
A Logic of Object-Oriented Programs

Martin Abadi and K. Rustan M. Leino

Systems Research Center
Digital Equipment Corporation

{ma, rust an}~pa, dec. com

Abst rac t . We develop a logic for reasoning about object-oriented pro-
grams. The logic is for a language with an imperative semantics and
aliasing, and accounts for self-reference in objects. It is much like a type
system for objects with subtyping, but our specifications go further than
types in detailing pre- and postconditions. We intend the logic as an
analogue of Hoare logic for object-oriented programs. Our main techni-
cal result is a soundness theorem that relates the logic to a standard
operational semantics.

1 Introduction

In the realm of procedural programming, Floyd and Hoare defined two of the
first logics of programs [Flo67, Hoa69]; many later formalisms and systems built
on their ideas, and addressed difficult questions of concurrency and data ab-
straction, for example. An analogous development has not taken place in object-
oriented programming. Although there is much formal work on objects (see sec-
tion 6), the literature on objects does not seem to contain an analogue for Floyd's
logic or Hoare's logic. In our opinion, this is an important gap in the understand-
ing of object-oriented programming languages.

Roughly imitating Hoare, we develop a logic for the specification and verifica-
tion of object-oriented programs. We focus on elementary goals: we are interested
in logical reasoning about pre- and postconditions of programs written in a ba-
sic object-oriented programming language (a variant of the calculi of Abadi and
Cardelli [AC96]). Like Hoare, we deal with partial correctness, not with termi-

nation.
The programming language presents many interesting and challenging fea-

tures of common object-oriented languages. In particular, the operational se-
mantics of the language is imperative and allows aliasing. Objects have fields
and methods, and the self variable permits self-reference. At the type level, the
type of an object lists the types of its fields and the result types of its methods;
a subtyping relation supports subsumption and inheritance. We mostly ignore
"advanced" issues, like concurrency, but some of them have been considered in

the li terature (e.g., see [Jon92, YT87]).
Much like Hoare logic, our logic includes one rule for reasoning about pre-

and postcondkions for each of the constructs of the programming language. In
order to formulate these rules, we introduce object specifications. An object spec-
ification is a generalization of an object type: it lists the specifications of fields,

683

the specifications of the methods' results, and also gives the pre/postcondit ion
descriptions of the methods.

Some of the main advantages of Hoare logic are its formal precision and
its simplicity. These advantages make it possible to study Hoare logic, and for
example to prove its soundness and completeness; they also make it easier to ex-
tend and to implement Hoare logic. We aim to develop a logic with some of those
same advantages. Our rules are not quite as simple as Hoare's, in part because of
aliasing, and in part because objects are more expressive than first-order proce-
dures and give some facilities for higher-order programming (cf. [Cla79, AptS1]).
However, our rules are precise; in particular, we are able to state and to prove
a soundness theorem. We do not know of any equivalent soundness theorem in
the object-oriented literature.

In the next section we describe the programming language. In section 3 we
develop a logic for this language, and in section 4 we give some examples of the
use of this logic in verification. In section 5, we discuss soundness and complete-
ness with respect to the operational semantics of section 2. Finally, in sections 6
and 7, we review some related work, discuss possible extensions of our own work,
and conclude.

2 T h e l a n g u a g e

In this section we define a small object-oriented language similar to the calculi
of Abadi and Cardelli. Those calculi have few syntactic forms, but are quite
expressive. They are object-based; they do not include primitives for classes and
inheritance, which can be simulated using simpler constructs.

We give the syntax of our language, its operational semantics, and a set of
type rules. These aspects of the language are (intentionally) not particularly
novel or exotic; we describe them only as background for the rest of the paper.

2.1 S y n t a x a n d o p e r a t i o n a l s e m a n t i c s

We assume we are given a set]3 of program variables (written x, y, z, and w
possibly with subscripts), a set 9 ~ of field names (written f and g, possibly with
subscripts), and a set A~ of method names (written m, possibly with subscripts).
These sets are disjoint. The grammar of the language is:

a, b ::= x variables
false I true constants
i f x then ao else al conditional
let x = a in b let
[fi = xi i~l. .n mj = ~(yj)bj j~l..m] object construction
x.f field selection
x.m method invocation
x.f := y field update

684

Throughout , we assume tha t the names fi and mj are all distinct in the con-
struct [fi = xi i e l . . n m j = ~(y j)b j jel..m], and we allow the renaming of bound
variables in all expressions.

Informally, the semantics of the language is as follows:

- Variables are identifiers; they are not mutable: x := a is not a legal state-
ment. This restriction is convenient but not fundamental. (We can simulate
assignment by binding a variable to an object with a single field and updat ing
tha t field.)

- false and t rue evaluate to themselves.
- i f x then ao else al evaluates a0 if x is t rue and evaluates a~ if x is fa lse .

- let x = a in b evaluates a and then evaluates b with x bound to the result of
a. We define a ; b as a shorthand for let x = a in b where x does not occur
free in b.

- [fi = xi ie l . .~ m j = q (y j)b j jel.. ,~] creates and returns a new object with
fields fi and methods mj. The initial value for the field fi is the value of xi .

The method mj is set to ~(yj)bj, where g is a binder, yj is a variable (the self
pa ramete r of the method), and bj is a program (the body of the method).

- Fields can be both selected and updated. In the case of selection (x.f), the
value of the field is returned; in the case of update (x.f := y), the value of
the object is returned.

- When a method of an object is invoked (x.m), its self variable is bound to the
object itself and the body of the method is executed. The method does not
have any explicit parameters besides the self variable; however, additional
parameters can be passed via the fields of the object.

Objects are references (rather than records), and the semantics allows aliasing.

For example, the program fragment

let x = [f = z0] in let y - - x in (x.f := Zl ; y.f)

allocates some storage, creates two references to it (x and y), updates the storage
through x, and then reads it through y, returning zl.

The semantics can be defined more formally in terms of stacks and stores. A
stack maps variables to values (booleans or references). A store contains values
for object fields and closures for object methods. We write (7, S ~- b -,~ v, a t to
mean that , given initial store a and stack S, executing the program b leads to
the result v and to the final store a I. (We leave details to an extended version

of this paper.)
We have defined a small language in order to simplify the presentation of our

rules. In examples, we sometimes extend the syntax with additional, s tandard
constructs, such as integers. The rules for such constructs are straightforward.

2.2 T y p e s

We present a first-order type system for our language. The types are Bool and
object types, which have the form [fi: Ai iel..n, mj: Bj jel..m]. This is the type

685

of objects with a field f~ of type Ai, for i E 1..n, and with a method mj with
result type Bj, for j E 1..m. The order of the components does not matter.

The type system includes a reflexive and transitive subtyping relation. A
longer object type is a subtype of a shorter one, and in addition object types are
covariant in the result types of methods. More precisely, the type [fi: Ai i~l..~+p
m j : B j jcl..m+q] is a subtype of [fi:Ai iel..~, mj:B~- jel..,~] provided Bj is a
subtype of B~, for j E 1..m. Thus, object types are invariant in the types of
fields; this invariance is essential for soundness [AC96].

Formally, we write I- A to express that A is a well-formed type, and F- A <: A ~
to express that A is a subtype of Aq We have the rules:

W e l l - f o r m e d t y p e s

b Ai iC1 . . n ~- Bj jE1..m

~- Bool ~- [fi: Ai iel..n, mj: Bj jE1..m]

S u b t y p e s

Bool <: Bool

Ai ~el..n+p ~ Bj <: B} jE1..m ~ Bj jCm+l..m+q

~- [fi:Ai iel..~+p, m j : B j j~l..m+q] <: [f~:Ai iEl..n m j : B j j~l..m]

A typing environment is a (possibly empty) list of pairs x: A, where x is a
variable and A is a type. The variables of each environment are distinct. We
write 0 for the empty environment, and say that x is in E when it appears in
some pair x: A in E. We write E F- o to express that E is a well-formed typing
environment. We have two rules for forming typing environments:

W e l l - f o r m e d t y p i n g e n v i r o n m e n t s

E ~- o t- A x not in E
OF-o E , x : A F - o

We write E V a : A to express that, in environment E, program a has
type A. There is one typing rule for each construct, and an additional rule for
subsumption. We write ~'~ for the relation of syntactic equality (up to reordering
of object components).

W e l l - t y p e d p r o g r a m s

Subsumption

Variables

Constants

F - A < : A ' E ~ - a : A
E ~ a : A '

E , x : A , E ' ~- o
E , x : A , E I ~ x : A

E b false : Bool E k true : Bool

686

Conditional

E ~ x : BooI E F ao : A E P al : A

E F if x then ao else al : A

Let E ~ - a : A E , x : A F b : B

E F - l e t x = a in b: B

Object construction for A ~'~ [fi: Ai i~1..,~, mj: Bj jel..ra]

E ~- o E ~- xi : Ai iCl"'n E , yj: A ~- bj : B j jel"'m

E F [fi = xi iel..n, my = q(yj)bj jsl..m] : A

Field selection
E F x : If: A]
E F x . f : A

Method invocation E ~ x : [m: B]

E F x . m : B

Field update for A "~ [fi: Ai iel..n, m/: Bj jel..m]
E F x : A k E 1 . . n E F y : A k

E F X . f k : = y : A

This type system is like those of common programming languages in that it
is independent of verification rules. In particular, types are not automatically
associated with specifications, and subtyping does not impose any "behavioral"
constraints (eft [LW94]). However, as section 3 explains, specifications generalize

types.

3 V e r i f i c a t i o n

In this section, which is the core of the paper, we give rules for verifying object-
oriented programs written in the language of section 2. We start with an informal
explanation of our approach.

3.1 Transition relations

The purpose of our verification rules is to allow reasoning about pre- and post-
conditions. These pre- and postconditions concern the initial and final stores,
the stack, and the result of the execution of a given program.

In our rules, we express pre- and postconditions in formulas of standard,
untyped first-order logic that we call transition relations. These formulas mention
the unary predicates alioe and alioc, two binary functions & and d, and the
special variable r (which is not in the set]) of program variables). Intuitively,
&(x,f) is the value of field f of object x before the execution, and d(x,f) is its

687

value after the execution. Similarly, alioe(x) and al[oc(x) indicate whether x has
been allocated before and after the execution. Finally, the variable r represents
the result of the execution.

For example, we may want to prove that , after any execution of the program
x.f := y, the result is x and the field f of x equals y. We can express this
with the transit ion relation r = x A d(x, f) = y. As a second example, we may
want to prove that , after any execution of x.f, the result equals the initial value
of the field f of x, and that the store is not changed by the execution. This
s ta tement is captured by the transition relation r = &(x, f) A (Vy, z . &(y, z) =

A (alioe(y) =_ alioe())).
We work in s tandard first-order logic, so the functions & and d are total.

Hence, h(x, f) and ~(x, f) are defined even if alioc(x) and alloc(x) do not hold.
In that case, the values of &(x, f) and d(x, f) are not important .

Given a program, a transition relation is much like a Hoare triple from
the point of view of expressiveness. For example, a transit ion relation such as
(&(x, f) = &(x, g)) ~ (d(x, f) = d(x, g)) can be understood as assuming a pre-
condition (&(x, f) = &(x, g)) and asserting a postcondition (d(x, f) = d(x, g)).
However, the precondition and postcondition are given by separate formulas in
a Hoare triple, while there is no such formal separation in a transit ion relation.
This difference is largely a mat te r of convenience.

Formally, we write that T is a transition relation to mean tha t T is a well-
formed formula of the standard, untyped first-order logic, made up only of:

- the constants false and true;
- the variable r, the binary functions & and d, and the unary predicates alioc

and al[oc;
- constants for field names (such as f);
- other variables (such as x);

- the usual logical connectives -1, A, and V (from which V, o , = , and 3 can
be defined as abbreviations), and the equality predicate =.

The g rammar for transition relations is thus:

T ::= e 0 = e l I atioe(e) I alioc(e) I ~ T f T o A T 1 I (V x . T)
e ::= false[t rue[r l x [f l h (eo , el) I d(eo, el)

3.2 Specifications and subspecifications

In order to permit reasoning about pre- and postconditions, our verification rules
also deal with specifications, which generalize types. A specification can be either
Bool or an object specification, of the form:

[fi:Ai ie l . .n mj:r ::Tj jcl..m]

where each Ai and Bj is a specification, and each Tj is a transit ion relation.
The variable yj is bound in By and Tj. An object satisfies the specification
[fi:Ai icl..n, mj:q(yj)Bj ::Tj jel..m] if, for i E 1..n, it has af ie ld fi tha t satisfies

688

specification A~, and, for j E l..m, it has a method m i with a result that satisfies
Bj and whose execution satisfies Tj when yj equals self. Informally, we may
think of Bj as a predicate on the result, and then we may read Bj :: Tj as
the conjunction of that predicate and Tj. As for object types, the order of the
components of object specifications does not matter.

Just like there is a subtyping relation on types, there is a subspecification
relation on specifications. This relation is reflexive and transitive. A longer ob-
ject specification is a subspecification of a shorter one, and in addition object
specifications are covariant in the result specifications and in the transition re-
lations for methods. Intuitively, when A and A ~ are object specifications, A is a
subspecification of A ~ only if any object that satisfies A also satisfies X.

3.3 R u l e s for specifications

In our rules for specifications, we use several judgments analogous to those in-
t roduced for types in section 2.2, and in those cases we use similar notations
but with a H- instead of a ~-. In particular, we write H- A to express tha t A is a
well-formed specification, and ~- A <: A' to express that A is a subspecification
of A'. The following rules for specifications generalize the corresponding rules

for types:

W e l l - f o r m e d specifications
H- Ai ici..n H- By jE1..m
Tj is a transition relation jCl..m

Boot H- [fi: Ai i~l. .n mj: g(yy)Bj :: Tj ieL.,~]

Subspecifications
~- Bool <: Bool

H- Ai ir ~- Bj < : B~ jel..rn ~'- Bj jera+l..m+q

H-so Tj T; jcl
Tj is a transition relation jel..m+q 7; is a transition relation Je*"'~

H- [fi: Ai iel..~+p mj: ~(yj)Bj :: Tj jel..m+q]
! , . T j <: [fi:Ai iel..~, mj:~(y j)Bj "" ' jeLm]

In this last rule, H-/ol represents provability in first-order logic.

3.4 S p e c i f i c a t i o n e n v i r o n m e n t s

A specification environment is much like a typing environment, except that it
contains specifications instead of types. We write E H- <> to mean that E is a
well-formed specification environment. We have the rules:

W e l l - f o r m e d spec i f i c a t i on e n v i r o n m e n t s
E tF o E ~ A x not in E

0 ~- o E , x : A H- o

689

Here, given a well-formed specification environment E, we write E H- A to mean
H- A and tha t all the free program variables of A are in E. We omit the obvi-
ous rule for this judgment. Similarly, when all the free program variables of a
transit ion relation T are in E, we write:

E H- T is a transition relation

In order to formulate the verification rules, we introduce the judgment:

E ~ a : A : : T

This judgment states that , in specification environment E, the execution of a
satisfies the transition relation T, and its result satisfies the specification A.

For this judgment, there is one rule per construct plus a subsumption rule;
the rules are all given below. The rules guarantee that , whenever E H- a : A :: T
is provable, all the free program variables of a, A, and T are in E. The rules have
interesting similarities both with the operational semantics and with the typing
rules. The t rea tment of transition relations reiterates parts of the operat ional
semantics, while the t reatment of specifications generalizes that of types.

The subsumption rule enables us to weaken a specification and a transit ion
relation, much like we weaken a type in the subsumption rule for typing. The
rule for if-then-else allows the replacement of the boolean guard with its value
in reasoning about each of the alternatives. The rule for let achieves sequencing
by representing an intermediate state with the auxiliary binary function h and
unary predicate alloc. The variable x bound by let cannot escape because of
the hypotheses that E H- B and tha t E H- T" is a transit ion relation. The rule
for object construction has a complicated transition relation, but this transit ion
relation directly reflects the operational semantics; the introduction of an object
specification requires the verification of the methods of the new object. The rule
for method invocation takes advantage of an object specification for yielding a
specification and a transition relation; in these, the formal self is replaced with
the actual self. The remaining rules are mostly straightforward.

In several rules, we use transition relations of the form Res(e), where e is a
term; Res(e) is defined by:

Res(e) = r - - e A (Vx , y . & (x , y) = d (x , y) A (alioc(x) -- alioc(x)))

and it means that the result is e and tha t the store does not change. We also
write ul[u2/u3] for the result of substituting u2 for u3 in ul.

W e l l - s p e c i f i e d p r o g r a m s

Subsumption

H- A <: A'
E H - A I

Variables

H - f o t T ~ T ' E H - a : A : : T
E H- T ~ is a transition relation

E H- a : A' :: T I

E,x: A , E ' IF <~

E, x: A, E ' H- x : A :: Res(x)

690

Constan ts

E H - o

E H- false : Bool :: Res(false)

Condit ional

E H- x : Bool :: Res(x)
E H- a0 :Ao :: To Ao[true/x]
E H- al :A1 :: T~ Al[false/x]

EH-<>
E ~ true : Bool :: Res(true)

~"= A[true/x] To[true~x] ~"= T[true/x]
""~= A[false/x] T~[false/x] = T[false/x]

Let

E ~- if x thenao else al : A :: T

E H - a : A : : T E , x : A H - b : B : : T ~
E H- B E H- T" is a t ransi t ion relation

H-:o~ T[#/6 , alioe/alioe, x/r] A T '[#/#, ~lloe/~lioe] ~ T"

E ~ ' l e t x = a in b : B : :T"

Objec t cons t ruc t ion for A N' [fi:Ai iel..n, m j : ; (y j) B j : :Tj j e L m]

E H - o E H - x i : A i : : R e s (x i) iel''~ E, y j : A H - b j : B j : : T j jel"'m

E H- [f i = xi iel..n, mj = g(yj)bj jel..,~] : A ::

~alioe(r) A alioe(r) A
(V z . z • r ~ (alioc(z) =- alkc(z))) A
d(r , fl) = Xl A . . . A ~(r , fn) : Xn A
(v ~ , ~ . z # r ~ ~ (z , ~) = ~ (z , ~))

Field selection E H- x : [f: A] : : Res(x)
E H- x . f : A :: Res(&(x, f))

Me thod invocat ion E H- x : [m:{(y)B::T] :: Res(x)

E H- x . m : B[x/y] :: T[x/y]

Field upda te for A sy~ [fi: di iE1..n, mj: g(zj)Bj :: Tj jel..m]

E H- x : A :: Res(x) k E 1..n E H- y : A~ :: Res(y)

EH-X.fk :=y : A ::
r = x A d(X,fk) = y A
(V z , w . ~ (z = x A w = f~) ~ ~ (z , w) = ~ (z , w)) ^

(Vz. al ioe(z) - a l ioe(z))

4 E x a m p l e s

We discuss a few instruct ive examples (omitt ing derivations for brevity) . F rom
now on, we use some abbreviat ions, allowing general expressions to appear where
the g r a m m a r requires a variable. For a, ai iE1..n and b not variables, we define:

691

i f b then ao else ai
[fi = ai iei..n, mj = ((y j) b j jc l . .m]

a.f

a . m

a . f : = b

A
= let x = b in i f x t hen ao else a l
m,

= let x i = ai in . . . let x n = an in
[fi = xi iE1..n, m j = q (y j) b j jel..m]

A

= let x = a in x . f
A

= l e t x = a i n x . m
LX

= let x = a in
(x.f ; let y = b in x . f := y)

where the variables x and x i ic i . .n are fresh. Rules for these abbrevia t ions can
be derived directly f rom the rules for the language proper.

Fie ld update and se lec t ion Our first example concerns the program:

([f = fa lse] . f := t r u e) . f

This p rogram constructs an object with one field, f, whose initial value is fa l se .
It then upda tes the value of the field to t rue . Finally, a field selection retrieves
the new value of the field.

Using our rules, we can prove tha t r = t rue holds upon te rmina t ion of this
program. Formally, we can derive the judgment :

~- ([f = fa lse] . f := t r u e) . f : Bool :: (r = t rue)

A l ia s ing The following three programs exhibit the rSle of aliasing:

let x = If = false] in let y = [g = false] in (y.g := true ; x.f)

let ~ = [f = false] in let y = [f = false] in (y . f := true ; ~.f)

let x = [f = true] in let y = x in (y.f := fa lse ; x.f)

For each of these programs we can verify tha t r = fa lse . The first p rog ram
shows tha t an upda te of a field g has no effect on another field f. The second
p rogram shows tha t separately const ructed objects have different fields, even if
those fields have the same name. The third p rogram shows tha t an upda te of a
field of an aliased object can be seen th rough all the aliases.

M e t h o d invoca t ions and recurs ion The next example illustrates the use of me thod
invocation; it shows how object specifications play the rSle of loop invariants for
recursive me thod invocations.

We consider an object-or iented implementa t ion of Euclid 's a lgor i thm for com-
put ing greatest common divisors. This implementa t ion uses an object with two
fields, f and g, and a method m:

I f = l , g = l ,
m = ~(y) i f y . f < y .g then (y.g := y.g - y.f ; y.m)

else i f y .g < y . f t hen (y.f := y.f - y .g ; y.m)
else y . f]

692

Setting f and g to two positive integer values and then invoking the method m
has the effect of reducing both f and g to the greatest common divisor of those
two values.

We can prove tha t this object satisfies the following specification:

[f: Nat , g: Nat ,
m:g(y) Nat :: I < h (y , f) A 1 _ &(y,g)

r = d(y , f) A r = d(y ,g) A r = g c d (h (y , f) , h (y , g))]

In verifying the body of m, we can use the specification of m, recursively.

Nontermina t ion As we mentioned initially, our rules are for partial correctness,
not for termination. Nontermination can easily arise because of recursive method
invocations. Consider, for example, the nonterminating program:

[m = x.m].m

Using our rules, we can prove tha t anything holds upon terminat ion of this
program, vacuously. Formally, we can derive the judgment:

O [m = x.m].m : A :: T

for any closed specification A and transition relation T.

5 Soundness and related properties

In this section we discuss the relation between verification and typing, obtain-
ing two simple results. We then discuss the relation between verification and
operat ional semantics, proving in particular a soundness theorem. The sound-
ness theorem is the main technical result of this paper. Finally, we comment on

completeness.

5.1 Typing versus verification

Our first result establishes a correspondence between typing rules and verifica-
tion rules: it says t h a t only well-typed programs can be verified.

Proposit ion 1. I r E H- a : A :: T then E ' F a : A' for some E ' and A' (obtained

f rom E and A by deleting transition relations).

This result provides a first sanity check for the verification rules. It also highlights
a limitation: for example, it implies tha t the verification rules do not enable us
to derive tha t the program i f true then true else (true. f) yields r = true, because
this program is not well-typed. We do not view this l imitation as a serious one

because we are primarily interested in well-typed programs.
Conversely, all well-typed programs can. be verified, at least in a trivial sense:

Propos i t ion2 . I f E ' ~- a : A' then E H- a : A :: (r -- r) for some E and A
(obtained f rom E ' and A' by inserting trivial transit ion relations).

693

5.2 S o u n d n e s s

We have both an axiomatic semantics (the verification rules) and an operational
semantics. Fortunately, the two semantics agree in the sense that all that can
be derived with the verification rules is true operationally. For example, if a
program yields a result according to the operational semantics, and the axiomatic
semantics says that the result is true, then indeed the result is true. This property
is expressed by the following soundness theorem:

T h e o r e m 3 . Assume that the operational semantics says that program b yields
result v when run with an empty stack and an empty initial store (that is, 0, 0 F
b ~.z v ,a ' for some ~'). I f 0 H- b : Bool :: (r -- true) is provable then v is the
boolean true. Similarly, if 0 H- b : Bool :: (r = false) is provable then v is the
boolean false.

In an extended version of this work, we prove a more general soundness the-
orem in full. Theorem 3 is a corollary of that more general theorem. As another
corollary, we obtain a soundness theorem for the type system of section 2.2.
Therefore, as might be expected, our proofs are no less intricate than typical
soundness proofs for type systems of imperative languages. In fact, they gener-
alize techniques developed for proofs of type soundness [Har94, Ler92, Tof90,
WF94]. New ingredients are required because specifications, unlike ordinary
(non-dependent) types, may contain occurrences of program variables.

5.3 C o m p l e t e n e s s issues

While we have soundness, we do not have its converse, completeness. Unfortu-
nately, our rules do not seem to be complete even for well-typed programs.

Careful examination of the following three similar programs reveals a first
difficulty:

bl ~- let x = (l e t y = t r u e in [m = q (z) y]) in x .m

b2 ~= let y = t r u e in (let x = [m = g (z) y] in x.m)

b3 ~- let x = (l e t y = t r u e in I f = y , m = g (z) z.f]) in x .m

All three programs are well-typed and yield the result true. Using our rules, we
can prove ~ H- b2 : Bool :: (r = true) and 0 H- b3 : Bool :: (r = true) but not
O H- bl : Bool :: (r = true). A reasonable diagnosis is that the judgment E H- a :
A :: T does not allow sufficient interaction between A and T (particularly in the
rule for let). One remedy is transforming bl into b2 (by let-floating [PPS96]) or
into b3 (by adding an auxiliary field). We have considered other remedies, but
do not yet know which is the "right" one.

A deeper difficulty arises because the verification rules rely on a "global store"
model. As Meyer and Sieber have explained [MS88], the use of this model is a
source of incompleteness for procedural languages with local variables. Some of
their remarks apply to our language as well. For example, the following program
is reminiscent of their Example 2: let x = If = true] in (y.m ; x.f). This program

694

will always return true because the method invocation y.m cannot affect the
field f of the newly allocated object x. We can prove this, but only by adopting
a strong specification for y, for example requiring that y.m not modify the field
f of any object. Recently, there has been progress in the semantics of procedural
languages With local variables (e.g., see [OT95, PS93]). Some of the insights
gained in that area should be applicable to reasoning about objects.

6 P a s t a n d f u t u r e w o r k

As we mentioned in the introduction, there has been much research on speci-
fication and verification for object-oriented languages. The words "object" and
"logic" are frequently used together in the literature, but with many different
meanings (e.g., [SSC95]). Our work is most similar to that of Leavens [Lea89],
who gave verification rules for a small language with objects; however, those
rules are limited in that they apply only to programs without side-effects and
aliasing. We do not know of any previous Hoare logic for a language like ours.

Much of the emphasis of the previous research has been on issues of refine-
ment and inheritance. Lano and Haughton [LH92], Leavens [Lea89, Lea91], and
Liskov and Wing [LW94] all studied notions of subtyping and of refinement of
specifications (similar to our subspecification relation, though in some respects
more sophisticated). Stata and Guttag [SG95] studied the notion of subclassing,
and presented a pre-formal approach for reasoning about inheritance. Lano and
Haughton [LH94] have collected other research on object-oriented specification.

In some existing formalisms (e.g., Leavens'), specifications can be written in
terms of abstract variables. Specifications at different levels of abstraction can
be related by simulation relations or abstraction functions. Undoubtedly the
use of abstraction is important for specification and verification. We leave a full
t reatment of abstraction for future work; some results on abstraction appear in
Leino's dissertation [Lei95], which also includes a guarded-command semantics

for objects.
Several other extensions to our logic might be interesting. For example, it

would be trivial to account for a construct that compares the addresses of two
objects, or for a cloning construct. Recursive types and recursive specifications
would be helpful in dealing with programs that manipulate unbounded object
data structures, which our logic treats only in a limited way. The addition of
concurrency primitives would be more difficult; it would call for a change of
formMism, similar to the move from Hoare logic to Owicki-Gries logic [OG76].

7 C o n c l u s i o n s

In summary, the main outcome of our work is a logic that enables us (at least in
principle) to specify and to verify object-oriented programs. To our knowledge,
our notations and rules are novel. They permit proofs that, despite their sim-
plicity, are outside the scope of previous methods. However, our work is only a
first step; we hope that it stimulates further research.

695

Secondarily, we hope that our logic will serve as another datapoint on the re-
lations between types and specifications. In the realm of functional programming,
specifications can be seen as a neat generalization of ordinary types (through no-
tions such as dependent types, or in the context of abstract interpretations). In
our experience with imperative object-oriented languages, the step from types
to specifications is not straightforward; still, type theory is sometimes helpful,
for example in suggesting techniques for soundness proofs.

Acknowledgments Luca Cardelli and Greg Nelson helped in the initial stages
of this work. Gary Leavens and Raymie Stata told us about related research.
Luca Cardelli, Rowan Davies, and anonymous referees made useful comments
on drafts of this paper.

References

[AC96]

[Apt81]

[Cla79]

[Flo671

[Har94]

[Hoa69]

[Jon92]

[Lea89]

[Lea91]

[Lei95]

[Ler92]

[LH92]

[LH94]

M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, New York,
1996.
K.R. Apt. Ten years of Hoare's logic: A survey--Part I. ACM Transactions
on Programming Languages and Systems, 3(4):431-483, October 1981.
E.M. Clarke. Programming language constructs for which:dr is impossible
to obtain good Hoare axiom systems. Journal of the ACMes26(1):129-147,
January 1979.
R.W. Floyd. Assigning meanings to programs. In Proceedir@is~of the Sympo-
sium on Applied Math., Vol. 19, pages 19-32. American Mathematical Society,
1967.
R. Harper. A simplified account of polymorphic references: Information Pro-
cessing Letters, 51:201-206, 1994.
C.A.R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576-583, October 1969.
C.B. Jones. An object-based design method for concurrent.programs. Tech-
nical Report UMCS-92-12-1, University of Manchester, 1992,
G.T. Leavens. Verifying Object-Oriented Programs that Use:Subtypes. PhD
thesis, MIT Laboratory for Computer Science, February 1989. Available as
Technical Report MIT/LCS/TR-439.
G.T. Leavens. Modular specification and verification of object-oriented pro-
grams. IEEE Software, pages 72-80, July 1991.
K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-
95-03.

X. Leroy. Polymorphic typing of an algorithmic language..Technical report,
Institut National de Recherche en Informatique et en Automatique, October
1992. English version of the author's PhD thesis.
K. Lano and H. Haughton. Reasoning and refinement in object-oriented spec-
ification languages. In Ole Lehrmann Madsen, editor, Proceedings of the 6th
European Conference on Object-Oriented Programming (ECOOP), pages 78-
97. Springer-Verlag LNCS 615, June 1992.
K. Lano and H. Haughton. Object-Oriented Specification Case Studies. Pren-
tice Hall, New York, 1994.

696

[LW941

[MS88]

[0076]

[OT951

[PPS96]

[PS93]

[SG95]

[SSC95]

[Tof90]

[WF94]

[YT87]

B.H. Liskov and J.M. Wing. A behavioral notion of subtyping. ACM Trans-
actions on Programming Languages and Systems, 16(6):1811-1841, November
1994.
A.R. Meyer and K. Sieber. Towards fully abstract semantics for local vari-
ables: Preliminary report. In Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, pages 191-203, January
1988.
S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.
Acta Informatiea, 6(4):319-340, 1976.
P.W. O'Hearn and R.D. Tennent. Parametricity and local variables. Journal
of the ACM, 42(3):658-709, May 1995.
S. Peyton Jones, W. Partain, and A. Santos. Let-floating: moving bindings to

give faster programs. In Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP '96), pages 1-12, May 1996.
A.M. Pitts and I.D.B. Stark. Observable properties of higher order functions
that dynamically create local names, or: What's new? In Mathematical Foun-
dations of Computer Science, Proc. 18th Int. Symp, Gdadsk~ 1993~ volume
711 of Lecture Notes in Computer Science, pages 122-141. Springer-Verlag,
Berlin, 1993.
R. Stata and J.V. Guttag. Modular reasoning in the presence of subclass-
ing. ACM SIGPLAN Notices, 30(10):200-214, October 1995. OOPSLA '95
conference proceedings.
A. Sernadas, C. Sernadas, and J.F. Costa. Object specification logic. Journal
of Logic and Computation, 5(5):603-630, 1995.
M. Tofte. Type inference for polymorphic references. Information and Com-
putation, 89(1):1-34, November 1990.
A.K. Wright and M. Felleisen. A syntactic approach to type soundness. In-
formation and Computation, 115(1):38-94, November 1994.
A. Yonezawa and M. Tokoro, editors. Object-oriented Concurrent Program-

ming. MIT Press, 1987.

