract and concrete are accompanied by a
change of alphabet. H A is the set of abstract actions and C that of concrete
actions, then a refinement function is of the form r : A ~ Lc , with domain
d o m r = A. To (informally) preserve the atomieity of abstract actions, the im-

ages of r are constrained to be

- non-empty, i.e., ~ r (a) , / fo r all a E domr ,
- eventually terminating, i.e., t ~ # , / f o r any term t reachable from r(a),
- visible, i.e., t / % for any term t reachable from r(a).

The resulting fragment of L is reasonably general, and (as far as we know)
includes all refinement functions that we know of as having been proposed in
practical examples. For instance, all renaming functions can be regarded as (par-
ticular instances) of refinement functions. Some refinement functions actually
contain a degree of confusion, in the sense that the alphabets of refinements
of different abstract actions overlap. Part of the theory developed in this pa-
per relies on the absence of such confusion; this is achieved by imposing further

restrictions on the refinement functions.

D e f i n i t i o n 4 (r e f i n e m e n t f unc t i ons) . Let r: A ~ L c be arbitrary.
1. r is called allowable if for all a C A, r(a) is non-empty, eventually terminating

and visible. The class of allowable refinement functions is denoted RA,C.
2. r is called initial-distinct if for all a, b E A, r(a) -% together with r(b)

t -% implies a = b and (r = E (hence t = r(b)).
3. r is called distinct on A if for all a, b C A, r(a) ~'.. ta -% t~ together with

r(b) ---~ tb -% tlb implies ta = tb and t a = t b, and if, furthermore, ~a s,

then a = b and ab = c.

777

These constraints are semantic-based, but it is not difficult to single out syntact ic
restrictions on terms tha t ensure them. From now on, we only consider allowable
refinement functions. Wi th ~: A ~ 2 c we denote the function a ~-~ A(r(a)) . This
is extended pointwise (under overloading of notat ion) to ~: 2 A ~ 2 c .

Another possible source of confusion contained in r consists of an overlap
between the actions used in the refinements of a certain set A C A and the
refinements of A = A \ A. If such an overlap does not exist, we say tha t r
preserves A, which is formally defined as follows:

D e f i n i t i o n 5. A C_ dom r is preserved by r if ~(A) N ~(A) = O.

Fur thermore , we distinguish the active domain adom r and the identity domain
idom r of a refinement function r, defined as follows:

adomr = U~(~)r u (~(a) n domr))

idom r = dom r \ a d o m r

Hence the active domain is a subset of the domain, consisting of two types of
actions: those tha t are not mapped onto themselves, and those tha t are used
in the image of any action different f rom themselves. The identi ty domain, on
the other hand, consists only of (but not necessarily of all) actions on which
the refinement is the identi ty function. (Note tha t adorn r and idom r are always
preserved by r, which would not have been the case if we had taken the more
s t ra ightforward definition a d o m r = {a I r(a) ~ a}.) We use i d : A ~ LA to
denote the identi ty refinement function on A (hence adorn id = 0) . In addit ion,
we use the following construct ions on refinement functions:

a i f a E A
r\A: a ~-~ r(a) otherwise r[r a ~-* r(a)[r r o r a H r (r

3 P r o o f r u l e s f o r v e r t i c a l i m p l e m e n t a t i o n

We now come to the concept of a vertical implementation relation _E r, para-
metrised w.r.t, a refinement function r. t E r u is intended to mean tha t t is
an abs t rac t system and u one of its possible implementat ions, where the cor-
respondence between actions of the former and computa t ions of the lat ter is
set via the refinement function r. We regard vertical implementa t ion in com-
bination with a more s tandard , "fiat" or horizontal implementa t ion relation ~c �9 , ,

(i.e., relating systems at the same abst ract ion level) such as those studied in,
e.g., [9]. This fiat implementat ion relation, sometimes referred to as the basis
of ___r, is denoted _<. In the following sections, we will actual ly ins tant ia te < to
observat ion congruence _~.

In order to deal with recursion, we also have to consider open terms, i.e.,
terms with free process names. Let fn(t) denote the free process names in t.
Unfortunately, we cannot rely on the s tandard technique to extend relations to
open terms, since x E fn(t) has a different in terpreta t ion from x E fn(u); viz.,
the lat ter s tands for an implementation of the former. Therefore, we require a

778

Table 2. Proof rules for vertical implementation

f n (t) = { x } x E ~ a x b t E ~ a u t<_t ' V b t ' E ~ u ' u' <_u
R1 R2 Ra

X E_ id x ~ - t ~ id t t ~ U ~" ~- t Er U

i" }- t l E r ul , t2 E_ ~ u2
- - R4 - - R5 R6 Rr
b 0 E_ r 0 k- 1 E_ r 1 b ~ E_ ~ r (a) F F t l + t2 E_ ~ Ul -~ u2

Fbtl___~ ul, t2__f u2 F k - t G ~u r preservesA
Rs R9

F F t~;t2 E ~ Ul;U~ F F t/A g ~\A u/~(A)

/ ' b t _ E ~u a d o m r G i d o m r / ' b t _ _ f u r
R10 R n

r F t[r g ~ < r v F t[r ___~i~]o~-1 ~[r

F J- tl _E ~ ul, t2 __f u2 r preserves and is distinct on A
R12

r F t~ IIA t2 _E r ~ II~(A) ~

F F t _ _ f u F , x _ _ _ ~ ' x F t E ' u F I - t ' _ _ ~ ' u '
Rla R14 R!.s

x U ~ x b x g ~ x F, A b t g~ u I ~ b t [t ' / x] U_ ~ u[u'/x]

F, x U ~ x F t g ~ u
R16

F F # x . t E ~ #x . u

list of a s s u m p t i o n s about how the free process names are to be interpreted, of
the form F = x l E_ rl x l , . . . , x n E_ T~ Xn where for all i, xi is a process name
and ri a refinement function, and x~ _E T~ xi expresses tha t x~ occurr ing in u is
assumed to be an r i - implementa t ion of xi occurr ing in t. (We sometimes write
F = x r -r x where x = xl - . . x n and r = r l - . . r n are vectors of variables and
refinement functions, respectively.) We then write F b t E r u to indicate tha t
t E r u holds whenever appropr ia te closed terms are subst i tu ted for the xi; in
other words, t [t /x] __f u [u /x] whenever Vi. ti _U r~ ui. If dom F = ~ , we write

F t ___u r or s imply t __ff u.
A number of proof rules for D r are given in Table 2. We first discuss the case

for closed terms; i.e., we assume F = ~ and consider R1-RI2 only.
The first group of properties, consisting of rules R1-Ra , expresses the basic

assumpt ion of working "modulo" the basis <_. Rule R1 states tha t every term
implements itself as long as no refinement takes place; rule R2 says tha t ___id,
where no actual refinement takes place, implies horizontal implementat ion; Rule
R3 explains the interplay between horizontal and vertical implementat ion. Note
that , as a consequence, we also have tha t t <_ u implies t E id u; hence < and U_ ~d
in fact coincide. Moreover, Rules R1-R3 together imply tha t < is a pre-order,
which indeed is the s tandard requirement for (flat) implementa t ion relations.

R4-R12 essentially express congruence of vertical implementat ion with re-
spect to the constants and opera tors of our language. For instance, if the re-
f inement functions in these rules are set to id, then these rules collapse to the
s t andard pre-congruence propert ies of <. (In other words, < needs to be at least

a pre-congruence.)

779

R6 is the core of the relationship between the refinement function r and the
vertical implementation relation. It expresses the basic expectation that r(a)
should be an implementation for a. R7 and Rs are straightforward congruence
rules. R9 is slightly more surprising in that the refinement function "loses" some
of its active domain, namely those actions that are hidden. An interesting special
case is when all actively refined actions are hidden, in which case the vertical im-
plementation collapses to its basis; i.e., if t _E ~ u then t~ ad o m r _< u/~(adomr).

Renaming and refinement are similar concepts; indeed there is some interfer-
ence between the two, due to which no general congruence rule for renaming can
be formulated. Instead, we have "standard" congruence (Rio) if the refinement
and renaming functions do not interfere, and another rule (Rll) which treats
renaming as part of the refinement and only works for injective renamings. In
R12, finally, the synchronisation set A of the specification is refined in the im-
plementation; moreover, there is a restriction on the refinement function, which
will be discussed below in more detail.

There are some side conditions in Table 2 whose rationale is not immediately
obvious. In particular, the refinement function is constrained to be A-preserving
in the rule for hiding (Rg), and distinct and preserving in the rule for parallel
composition (R12). We give two examples illustrating what goes wrong if these
side conditions are not met. We assume that _< preserves deadlock freedom, i.e.,
if t is deadlock-free and t _< u then u is deadlock-free.

Example 1. Assume A = C = {a, b} and let r: a ~ a; b, b H b. Then the rules of
Table 2 allow the following derivation:

aE-~a;b bE~b (Rs)

a; b E ~ a; b; b (R9)

(a; b)/a E id (a; b; b)/a, b

(a; b)/a <_ (a; b; b)/a, b

However, (a; b)/a gives rise to a non-deadlocking term when substituted for x in
x lib b, whereas (a; b; b)/a, b does not. This contradicts the requirement that <
preserves deadlock freedom.

The above problem is caused by the application of R9: we hid a in the spe-
cification and the alphabet of its refinement, ~(a), in the implementation. The
latter includes b E ~(a), which, however, also occurs independently of a. In other
words, {a} is not preserved by r; hence the side condition of R9 is not met.

The next example shows what goes wrong if the distinctness condition in
Rule R12 is not met: confusion, in the sense discussed in the justification of
Def. 4, may arise if the refinements of two different actions start with the same
concrete action.

780

Example 2. Let r be a refinement function with active part a H c; a and b H c; b.
The rules of Table 2 then allow to derive ((a+d)[la,b (b+d))/a, b < ((c; a+d)Ila,b,c
(c; b+d))/a, b, c. The left hand term contains no deadlock, whereas the right hand
term has a T-transition to the deadlocked state (1; b IIb,c,d 1; d)/b, c, d.

Now we turn to open terms and non-empty assumption lists. The intuition be-

hind the proof rules discussed so far is not changed essentially. Rules R13-R15
reflect the intention discussed at the beginning of this section. Rule R16 is the
usual congruence rule for recursion, adapted to take the assumption list into ac-
count. Moreover, this rule is restricted to visibly guarded recursion. In contrast to
the restrictions discussed above, this is not because the general version is known
to be unsound (in fact, we conjecture that it is sound) but because we have been
unable to prove it. The difficulties stem from the fact that the s tandard proof
technique of up-to bisimulation (cf. [15]) seems inapplicable.

4 V e r t i c a l b i s i m u l a t i o n

We now come to the definition of an actual vertical implementat ion relation that
satisfies the derivation rules of Table 2. We build on the principles of observation
congruence. (However, the basic framework in no way depends on this choice,
and we feet that any of the -r-abstracting relations studied in, e.g., [9] can, in
principle, be used as a basis for vertical implementation.)

Observation congruence is defined using a binary relation that connects states
of the specification with states of the implementation. In the case of vertical
bisimulation, we also have to take into account that in any given s tate of the
implementation, there may be associated refined actions whose execution has
not yet terminated. These will be collected in a multiset of residual or pending
refinements that is added as a third component to the bisimulation relation. To
be precise, an r-residual set is a multiset of non-terminated terms t such that
r(a) ~ t for some a C dom r and r C C +. It is formally represented by a func-
tion R E [Lc --' N]. We will denote t E R if R(t) > 0. The operational behaviour
of a multiset corresponds to the synchronisation-free parallel composition of its

elements:
R-% R' :e* 3 te R .? t -% t ' .R '=(R|

We use the following constructions on residual sets:

0: U I---~ 0 /~1 (~ R2: % ~"~/:~1 (u) + /~2('a)
{1 i f u = t a n d - , t J R10R2:u~--~max(Rl(u)-R2(u),O)

{R(u) i fA(u) C A
[t]: u ~-~ 0 otherwise R I A: u ~-~ 0 otherwise.

Note the fact that terminated terms do not contribute to the residual set. We
now present our proposal for relating a specification T with an implementation
U, where abstract actions of the specification are matched by computat ions of

their refinements.

781

D e f i n i t i o n 6. Let T, U be transition systems with LT = AT and Lu = C~-, and
let r E RA,c be a refinement function. A vertical bisimulation relation up to r is
a set p C ST • [Lc ~ N]x Su such that for all (ST, R, sv) E p, R is an r-residual
set and the following properties hold:

1. If S T - ~ SIT, R : 0 and r (a) ~ vr for a E C* then ~sv ~ S~u such that
0, e p.

2. If su ~ S~u then either of the following holds:
^ t (a) 3sT =% sT and v such that R [v], p.

(b) 3sT ~ s~c and 3R ~ R' such that (s ~ , R ' , s ~) C p.
3. I f R ~ - - ~ R ' t h e n 3 s g ~ s ~ such that (sT, R ' , s ~) Cp.
4. If sTr and R = 0 then ~sv ~ S~u such that s~]~/.
5. If sg~ / then R = 0 and ~s:r =~ s~ such that s~,/.

T and U are vertically bisimilar up to r, denoted T <r U, if there is a vertical
bisimulation relation p with (qT, O, qu) E p and
6. If qT _L~ ST then 3qv ~ sv such that (sT, 0, su) E p;
7. If qg -2+ sts then ~qT ~ ST such that (ST, O, sv) E p.

Let r: al ; a2. The following shows two examples of vertical bisimulation relations:

al;a2;b~ a;b~ al;(a2111b)~
a,I Iol al IOl In,

The first item of Def. 6 is quite natural: if no residual is active and the specific-
ation can do an action o~, then the implementation can match any terminated
trace of the refinement of c~. (It turns out to be too strong to require that a
single step of the refinement of c~ can be matched by the implementation.) The
second item considers the case where the moves of the implementat ion are to be
justified. There are two possible justifications: either the low-level action "opens"
a new refinement, in which case the specification must be able to do the corres-
ponding abstract action, and the new residual is added to the residual set; or
the low-level action continues one of the pending refinements, in which case the
specification does not take part except for a possible invisible move. The third
item is crucial: any move of the pending refinement set must be matched by
the implementation, without the specification moving at all. This implies that
pending refinements can be "worked off" in any possible order by the imple-
mentation. This can be construed as an operational formulation of atornicity:
that which is s tar ted can always be finished.

Directly from Def. 6, it follows that vertical bisimilarity up to id equals ob-
servation congruence. Furthermore, the rules in Table 2 are sound for <r , To
formalise this, we write x < r x ~ t < r t if Vi. ti <~ ui implies t i t /x] <~ u[u/x].

782

T h e o r e m 7. _ ~ _ <r _ satisfies all the rules in Table 2.

Note that, although Table 2 gives no recipe for deriving implementations from
specifications, in many cases, one particular implementation can be obtained
through the syntactic substitution of all abstract actions by their refinements.

Abstraction. In order to strengthen the intuition behind vertical bisimulation,
we now show that it can in fact be characterised as a combination of (horizontal)
observation congruence and abstraction. The abstraction of a transition system
U up to a given refinement function consists of "guessing" where the transitions
of U originate from, i.e., which abstract action they refine.

D e f i n i t i o n 8 (a b s t r a c t i o n) . Let U be a transition system with Lu = C~, and
r E RA,C a refinement function. An r-abstraction of U is a transition system
(A~, S , -* , ,/v x {0}, (qu, 0)), where (qu, O) C S C_ Su x [Lc ~ N] and

-~ ~ { ((s ,R) , ,~, (s ' ,Re [~])) I s ~ s',r(o0 ~ v}
u {((s,R),~-,(s',R')) I s ~ s ' , R ~ R'}

Moreover, the following conditions are required to hold for all (s, R) E S:
1. if (s ,R) --% (s ' ,R ') , R = 0 and r(~) ~ v , / t h e n 3s ~ s" s.t. (s ,R)

(s", 0) ~ (s', R');
2. i fs ~ s' thenei ther 3r(a) ~-% v . (s ,R) -% (s ' ,R | ~-% R'.(8, R) --~

(s',•');
3. if R ~-% R' then 3s ~ s' such that (s, R) ~ (s', R') ~ (s, R).

There is a clear correspondence of the conditions above to the simulation prop-
erties 1-3 of Def. 6. Two easy examples of abstraction, using the function r with
r: a ~ al; a2, are given by the following transition systems (where we only show

nonempty residual sets):

T h e o r e m 9. T ~r U if there exists an r-abstraction V o/ U such that T "~ V.

Although the principle of abstraction strengthens the intuition behind vertical
bisimulation, it does not yet offer an easier method of checking vertical bisimu-
lation: the abstraction of a transition system is not always defined, may not be
unique when it is defined, and may be non-trivial to construct even when unique.
On the other hand, for the subclass of initial-distinct refinement functions the

problem becomes much easier.

783

P r o p o s i t i o n 10. If r is initial-distinct and U an arbitrary transition system,
then modulo ~- there is at most one r-abstraction of U.

We denote this r-abstraction of U (if there is one) by U ~ . If, moreover, U
is finite-state, then U~T is also finite-state and can be effectively constructed.
Finally, for initial-distinct r, the inverse of Th. 9 also holds.

T h e o r e m 11. If r is initial-distinct and T <~ U, then Ufrr exists and T ~- U~r.

5 Example: Interface Refinement

In this section we apply our theory to a small example taken from Brinksma,
Jonsson and Orava [4]. The example concerns a distributed data base that can
be queried and updated and an agent responsible for updating the data base; the
latter can also do some local actions not involving the data base. An important
simplification is that the state of the data base is completely abstracted away
from. Data base and agent are modelled by the following systems Dates and
Agents:

Datas Agent s Data1 r-- Agentz

upd ~ / " enf cnf ~ req

The problem considered in the paper is to change the interface between data
base and agent, so that the two longer communicate over a single update ac-
tion; rather, updating consists of two separate stages, in which the update is
requested and confirmed, respectively. In our setting, this can be expressed by a
refinement function r: upd ~-~ req; cnf. Moreover, it is required that in the mean-
time (between request and confirmation), querying the data base should not be
disabled. The solution proposed is to refine data base and agent by Dates and
Agent I in the above figure.

It is seen that, similar to our approach, the proposed implementations differ
from the corresponding specifications in the level of abstraction of their alpha-
bets. The correctness criterion employed in the paper circumvents the associated
problems by just requiring (horizontal) correctness after hiding the relevant ac-
tions: i.e., they prove

(Dates Ilupd Agents)/upd < (Dates II~q,r Agentz)/req, cnf

where < is a testing preorder. The same result holds in our approach (albeit up
to observation equivalence); in that sense, we achieve nothing new. However, our
method of establishing this result is quite different.

- The first point is that we can state correctness in a more general manner,
before hiding the actions that are changed; for in our framework, Dates <~
Dates and Agent s <r Agent~. Moreover, we have an effective way to check

784

this, through Abstraction Th. 9, by constructing D a t a i ~ and Agents)r and
observing Datai)~ ~- Datas and AgenQ~r ~- Agents:

D a t a t ~ AgenQ~,.
qry qry

loc

""[enf]

- The second point is that we can also prove these vertical inequalities algeb-
raically, and in fact derive Dataz from Datas and AgenQ from Agent S. (In
the approach of [4], such a derivation is possible for Data but not for Agent.)
For consider the following algebraic specifications:

Datas = (ltQ. qry; Q) Ill (ltU. upd; U) Agent s = ltA. upd; A + loe; A
Data1 = (ltQ. qry; Q) Iil (ltU. req; cnf ; U) Agent I = ltA. req; cnf ; A + foe; A

The correctness of the Data-part can be shown as follows:

(a6)
upd <r req; cn] (R,4) (R13)

u <r U ~ upd <r req; cnf u <~r u ~ u <~r U (Rs)
(ltQ. qry; Q) U ~r U ~ upd; U <~ req; enf; U (R16)

�9 ~ ltU. upd; U <r ltU. req; cnf; U (R12)

Datas ~r Data1

The correctness of the Agent-part is proved in analogous fashion.
- As a final point, the correctness of the combined system again follows by

application of algebraic derivation rules, which allow to prove:

~- (Data s ll~pd Agent s) / upd ~- (Data1 II q,cns Agent x) / req' cnf

Note that we can as easily derive another, incomparable but equally correct im-
plementation for Datas by first rewriting its specification to the observationally
congruent ltD. qry; D + upd; D, and applying syntactic substitution to that term.
This yields Data}= #D. qry; D + req; cnf ; D, where the qry-action is not possible

in between req and cnf.
Using the "traditional" approach to action refinement, where refinement is

t reated as an operator, one can also show that Datar implements Datas and
Agent s implements Agents. In fact, the implementations can even be derived
algebraically: [111 gives conditions under which syntactic substitution coincides
with semantic refinement, and it so happens that these conditions are satisfied
in the present example. Still, in comparison to the traditional approach, vertical

implementation offers the following advantages:

785

- Vertical implementat ion is based on an interleaving semantics, which means
that the results are equally valid when expressed using the transition systems
in which the original problem was posed as using the corresponding language
description. Not so for traditional action refinement, where a more "precise"
specification has to be given than can be done using transition systems: either
a term or a more expressive semantic model. Tha t more precise specification
will then allow either Data] or Data~ as an implementat ion (or possibly
yet something different); under no circumstances will it allow both. In other
words, in the traditional approach, the design decision is taken at an earlier
stage, namely as soon as the refinement function is given.

- More importantly, vertical implementation "collapses" back to horizontal
implementation: having derived Data1 and Agent1, we can compose them,
hide the interface actions and get a system that is correct in the well-known,
standard interleaving sense. This means that our notion of vertical imple-
mentation can be integrated into existing interleaving-based design methods.
There is no similar concept in the traditional approach to action refinement.

A problem in the context of action refinement that we have mentioned in the
Introduction but ignored thereafter is that traditional refinement is too strict:
it forces all abstract causalities to be inherited in the implementation. To some
degree, we have solved this problem by "closing up to observation congruence,"
so that apparent abstract causalities may sometimes be turned into independen-
cies. In fact, vertical bisimulation allows a bit more than that , since < r already
satisfies the following rule:

D F a G ~ ul;u2, t E_ r v ~ u l , /

r a; t ; (u2 rlf

This states that activities that on an abstract level were specified completely
after a, may in the implementat ion overlap the "tail" of the implementat ion of
a. However, to be really useful, the following rule would be preferable:

F t - a E T u l ; u 2 , t C r v l ; v 2 -~ul,/

1" ~- a;t ~r ~1; (U2 Ill Vl); v2

which expresses that the start of the implementat ion of t may overlap with the
tail of the implementat ion of a. This latter rule unfortunately does not hold for
~<~. We intend to study this issue in the future.

References

1. L. Aceto and M. Hennessy.
39(1):147-187, Jan. 1992.

2. L. Aceto and M. Hennessy.
103:204-269, 1993.

Termination, deadlock, and divergence. Y. ACM,

Towards action-refinement in process algebras. I~dC,

786

3. L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.
I~C, 115:179-247, 1994.

4. E. Brinksma, B. Jonsson, and F. Orava. Refining interfaces of communicating sys-
tems. In Abramsky and Maibaum, eds., TAPSOFT '91, Volume 2, vol. 494 of
LNCS, pp. 297-312. Springer, 1991.

5. L. Castellano, G. De Michelis, and L. Pomello. Concurrency vs. interleaving: An
instructive example. Bull. EATCS, 31:12-15, 1987.

6. I. Czaja, R. J. van Glabbeek, and U. Goltz. Interleaving semantics and action
refinement with atomic choice. In Rozenberg, ed., Advances in Petri Nets 1992,
vol. 609 of LNCS, pp. 89-109. Springer, 1992.

7. P. Degano and R. Gorrieri. A causal operational semantics of action refinement.
I~C, 122:97-119, 1995.

8. P. Degano, R. Gorrieri, and G. Rosolini. A categorical view of process refinement.
In De Bakker, De Roever, and Rozenberg, eds., Semantics: Foundations and Ap-
plications, vol. 666 of LNCS, pp. 138-153. Springer, 1992.

9. R. J. van Glabbeek. The linear t ime - branching time spectrum II: The semantics
of sequential systems with silent moves. In Best, ed., Concur '93, vol. 715 of LNCS,
pp. 66-81. Springer, 1993.

10. R. J. van Glabbeek and U. Goltz. Refinement of actions in causality based models.
In De Bakker, De Roever, and Rozenberg, eds., Stepwise Refinement of Distrib-
uted Systems - - Models, Formalisms, Correctness, vol. 430 of LNCS, pp. 267-300.
Springer, 1990.

11. U. Goltz, R. Gorrieri, and A. Rensink. Comparing syntactic and semantic action
refinement. I~C, 125(2):118-143, Mar. 1996.

12. R. Gorrieri. A hierarchy of system descriptions via atomic linear refinement. Fund.
Informaticae, 16:289-336, 1992.

13. M. Huhn. Action refinement and property inheritance in systems of sequential
agents. In Montanari and Sassone~ eds., Concur '96: Concurrency Theory, vol.
1119 of LNCS, pp. 639-654. Springer, 1996.

14. W. 3anssen, M. Poel, and J. Zwiers. Actions systems and action refinement in the
development of parallel systems. In Baeten and Groote, eds., Concur '91, vol. 527
of LNCS, pp. 298-316. Springer, 1991.

15. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
16. M. Nielsen, U. Engberg, and K. G. Larsen. Fully abstract models for a process

language with refinement. In De Bakker, De Roever, and Rozenberg, eds., Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency,
vol. 354 of LNCS, pp. 523-549. Springer, 1989.

17. A. Rensink. Methodological aspects of action refinement. In Olderog, ed., Pro-
gramming Coneepts~ Methods and Calculi, pp. 227-246. IFIP~ 1994.

18. A. Rensink. An event-based SOS for a language with refinement. In Desel, ed.,
Structures in Concurrency Theory, pp. 294-309. Springer, 1995.

19. W. Vogler. Failures semantics based on interval semiwords is a congruence for
refinement. Distributed Computing, 4:139-162, 1991.

20. W. Vogler. Bisimulation and action refinement. TCS, 114:173-200, 1993.
21. H. Wehrheim. Parametr ic action refinement. In Olderog, ed., Programming Con-

cepts, Methods and Calculi, pp. 247-266. IFIP, 1994.

