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Abst rac t .  We develop a logic for reasoning about object-oriented pro- 
grams. The logic is for a language with an imperative semantics and 
aliasing, and accounts for self-reference in objects. It is much like a type 
system for objects with subtyping, but our specifications go further than 
types in detailing pre- and postconditions. We intend the logic as an 
analogue of Hoare logic for object-oriented programs. Our main techni- 
cal result is a soundness theorem that relates the logic to a standard 
operational semantics. 

1 Introduction 

In the realm of procedural programming, Floyd and Hoare defined two of the 
first logics of programs [Flo67, Hoa69]; many later formalisms and systems built 
on their ideas, and addressed difficult questions of concurrency and data  ab- 
straction, for example. An analogous development has not taken place in object- 
oriented programming. Although there is much formal work on objects (see sec- 
tion 6), the literature on objects does not seem to contain an analogue for Floyd's 
logic or Hoare's logic. In our opinion, this is an important  gap in the understand- 
ing of object-oriented programming languages. 

Roughly imitating Hoare, we develop a logic for the specification and verifica- 
tion of object-oriented programs. We focus on elementary goals: we are interested 
in logical reasoning about pre- and postconditions of programs written in a ba- 
sic object-oriented programming language (a variant of the calculi of Abadi and 
Cardelli [AC96]). Like Hoare, we deal with partial correctness, not with termi- 

nation. 
The programming language presents many interesting and challenging fea- 

tures of common object-oriented languages. In particular, the operational se- 
mantics of the language is imperative and allows aliasing. Objects have fields 
and methods, and the self variable permits self-reference. At the type level, the 
type of an object lists the types of its fields and the result types of its methods; 
a subtyping relation supports subsumption and inheritance. We mostly ignore 
"advanced" issues, like concurrency, but  some of them have been considered in 

the li terature (e.g., see [Jon92, YT87]). 
Much like Hoare logic, our logic includes one rule for reasoning about  pre- 

and postcondkions for each of the constructs of the programming language. In 
order to formulate these rules, we introduce object specifications. An object spec- 
ification is a generalization of an object type: it lists the specifications of fields, 
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the specifications of the methods'  results, and also gives the pre/postcondit ion 
descriptions of the methods. 

Some of the main advantages of Hoare logic are its formal precision and 
its simplicity. These advantages make it possible to study Hoare logic, and for 
example to prove its soundness and completeness; they also make it easier to ex- 
tend and to implement Hoare logic. We aim to develop a logic with some of those 
same advantages. Our rules are not quite as simple as Hoare's, in part  because of 
aliasing, and in part  because objects are more expressive than first-order proce- 
dures and give some facilities for higher-order programming (cf. [Cla79, AptS1]). 
However, our rules are precise; in particular, we are able to state and to prove 
a soundness theorem. We do not know of any equivalent soundness theorem in 
the object-oriented literature. 

In the next section we describe the programming language. In section 3 we 
develop a logic for this language, and in section 4 we give some examples of the 
use of this logic in verification. In section 5, we discuss soundness and complete- 
ness with respect to the operational semantics of section 2. Finally, in sections 6 
and 7, we review some related work, discuss possible extensions of our own work, 
and conclude. 

2 T h e  l a n g u a g e  

In this section we define a small object-oriented language similar to the calculi 
of Abadi and Cardelli. Those calculi have few syntactic forms, but are quite 
expressive. They are object-based; they do not include primitives for classes and 
inheritance, which can be simulated using simpler constructs. 

We give the syntax of our language, its operational semantics, and a set of 
type rules. These aspects of the language are (intentionally) not particularly 
novel or exotic; we describe them only as background for the rest of the paper. 

2.1 S y n t a x  a n d  o p e r a t i o n a l  s e m a n t i c s  

We assume we are given a set ]3 of program variables (written x, y, z, and w 
possibly with subscripts), a set 9 ~ of field names (written f and g, possibly with 
subscripts), and a set A~ of method names (written m, possibly with subscripts). 
These sets are disjoint. The grammar of the language is: 

a, b ::= x variables 
false I true constants 
i f  x then ao else al conditional 
let x = a  in b let 
[fi = xi i~l. .n mj = ~(yj)bj  j~l..m] object construction 
x.f field selection 
x.m method invocation 
x.f := y field update 
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Throughout ,  we assume tha t  the names fi and mj  are all distinct in the con- 
struct  [fi = xi  i e l . . n  m j  = ~(y j )b j  jel..m], and we allow the renaming of bound 
variables in all expressions. 

Informally, the semantics of the language is as follows: 

- Variables are identifiers; they are not mutable: x := a is not a legal state- 
ment.  This restriction is convenient but not fundamental.  (We can simulate 
assignment by binding a variable to an object with a single field and updat ing 
tha t  field.) 

- false  and t rue  evaluate to themselves. 
- i f  x then  ao else al  evaluates a0 if x is t rue  and evaluates a~ if x is fa lse .  

- let x = a in b evaluates a and then evaluates b with x bound to the result of 
a. We define a ; b as a shorthand for let x = a in b where x does not occur 
free in b. 

- [fi = xi  ie l . .~ m j  = q (y j )b j  jel.. ,~] creates and returns a new object with 
fields fi and methods mj.  The initial value for the field fi is the value of xi .  

The method mj  is set to ~(yj)bj, where g is a binder, yj is a variable (the self 
pa ramete r  of the method),  and bj is a program (the body of the method).  

- Fields can be both selected and updated.  In the case of selection (x.f), the 
value of the field is returned; in the case of update  (x.f := y), the value of 
the object is returned. 

- When a method of an object is invoked (x.m), its self variable is bound to the 
object  itself and the body of the method is executed. The method does not 
have any explicit parameters  besides the self variable; however, additional 
parameters  can be passed via the fields of the object. 

Objects are references (rather than records), and the semantics allows aliasing. 

For example,  the program fragment 

let x = [f = z0] in let y - -  x in (x.f := Zl ; y.f) 

allocates some storage, creates two references to it (x and y), updates the storage 
through x, and then reads it through y, returning zl. 

The semantics can be defined more formally in terms of stacks and stores. A 
stack maps  variables to values (booleans or references). A store contains values 
for object fields and closures for object methods. We write (7, S ~- b -,~ v, a t to 
mean that ,  given initial store a and stack S, executing the program b leads to 
the result v and to the final store a I. (We leave details to an extended version 

of this paper.)  
We have defined a small language in order to simplify the presentation of our 

rules. In examples, we sometimes extend the syntax with additional, s tandard 
constructs,  such as integers. The rules for such constructs are straightforward. 

2.2 T y p e s  

We present a first-order type system for our language. The types are Bool  and 
object types,  which have the form [fi: Ai iel..n, mj:  Bj jel..m]. This is the type 
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of objects with a field f~ of type Ai, for i E 1..n, and with a method mj with 
result type Bj, for j E 1..m. The order of the components does not matter.  

The type system includes a reflexive and transitive subtyping relation. A 
longer object type is a subtype of a shorter one, and in addition object types are 
covariant in the result types of methods. More precisely, the type [fi: Ai i~l..~+p 
m j : B j  jcl..m+q] is a subtype of [fi:Ai iel..~, mj:B~- jel..,~] provided Bj  is a 
subtype of B~, for j E 1..m. Thus, object types are invariant in the types of 
fields; this invariance is essential for soundness [AC96]. 

Formally, we write I- A to express that  A is a well-formed type, and F- A <: A ~ 
to express that  A is a subtype of Aq We have the rules: 

W e l l - f o r m e d  t y p e s  

b Ai iC1 . . n  ~- Bj  jE1..m 

~- Bool ~- [fi: Ai iel..n, mj: Bj jE1..m] 

S u b t y p e s  

Bool <: Bool 

Ai ~el..n+p ~ Bj <: B} jE1..m ~ Bj jCm+l..m+q 

~- [fi:Ai iel..~+p, m j : B j  j~l..m+q] <: [f~:Ai iEl..n m j : B j  j~l..m] 

A typing environment is a (possibly empty) list of pairs x: A, where x is a 
variable and A is a type. The variables of each environment are distinct. We 
write 0 for the empty environment, and say that  x is in E when it appears in 
some pair x: A in E. We write E F- o to express that  E is a well-formed typing 
environment. We have two rules for forming typing environments: 

W e l l - f o r m e d  t y p i n g  e n v i r o n m e n t s  

E ~- o t- A x not in E 
OF-o E , x : A F - o  

We write E V a : A to express that,  in environment E, program a has 
type A. There is one typing rule for each construct, and an additional rule for 
subsumption. We write ~'~ for the relation of syntactic equality (up to reordering 
of object components). 

W e l l - t y p e d  p r o g r a m s  

Subsumption 

Variables 

Constants 

F - A < : A '  E ~ - a : A  
E ~ a : A '  

E , x : A , E '  ~- o 
E , x : A , E  I ~ x : A 

E b false : Bool E k true : Bool 
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Conditional 

E ~ x : BooI E F ao : A E P al : A 

E F if x then ao else al : A 

Let E ~ - a : A  E , x : A F b : B  

E F - l e t  x = a  in b: B 

Object construction for A ~'~ [fi: Ai i~1..,~, mj: Bj  jel..ra] 

E ~- o E ~- xi : Ai  iCl"'n E ,  yj: A ~- bj : B j  jel"'m 

E F [fi = xi iel..n, my = q(yj)bj jsl..m] : A 

Field selection 
E F x : If: A] 
E F x . f : A  

Method invocation E ~ x : [m: B] 

E F x . m : B  

Field update for A "~ [fi: Ai iel..n, m/: Bj  jel..m] 
E F x : A  k E 1 . . n  E F y : A k  

E F X . f k  : = y : A  

This type system is like those of common programming languages in that  it 
is independent of verification rules. In particular, types are not automatically 
associated with specifications, and subtyping does not impose any "behavioral" 
constraints (eft [LW94]). However, as section 3 explains, specifications generalize 

types. 

3 V e r i f i c a t i o n  

In this section, which is the core of the paper, we give rules for verifying object- 
oriented programs written in the language of section 2. We start with an informal 
explanation of our approach. 

3.1 Transition relations 

The purpose of our verification rules is to allow reasoning about pre- and post- 
conditions. These pre- and postconditions concern the initial and final stores, 
the stack, and the result of the execution of a given program. 

In our rules, we express pre- and postconditions in formulas of standard, 
untyped first-order logic that  we call transition relations. These formulas mention 
the unary predicates alioe and alioc, two binary functions & and d, and the 
special variable r (which is not in the set ]) of program variables). Intuitively, 
&(x,f) is the value of field f of object x before the execution, and d(x,f)  is its 
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value after the execution. Similarly, alioe(x) and al[oc(x) indicate whether x has 
been allocated before and after the execution. Finally, the variable r represents 
the result of the execution. 

For example, we may want to prove that ,  after any execution of the program 
x.f := y, the result is x and the field f of x equals y. We can express this 
with the transit ion relation r = x A d(x, f) = y. As a second example, we may  
want to prove that ,  after any execution of x.f, the result equals the initial value 
of the field f of x, and that  the store is not changed by the execution. This 
s ta tement  is captured by the transition relation r = &(x, f) A (Vy,  z .  &(y, z) = 

A (alioe(y) =_ alioe( )) ). 
We work in s tandard first-order logic, so the functions & and d are total. 

Hence, h(x, f) and ~(x, f) are defined even if alioc(x) and alloc(x) do not hold. 
In that  case, the values of &(x, f) and d(x, f) are not important .  

Given a program, a transition relation is much like a Hoare triple from 
the point of view of expressiveness. For example, a transit ion relation such as 
(&(x, f) = &(x, g)) ~ (d(x, f) = d(x, g)) can be understood as assuming a pre- 
condition (&(x, f) = &(x, g)) and asserting a postcondition (d(x, f) = d(x, g)). 
However, the precondition and postcondition are given by separate  formulas in 
a Hoare triple, while there is no such formal separation in a transit ion relation. 
This difference is largely a mat te r  of convenience. 

Formally, we write that  T is a transition relation to mean tha t  T is a well- 
formed formula of the standard, untyped first-order logic, made up only of: 

- the constants false and true; 
- the variable r, the binary functions & and d, and the unary predicates alioc 

and al[oc; 
- constants for field names (such as f); 
- other variables (such as x); 

- the usual logical connectives -1, A, and V (from which V, o ,  = ,  and 3 can 
be defined as abbreviations), and the equality predicate =. 

The g rammar  for transition relations is thus: 

T ::= e 0 = e l  I atioe(e) I alioc(e) I ~ T f T o A T 1  I ( V x . T )  
e ::= false[ t rue[ r l x [ f l h ( eo ,  el) I d(eo, el) 

3.2 Specifications and subspecifications 

In order to permit  reasoning about  pre- and postconditions, our verification rules 
also deal with specifications, which generalize types. A specification can be either 
Bool or an object specification, of the form: 

[fi:Ai ie l . .n  mj:r ::Tj jcl..m] 

where each Ai and Bj is a specification, and each Tj is a transit ion relation. 
The variable yj is bound in By and Tj. An object satisfies the specification 
[fi:Ai icl..n, mj:q(yj)Bj ::Tj jel..m] if, for i E 1..n, it has af ie ld fi tha t  satisfies 
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specification A~, and, for j E l..m, it has a method m i with a result that satisfies 
Bj and whose execution satisfies Tj when yj equals self. Informally, we may 
think of Bj as a predicate on the result, and then we may read Bj :: Tj as 
the conjunction of that predicate and Tj. As for object types, the order of the 
components of object specifications does not matter. 

Just like there is a subtyping relation on types, there is a subspecification 
relation on specifications. This relation is reflexive and transitive. A longer ob- 
ject specification is a subspecification of a shorter one, and in addition object 
specifications are covariant in the result specifications and in the transition re- 
lations for methods. Intuitively, when A and A ~ are object specifications, A is a 
subspecification of A ~ only if any object that satisfies A also satisfies X. 

3.3 R u l e s  for  specifications 

In our rules for specifications, we use several judgments analogous to those in- 
t roduced for types in section 2.2, and in those cases we use similar notations 
but with a H- instead of a ~-. In particular, we write H- A to express tha t  A is a 
well-formed specification, and ~- A <: A' to express that  A is a subspecification 
of A'. The following rules for specifications generalize the corresponding rules 

for types: 

W e l l - f o r m e d  specifications 
H- Ai ici..n H- By jE1..m 
Tj is a transition relation jCl..m 

Boot H- [fi: Ai i~l. .n mj: g(yy)Bj :: Tj ieL.,~] 

Subspecifications 
~- Bool <: Bool 

H- Ai ir ~- Bj < :  B~ jel..rn ~'- Bj jera+l..m+q 

H-so  Tj T; jcl 
Tj is a transition relation jel..m+q 7; is a transition relation Je*"'~ 

H- [fi: Ai iel..~+p mj: ~(yj)Bj :: Tj jel..m+q] 
! , . T j  <: [fi:Ai iel..~, mj:~(y j )Bj  "" ' jeLm] 

In this last rule, H-/ol represents provability in first-order logic. 

3.4 S p e c i f i c a t i o n  e n v i r o n m e n t s  

A specification environment is much like a typing environment, except that  it 
contains specifications instead of types. We write E H- <> to mean that  E is a 
well-formed specification environment. We have the rules: 

W e l l - f o r m e d  spec i f i c a t i on  e n v i r o n m e n t s  
E tF o E ~ A x not in E 

0 ~- o E , x : A  H- o 
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Here, given a well-formed specification environment E,  we write E H- A to mean 
H- A and tha t  all the free program variables of A are in E.  We omit the obvi- 
ous rule for this judgment.  Similarly, when all the free program variables of a 
transit ion relation T are in E,  we write: 

E H- T is a transition relation 

In order to formulate the verification rules, we introduce the judgment:  

E ~ a : A : : T  

This judgment  states that ,  in specification environment E,  the execution of a 
satisfies the transition relation T, and its result satisfies the specification A. 

For this judgment,  there is one rule per construct plus a subsumption rule; 
the rules are all given below. The rules guarantee that ,  whenever E H- a : A :: T 
is provable, all the free program variables of a, A, and T are in E.  The rules have 
interesting similarities both  with the operational semantics and with the typing 
rules. The t rea tment  of transition relations reiterates parts  of the operat ional  
semantics, while the t reatment  of specifications generalizes that  of types. 

The subsumption rule enables us to weaken a specification and a transit ion 
relation, much like we weaken a type in the subsumption rule for typing. The 
rule for if-then-else allows the replacement of the boolean guard with its value 
in reasoning about  each of the alternatives. The rule for let achieves sequencing 
by representing an intermediate state with the auxiliary binary function h and 
unary predicate alloc. The variable x bound by let cannot escape because of 
the hypotheses that  E H- B and tha t  E H- T"  is a transit ion relation. The rule 
for object construction has a complicated transition relation, but this transit ion 
relation directly reflects the operational semantics; the introduction of an object 
specification requires the verification of the methods of the new object. The rule 
for method invocation takes advantage of an object specification for yielding a 
specification and a transition relation; in these, the formal self is replaced with 
the actual self. The remaining rules are mostly straightforward. 

In several rules, we use transition relations of the form Res(e), where e is a 
term; Res(e) is defined by: 

Res(e) = r - - e  A (Vx ,  y . & ( x , y ) = d ( x , y )  A (alioc(x) -- alioc(x))) 

and it means that  the result is e and tha t  the store does not change. We also 
write ul[u2/u3] for the result of substituting u2 for u3 in ul.  

W e l l - s p e c i f i e d  p r o g r a m s  

Subsumption 

H- A <: A' 
E H - A  I 

Variables 

H - f o t T ~  T '  E H - a : A : : T  
E H- T ~ is a transition relation 

E H- a : A' :: T I 

E,x:  A , E '  IF <~ 

E,  x: A, E '  H- x : A :: Res(x) 
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Constan ts  

E H - o  

E H- false : Bool :: Res(false) 

Condit ional  

E H- x : Bool :: Res(x) 
E H- a0 :Ao  :: To Ao[true/x] 
E H- al :A1 :: T~ Al[false/x] 

EH-<> 
E ~ true : Bool :: Res(true) 

~"= A[true/x] To[true~x] ~"= T[true/x] 
""~= A[false/x] T~[false/x] .... = T[false/x] 

Let 

E ~- if x thenao else al : A :: T 

E H - a : A : : T  E , x : A H - b : B : : T  ~ 
E H- B E H- T"  is a t ransi t ion relation 

H-:o~ T[#/6 ,  alioe/alioe, x/r] A T '[#/#,  ~lloe/~lioe] ~ T"  

E ~ ' l e t  x = a  in b : B  : :T"  

Objec t  cons t ruc t ion  for A N' [fi:Ai iel..n, m j : ; ( y j ) B j  : :Tj  j e L m ]  

E H - o  E H - x i : A i : : R e s ( x i )  iel''~ E, y j : A H - b j : B j : : T j  jel"'m 

E H- [ f i =  xi iel..n, mj  = g(yj)bj jel..,~] : A :: 

~alioe(r) A alioe(r) A 
( V z .  z • r ~ (alioc(z) =- alkc(z))  ) A 
d(r ,  fl)  = Xl A . . .  A ~( r ,  fn) : Xn A 
( v ~ , ~ .  z # r ~ ~ ( z , ~ )  = ~ ( z , ~ )  ) 

Field selection E H- x :  [f: A] : :  Res(x) 
E H- x . f :  A :: Res(&(x, f))  

Me thod  invocat ion E H- x :  [m:{(y)B::T] :: Res(x) 

E H- x . m :  B[x/y] :: T[x/y] 

Field upda te  for A sy~ [fi: di  iE1..n, mj:  g(zj)Bj  :: Tj jel..m] 

E H- x : A :: Res(x) k E 1..n E H- y : A~ :: Res(y) 

EH-X.fk :=y  : A :: 
r = x A d(X,fk) = y A 
( V z , w .  ~ (z  = x A w = f~) ~ ~ ( z , w )  = ~ ( z , w )  ) ^ 

(Vz. al ioe(z )  - a l ioe(z)  ) 

4 E x a m p l e s  

We discuss a few instruct ive examples (omitt ing derivations for brevity) .  F rom 
now on, we use some abbreviat ions,  allowing general expressions to  appear  where 
the  g r a m m a r  requires a variable. For a, ai iE1..n and b not  variables, we define: 
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i f  b then  ao else ai  
[fi = ai iei..n, mj = ( ( y j ) b j  jc l . .m]  

a.f 

a . m  

a . f : =  b 

A 
= let x = b in i f  x t hen  ao else a l  
m, 

= let x i  = ai  in . . .  let  x n  = an in  
[fi = xi iE1..n, m j  = q ( y j ) b j  jel..m] 

A 

= let x = a  in x . f  
A 

= l e t x = a i n x . m  
LX 

= let x = a in  
(x.f ; let  y = b in  x . f  := y) 

where the variables x and x i  ic i . .n  are fresh. Rules for these abbrevia t ions  can 
be derived directly f rom the rules for the language proper.  

Fie ld  update  and se lec t ion  Our first example concerns the  program:  

([f = fa lse] . f  :=  t r u e ) . f  

This p rogram constructs  an object  with one field, f, whose initial value is fa l se .  
It  then upda tes  the value of the field to t rue .  Finally, a field selection retrieves 
the new value of the field. 

Using our rules, we can prove tha t  r = t rue  holds upon  te rmina t ion  of this 
program.  Formally, we can derive the judgment :  

~- ([f = fa lse] . f  :=  t r u e ) . f :  Bool  :: (r = t rue )  

A l ia s ing  The  following three programs exhibit the rSle of aliasing: 

let  x = If = false] in  let  y = [g = false] in (y.g :=  true ; x.f) 

let  ~ = [f = false] in let  y = [f = false] in  ( y . f  :=  true ; ~.f) 

let  x = [f = true] in  let  y = x in (y.f :=  fa lse  ; x.f) 

For each of these programs we can verify tha t  r = fa lse .  The  first p rog ram 
shows tha t  an upda te  of a field g has no effect on another  field f. The  second 
p rogram shows tha t  separately const ructed  objects  have different fields, even if 
those fields have the same name. The third  p rogram shows tha t  an upda te  of  a 
field of an aliased object  can be seen th rough  all the  aliases. 

M e t h o d  invoca t ions  and recurs ion  The next example illustrates the  use of me thod  
invocation; it shows how object  specifications play the rSle of loop invariants for 
recursive me thod  invocations. 

We consider an object-or iented implementa t ion of Euclid 's  a lgor i thm for com- 
put ing  greatest  common  divisors. This implementa t ion  uses an object  with two 
fields, f and g, and a method m: 

I f = l ,  g = l ,  
m = ~(y) i f  y . f  < y .g  then  (y.g :=  y.g - y.f  ; y.m) 

else i f  y .g  < y . f  t hen  (y.f :=  y.f  - y .g ; y.m) 
else y . f  ] 
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Setting f and g to two positive integer values and then invoking the method m 
has the effect of reducing both f and g to the greatest  common divisor of those 
two values. 

We can prove tha t  this object satisfies the following specification: 

[ f: Nat ,  g: Nat ,  
m:g(y)  Nat  :: I < h ( y , f )  A 1 _ &(y,g) 

r = d(y , f )  A r = d(y ,g )  A r = g c d ( h ( y , f ) , h ( y , g ) )  ] 

In verifying the body of m, we can use the specification of m, recursively. 

Nontermina t ion  As we mentioned initially, our rules are for partial  correctness, 
not for termination.  Nontermination can easily arise because of recursive method 
invocations. Consider, for example, the nonterminating program: 

[m = x.m].m 

Using our rules, we can prove tha t  anything holds upon terminat ion of this 
program, vacuously. Formally, we can derive the judgment:  

O [m = x.m].m : A :: T 

for any closed specification A and transition relation T. 

5 Soundness and related properties 

In this section we discuss the relation between verification and typing, obtain- 
ing two simple results. We then discuss the relation between verification and 
operat ional  semantics, proving in particular a soundness theorem. The sound- 
ness theorem is the main technical result of this paper. Finally, we comment  on 

completeness. 

5.1 Typing versus verification 

Our first result establishes a correspondence between typing rules and verifica- 
tion rules: it says t h a t  only well-typed programs can be verified. 

Proposit ion 1. I r E  H- a : A :: T then E '  F a : A'  for  some E '  and A'  (obtained 

f rom E and A by deleting transition relations). 

This result provides a first sanity check for the verification rules. It  also highlights 
a limitation: for example, it implies tha t  the verification rules do not enable us 
to derive tha t  the program i f  true then true else ( true. f)  yields r = true, because 
this program is not well-typed. We do not view this l imitation as a serious one 

because we are primarily interested in well-typed programs. 
Conversely, all well-typed programs can. be verified, at least in a trivial sense: 

Propos i t ion2 .  I f  E '  ~- a : A'  then E H- a : A :: (r -- r) for  some E and A 
(obtained f rom E '  and A'  by inserting trivial transit ion relations). 
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5.2 S o u n d n e s s  

We have both an axiomatic semantics (the verification rules) and an operational 
semantics. Fortunately, the two semantics agree in the sense that  all that  can 
be derived with the verification rules is true operationally. For example, if a 
program yields a result according to the operational semantics, and the axiomatic 
semantics says that  the result is true, then indeed the result is true. This property 
is expressed by the following soundness theorem: 

T h e o r e m 3 .  Assume that the operational semantics says that program b yields 
result v when run with an empty stack and an empty initial store (that is, 0, 0 F 
b ~.z v ,a '  for some ~'). I f  0 H- b : Bool :: (r -- true) is provable then v is the 
boolean true. Similarly, if 0 H- b : Bool :: (r = false) is provable then v is the 
boolean false. 

In an extended version of this work, we prove a more general soundness the- 
orem in full. Theorem 3 is a corollary of that  more general theorem. As another 
corollary, we obtain a soundness theorem for the type system of section 2.2. 
Therefore, as might be expected, our proofs are no less intricate than typical 
soundness proofs for type systems of imperative languages. In fact, they gener- 
alize techniques developed for proofs of type soundness [Har94, Ler92, Tof90, 
WF94]. New ingredients are required because specifications, unlike ordinary 
(non-dependent) types, may contain occurrences of program variables. 

5.3 C o m p l e t e n e s s  issues 

While we have soundness, we do not have its converse, completeness. Unfortu- 
nately, our rules do not seem to be complete even for well-typed programs. 

Careful examination of the following three similar programs reveals a first 
difficulty: 

bl ~- let x = ( l e t  y = t r u e  in [ m = q ( z )  y]) in x .m 

b2 ~= let y = t r u e  in (let x = [ m = g ( z )  y] in x.m) 

b3 ~- let x = ( l e t  y = t r u e  in I f = y ,  m = g ( z )  z.f]) in x .m 

All three programs are well-typed and yield the result true. Using our rules, we 
can prove ~ H- b2 : Bool :: (r = true) and 0 H- b3 : Bool :: (r = true) but not 
O H- bl : Bool :: (r = true). A reasonable diagnosis is that  the judgment E H- a : 
A :: T does not allow sufficient interaction between A and T (particularly in the 
rule for let). One remedy is transforming bl into b2 (by let-floating [PPS96]) or 
into b3 (by adding an auxiliary field). We have considered other remedies, but 
do not yet know which is the "right" one. 

A deeper difficulty arises because the verification rules rely on a "global store" 
model. As Meyer and Sieber have explained [MS88], the use of this model is a 
source of incompleteness for procedural languages with local variables. Some of 
their remarks apply to our language as well. For example, the following program 
is reminiscent of their Example 2: let x = If = true] in (y.m ; x.f). This program 
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will always return true because the method invocation y.m cannot affect the 
field f of the newly allocated object x. We can prove this, but only by adopting 
a strong specification for y, for example requiring that  y.m not modify the field 
f of any object. Recently, there has been progress in the semantics of procedural 
languages With local variables (e.g., see [OT95, PS93]). Some of the insights 
gained in that  area should be applicable to reasoning about objects. 

6 P a s t  a n d  f u t u r e  w o r k  

As we mentioned in the introduction, there has been much research on speci- 
fication and verification for object-oriented languages. The words "object" and 
"logic" are frequently used together in the literature, but with many different 
meanings (e.g., [SSC95]). Our work is most similar to that  of Leavens [Lea89], 
who gave verification rules for a small language with objects; however, those 
rules are limited in that  they apply only to programs without side-effects and 
aliasing. We do not know of any previous Hoare logic for a language like ours. 

Much of the emphasis of the previous research has been on issues of refine- 
ment and inheritance. Lano and Haughton [LH92], Leavens [Lea89, Lea91], and 
Liskov and Wing [LW94] all studied notions of subtyping and of refinement of 
specifications (similar to our subspecification relation, though in some respects 
more sophisticated). Stata and Guttag [SG95] studied the notion of subclassing, 
and presented a pre-formal approach for reasoning about inheritance. Lano and 
Haughton [LH94] have collected other research on object-oriented specification. 

In some existing formalisms (e.g., Leavens'), specifications can be written in 
terms of abstract variables. Specifications at different levels of abstraction can 
be related by simulation relations or abstraction functions. Undoubtedly the 
use of abstraction is important for specification and verification. We leave a full 
t reatment of abstraction for future work; some results on abstraction appear in 
Leino's dissertation [Lei95], which also includes a guarded-command semantics 

for objects. 
Several other extensions to our logic might be interesting. For example, it 

would be trivial to account for a construct that  compares the addresses of two 
objects, or for a cloning construct. Recursive types and recursive specifications 
would be helpful in dealing with programs that  manipulate unbounded object 
data  structures, which our logic treats only in a limited way. The addition of 
concurrency primitives would be more difficult; it would call for a change of 
formMism, similar to the move from Hoare logic to Owicki-Gries logic [OG76]. 

7 C o n c l u s i o n s  

In summary, the main outcome of our work is a logic that  enables us (at least in 
principle) to specify and to verify object-oriented programs. To our knowledge, 
our notations and rules are novel. They permit proofs that,  despite their sim- 
plicity, are outside the scope of previous methods. However, our work is only a 
first step; we hope that  it stimulates further research. 
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Secondarily, we hope that  our logic will serve as another datapoint  on the re- 
lations between types and specifications. In the realm of functional programming, 
specifications can be seen as a neat generalization of ordinary types (through no- 
tions such as dependent types, or in the context of abstract interpretations). In 
our experience with imperative object-oriented languages, the step from types 
to specifications is not straightforward; still, type theory is sometimes helpful, 
for example in suggesting techniques for soundness proofs. 
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