
Compos i t ional Specif ication of Embedded
Systems with Statecharts *

Jan Philipps and Peter Scholz
{philipps,scholzp}@informatik.tu-muenchen.de

Technische Universit/it Miinchen, Institut fiir Informatik
D-80290 M/inchen, Germany

Abs t r ac t . During the last years, Statecharts have gained wide accep-
tance for the specification of reactive, embedded systems. However, most
semantics suggested so far are either informal or hard to grasp. In this
contribution, we present a Statecharts dialect that permits nondeter-
ministic specifications, offers zero-delay broadcast communication, and
handles negation in trigger expressions in a new way. We give a com-
positional formal semantics for this dialect, which is abstract enough for
formal reasoning and yet easy to operationalize for simulators, model
checking tools and code generation.

1 I n t r o d u c t i o n

Statecharts [6] are a visual specification language proposed for specifying reactive
systems. They extend conventional s tate transition diagrams with structuring
and communication mechanisms. Since there is also tool support through State-
mate [11], Statecharts have become quite successful in industry.

However, the semantics of Statecharts used in Sta temate [7] is based on a
delayed broadcast (cause and action are separated in time), which leads to a very
operational, implementation-level specification style. For a modeling language
for abst ract requirements specifications more abst ract approaches are needed.
Such approaches should contain the following concepts:

- Nondeterminism is needed to express underspecification of systems. With
nondeterminism, detailed specifications can be abstracted to allow model
checking; in the other direction, there is a natural concept of behavioral
refinement through reduction of nondeterminism [3].

- For refinement, delayed broadcast as used in Sta temate is not a suitable
communication concept. When refining a subchart to a set of more concrete
subcharts, additional delays are introduced. Thus, the I/O-behavior of the
Statechart changes. Refinement rules would have to be more complex to
compensate the additional delays. As observed in [I0], this is not the case
for instantaneous feedback.

* This work is partially funded by the German Federal Ministry of Education and
R e s e a r c h (BMBF) as part of the compound project "KorSys'.

638

Instantaneous feedback enjoys other nice properties for reactive systems; see
[2] for a discussion. In this contribution, we introduce a dialect of Statecharts
called #-Charts; it features a formal semantics for nondeterministic Statecharts
with instantaneous feedback. It is an extension of the Mini-Statecharts dialect
presented in [15, 22]. As noted in previous works on the semantics of Statecharts
[9, 19], or Statechart-like languages like Argos [13, 14], or imperative synchronous
languages like Esterel [2], instantaneous feedback can lead to causality conflicts
when trigger events with negation are allowed. Argos and Esterel require a static
analysis to reject those programs where a conflict might occur. Both languages
provide very elaborated but expensive analysis techniques. We handle these
conflicts semantically through oracle variables and therefore do not have to apply
such algorithms.

This paper is structured as follows. In Section 2 we introduce our State-
charts dialect and give an abstract syntax and a compositional step semantics
for it. Section 3 shows how to extend the step semantics to a stream semantics,
modeling the complete input/output behavior of a system. Finally, in Section 4
we give a brief conclusion and discuss future extensions.

Example

As running example we use a simplified specification of the central locking sys-
tem for cars. The corresponding Statechart is pictured in Figure 1; it specifies
the locking system of a two-door car. Table 1 shows the signals used for the

specification.
The doors can be either unlocked, locked, or protected. Protected doors can

only be opened with a key from outside the car, while locked doors can only
be opened from inside the car by pushing a button. Locking and unlocking is
specified in the subchart NORMAL. Most of the time, the controller is in state
READY. (Actually, this state has to be further decomposed. However, this
is not important to understand our contribution and is therefore omit ted for
reasons of brevity.) When the driver locks the doors, the controller moves to
s tate LOCK, and signals the low-level controllers for the doors to lower the lock.
When the doors are locked, the controller returns to READY. The behavior for
unlocking and protecting the doors is similar. The subcharts MOTORLEFT and
IViOTORRIGHT specify the behavior of the door locks themselves: they either
raise or lower the lock but tons on the driver and passenger door. The state
CRASH is entered from either of the states in NORMAL, when the car 's crash
sensor is activated. Then the doors are automatical ly unlocked.

The specification need not store the current s tate of the doors; the locking
mechanism is not damaged when it tries to lock an already locked door.

2 A b s t r a c t S y n t a x and S e m a n t i c s

In this section, we formally define syntax and semantics of our #-Charts. They
are based on Mini-Statecharts, as first presented in [15] and later refined in [20,

639

CONTROL
NORMAL

lrnr obut/{lup, rup}

crash/{lup, rup} @

MOTORLEFT

M O T O R I ~ I G H ~

{lup, Idn, lmr, rup, rdn, rrnr }

F i g u r e 1. Central locking system

21, 22]. We only repeat those concepts that are a prerequisite for the extension
to nondeterminism.

Throughout this paper, M denotes a set of signal names, States a set of s tate
names, and Ident a set of identifier names for sequential au tomata . For any
Statechart , only a finite number of signal, state, and au toma ta names can be
used; ~ (X) denotes the set of finite subsets of some set X.

In our dialect, the set of p-Char ts S is defined inductively. A #-Char t is
either a sequential automaton, a parallel composition of two p-Charts , the de-
composition of a sequential au tomaton ' s s tate by another p-Char t , or the result
of a feedback construction. The inductive steps are motivated and defined in
Sections 2.1 to 2.4. The semantics of a p-Char t S C S has the type

For each input signal set, the semantics determines a set of possible reactions.

640

Signal

crash
okey
ckey
obut
ebut
lmr
rmr
lup
Idn
rup
rdn

Meaning

Crash sensor
Opened with external key
Closed with external key
Opened with internal locking button
Closed with internal locking button
Left motor ready
Right motor ready
Left motor up
Left motor down
Right motor up
Right motor down

Source

External
External
External
External
External
Internal
Internal
Internal
Internal
Internal
Internal

Table 1. Signals used in the locking system

Each reaction is a pair consisting of an output signal set and the #-Chart result-
ing from S after taking a step. The reaction set can be empty, if a chart cannot
react to a given input. When we define the possible executions of a #-Chart
in Section 3, empty reaction sets are handled by letting the chart remain in its
current configuration; the output will be empty.

2.1 S e q u e n t i a l A u t o m a t a

Sequential automata are the basic elements of our Statecharts dialect. The

construct

Seq (N, Z , ~Td, ~, 6)

is an element of $ iff the following constraints hold:

1. N C Ident is the unique identifier of the automaton.
2. ~ E p(States) is a nonempty finite set of all states of the automaton.
3. ~d, a E ~ represent the default state and the current state, respectively.
4. 6 : & x p(M) -+ p (Z • p(M)) is the finite, total state transition function

that takes a state and a finite set of signals and yields a set of next states
paired with a finite set of output signals. If this set contains more than one
pair, the automaton is nondeterministie; if the set is empty, the automaton
cannot react to the current input when it is in state a.

In our concrete syntax (see the example), we use a Boolean term t instead of
a set of signals x E p(M) as trigger. It is straightforward to translate a partial
transition function that deals with arbitrary Boolean terms as trigger condition
into a set-valued total function (see for example [22]).

Example 2.1 (Sequential Automaton). Our running example contains four se-
quential automata: MOTORLEFT~ MOTORRIGHT, CONTROL~ and the automa-

ton NORMAL, which refines one of CONTROL'S states.

641

Each transition is annotated with a label such as "t/y", where t is a Boolean
trigger condition and y the set of signals that are generated when the transition
is taken. If y is empty, we simply write the transition label as "t"; if t equals
true we omit it and just write "/y". Note that the two motor control automata
allow nondeterministic behavior in the state OFF. For example, the left motor
controller MOTOP, LEFT can follow any of the two transitions originating in OFF
when both signals Idn and lup are present.

A transition takes place in exactly one time unit. In a specification with several
automata working in parallel, more than one automaton can make a transition;
all transitions taken in parallel automata are assumed to occur in the same time
unit. The set of all system actions in one time unit is called a step.

We expect of sequential automata that:

- No two consecutive transitions in a sequential automaton are taken in a step.
- Only one branch of a nondeterministic choice is taken in a step.

To ensure these restrictions, we introduce additional signals. For each sequential
automaton Seq (N, Z, ad, or, 5) we introduce a signal �9 Informally, this is a
copyright on transitions of the automaton. When the signal is not present, the
automaton may make a transition, whereupon it will generate @N. If it is
already present, the automaton has to stay in its current state.

The copyright signals are introduced in the following way. Each transition
t /y of N is modified such that:

- The trigger condition c is strengthened by conjoining ~ � 9 to it.
- The action set y is extended by @N-

ldn A ~@LM/{(~L LM/{ lmr' @LM}

F i g u r e 2. Motor control with copyrights

642

Example 2.2 (Sequential Automaton). Figure 2 shows the modified chart LEFT-
MOTOR, where we abbreviated its name by LM.

Let C be the set of all possible copyright signals, C := { �9 I N C Ident}. We
write M c to abbreviate M U C. The step semantics for a chart S then has the
functionality:

[[S]] : p (Mc) ~ gv(p(Mc) x 8)

Informally, a sequential, nondeterministic automaton Seq (N, Z, aa, a, 5) takes
a set of input signals, say x, produces a set of signals as output, say y, and then
behaves like an automaton with modified actual state. This is formally denoted
by:

[Seq (N,~F, ad, a, 5)]]x = {(y, Seq (N,Z, (Td,a ' ,6)) l (a' ,y) e 5(a,x)}

Note that the reaction set may contain more than one pair. This reflects that
the behavior of the automaton may be nondeterministic. Moreover, the reaction
set may be empty, when the trigger condition of no transition from the current

state is fulfilled. In this case, the automaton should remain in its current state
without emitting any output signals. In Section 3, when the complete reactive

behavior of a chart over time is introduced, empty reaction sets will indeed cause

the chart to remain in its current state.

2.2 P a r a l l e l C o m p o s i t i o n

If SL and $2 are elements of the set $ then their parallel composition denoted

by the syntax

And ($1, $2)

is in 8, too. There are no syntactic restrictions on this composition. In the
graphic notation parallel components are separated by spl i t t ing a box into com-
ponents using dashed lines [6].

In our framework, parallel composition does not imply broadcast communi-
cation between the subcharts. Both subcharts operate independently; commu-
nication is introduced by an explicit feedback operator (see Section 2.4).

Example 2.3 (Parallel Composition). To specify the central locking system, we
used three parallel composed charts: the controller and the two motors. One
possible configuration of the overall system is that both motors are off and the
controller is in its normal mode, while waiting for new input of the environment
in its READY state. If no communication is specified, all parallel charts operate
without any mutual interaction.

Informally, the parallel composition of #-Charts behaves as $1 and $2 syn-
chronously together. Generated signals of the parallel components are joined.

643

The formal semantics is defined by three cases. An And-chart can perform a
step when at least one of the subcharts makes a step (notice tha t in our setting
also a self-loop is a step); one or more of the charts may not react at all. This
is the case, when the reaction set of such a chart returns an empty set. The
reaction set of a parallel composition is the union of these cases:

U {(yl,And(S ,S2)) I (yl,S'l) C [[S1 x A [[S2 X ----

U {(Y2, And(S , I f[Si z = A (Y2, E [22 x}

Thus, when neither Statechart makes a transition, the semantics of the parallel
composition yields an empty reaction set, too.

Obviously, And (S1, $2) is commutative and associative. We therefore write
And ($I,..., Sn) to denote n C IN nested parallel #-Charts.

2.3 Hierarchical Decomposi t ion

The concept of hierarchically structuring the state space is essential for State-
charts. In our Statecharts dialect, hierarchy is introduced by replacing states of
a sequential au tomaton (the master) with arbi t rary charts (the slaves). This
replacement is expressed by a finite function 6, which for any state a of the
master yields either the corresponding slave-Statechart, or NoDec, if the state is
not replaced by a slave.

Suppose that Seq (N, Z, ad, a, 6) is a sequential automaton, then hierarchical
decomposition is denoted by

Dec (N] &, ca, a, 6) by

where ~ : & -~ $ 0 {NoDec}.
Like other formal Statechart semantics [9, 13, 14], the semantics presented

here has no history states. It is possible to extend our semantics along the lines
of [1@ Due to space limitations we omit this extension here. Throughout this
paper, we assume that the slave is always re-initialized when leaving it.

Example 2.4 (Hierarchical Decomposition). In our example, the NORMAL state
of the CONTROL is replaced by another sequential automaton, also called NOR-
MAL, which describes the current action of the locking system. Here CONTROL
and NORMAL represent master and slave, respectively. As current system con-
figuration, we assume that CONTROL iS in the LOCK state and both motors
are notifying the CONTROL tha t they have finished the lowering process. Thus,
the current set of internal signals is {lmr, rmr}. We furthermore presume that
exactly while the motors are sending lrnr and rmr, respectively, an external
crash signal occurs. The overall signal set is then denoted by {lmr, rmr, crash}.
Hence, NORMAL changes its current s tate from LOCK to P~EADY. In addition,
the system moves from the NORMAL state to the CRASH state while generat-
ing the signal set {lap, rap}. Note tha t all actions come about instantaneously.

644

Altogether, in the next instant of time, NORMAL is in its READY state, the
CONTROL in the CRASH mode and both motors are in their OFF states. The
au tomaton NORMAL is "frozen" until it is re-entered. Thus, we say tha t it has
been interrupted. However, NORMAL still was able to change its current s tate
from LOCK to READY, i .e, has not been immediately interrupted: we say that
the crash signal has induced a non-preemptive interrupt. By strengthening the
transitions in the slave chart with tests for the absence of signals, preemptive
interrupt can be modeled as well.

To define the formal semantics for the decomposition, we distinguish four
mutual ly exclusive cases. The first case occurs whenever the current s tate a of
the master A =de/ Seq (N, Z, ad, 0, 6) is refined by a slave (Q(a) ~ NoDec), and
both master and slave produce a non-empty reaction set: ~A[x ~ ~ ~ ~Q(a)[x.
The reaction set of the hierarchical decomposition is then

~Dec d by ~[x = {(y,~ U Ys, Dec A' by Q') I 3S' �9 $:

(y,~,A') �9 ~A[x A (ys,S') �9 ~(a)[x A O' = o[init(S')/a]}

Here init(S') initializes all sequential au toma ta contained in S ' according to
their default states.

If the master is not further decomposed in the current s tate r (~(cr) --
NoDec), but by itself may react ([A~x ~ ~), we get

[Dec d by ~[x = {(y, Dec d ' by ~) I (Y, d') �9 [A[x}

Whenever the master can react and the current s tate a is decomposed by a slave
which however cannot react in its current state:

~Dec A by Q~x = {(y, Dec A' by Q') I (Y, d') �9 ~d~x A ~' = Q[init(Q(a))/a]}

Although the slave cannot react it is re-initialized because we follow the
convention tha t whenever the master makes a step the slave has to be initialized.
The next case occurs if, al though the master cannot react in the current step,

the slave can react:

~Dec A by Q[x = {(y, Dec A by Q') I 3S' �9 S : (y ,S ') �9 ~(a)~x A ~' = @[S'/a]}

In this case, the function ~ is changed to Q' to reflect the slave's change.
Finally, if none of the above-mentioned cases is true, the overall reaction of

the hierarchical decomposition is simply the empty set.

2.4 B r o a d c a s t C o m m u n i c a t i o n

Parallel composition is used to construct independent, concurrent components.
To allow interaction of such components, our language provides a broadcast com-
munication mechanism. In [6], for example, this mechanism already is integrated
in the parallel composition of Statecharts. Broadcasting is achieved by feeding

645

back all generated signals to all components. This means that there exists an
implicit feedback mechanism at the outermost level of a Statechart. Unfortu-
nately, this implicit signal broadcasting leads to a non-compositional semantics.
We avoid this problem by adding an ezplicit feedback operator.

In the literature different semantic views of the feedback mechanism can be
found I23]. For the deterministic version of our language [15, 20, 22], we provided
different syntactic constructs with different communication timings. We believe
that for nondeterministic, abstract specifications, instantaneous feedback is the
proper concept, and present here only this operator.

Suppose that S C S is in an arbitrary #-Chart and L E p(M) is the set of
signals which should be fed back, then the construct

Feedback (S, L)

is also in $. Graphically, the feedback construction is denoted with a box below
the #-Chart S. The box contains the signals L that are fed back.

Example 2.5 (Feedback). When the chart is in the state READY, and the driver
locks the door with the car key, then NORMAL moves to state PROTECT, and
emits the signals Idn and rdn. Without feedback, these signals would not be
sent to the motor control subcharts. But since both signals are fed back, they
are added to the input of the specification. Thus, both motors move to their
DOWN states. This feedback is instantaneous, i.e. upon input of the signal ckey
the three state changes and the output of ldn and rdn occur at the same time.

Instantaneous feedback follows the perfect synchrony hypothesis of Berry [1]; it
demands that an action and the event causing this action occur at the same
instant of time. Therefore, the signals in z generated by chart S are instanta-
neously intersected with the signals L to be fed back and then joined with the
external signals x. This signal set is passed to S at the same instant of time.

We first define the semantics of Feedback (S, L) for the case that no transition
trigger refers negatively to signals. In Section 2.5 we extend the semantics to
handle negation as well.

In the unnegated case we have to find a solution for the following equation:

Z = { z U y l z � 9 Z A y � 9

where 7r1 filters the first component of the output set:

~ , ({ (y ,S) l Y �9 MMc) A S �9 8}) =des {Y l Y �9 p(Mc)}

This solution can be found by computing the least fixpoint for the first projection
of the subsequent function:

f#L (z) =deZ {(=Uy, S') I z e Z A (y,S') �9 l [S~(xU(znL))) }

with respect to the following reflexive and transitive standard ordering on ~(~(/ lfc)).
For all X, Y C P(p(Mc)) we define:

X ~ Y = d e S Y x � 9

646

Formally, the semantics of the instantaneous feedback is defined by:

1 S [[Feedback (,g, L)~x = {(y, Feedback(S', L)) [(y, S') E "fP(f~,L! {~})}

lfp computes the least fixed point for the first projection of the above function
with respect to the subset ordering. The computat ion starts with an empty
set of signal sets, since at the beginning of the communication no signals are
generated yet. Ifp is defined as follows:

s l f p (f~n ,Y) if Tcl(fs Y then s s = = fx,L(Y) else lfp(f~L,Trl(f~,L(Y))).

Notice that in general the first projection of f s L is not monotonic w . r . t . K . But
s since for each set of signal sets Z it holds tha t Z E_ 7rl(f~,L(Z)), and since there

are only finitely many signals - - hence, finitely many sets of signal sets - - the
existence of least fixpoints is ensured.

Unfortunately, this proper ty does not hold when trigger expression with nega-
tion are handled in the s tandard way. Instead, we make use of oracle variables.

2.5 Negation in Trigger Expressions

So far we only considered p-Char ts where each event expression occurs positively
in a transit ion trigger. It is desirable, however, to be able to test for the absence
of signals as well as for their presence. For example, negative signal expressions
allow us to introduce priorities between transitions. As an example, we examine
our locking system again. The two motor control charts in Figure 1 suffer from
the following problem: when a crash occurs in the same instant the driver wants
to lock the door, pressing the locking button, the motor controllers can choose
nondeterministically between raising or lowering the locks. This is a safety-
critical problem that must be avoided. We therefore modify the charts as in
Figure 3 by conjoining the trigger condition on the transit ion originating from
OFF and ending in DOWN with -~crash. Now the controller can only lock the
door, when there is no signal from the crash sensor.

Negation in trigger expressions can lead to some tricky causality problems.
For example, what would be the semantics of a transit ion labeled -~a/a? Some
Statecharts semantics simply disallow Statecharts with causality problems. They
require either a static analysis of the chart, which might reject charts that do not
really have causality conflicts, or a thorough state exploration, which even with
today 's advanced model checking techniques is untractable for larger charts. This
is for instance the approach taken by Argos [13] or the reactive programming

language Esterel [2].
We handle these conflicts semantically. In case of a causal conflict, the transi-

tion is simply not taken. We accomplish this through oracles tha t predict which
signals will be input from the environment or generated by the system in each

step.
For each signal a tha t occurs negatively in the trigger of a transition, we

introduce a new oracle signal "~ tha t replaces a in the trigger part of a transit ion

647

~crash A ldn A ~@LM / { @L LM / { lrnr, @ L M }

l~tp A ~@LM / { (~ L M ~ (~ L M / { ~ ~[', @LM }

F i g u r e 3. Motor control with priorities

label. For example, the transition label

~crash A ldn

is transformed into

-,crash A Idn

Oracle signals are never generated by transitions. At the beginning of each
step in the execution of a chart, the system makes a guess about the input or
generation of signals, and thus determines the value of the oracle signals. This
guess introduces additional nondeterminism; for n oracle signals, there are 2 n
possible oracle guesses. For those signals a tha t are predicted to become present,
the oracle signal ~ is added to the input from the environment. Then, the step
construction is similar to the unnegated case. In particular, the existence of
fixpoints is guaranteed: since all negatively occurring signals are converted to
oracles, and oracle signals can never be generated by the system, a choice made
by the system can never be invalidated. Whereas in the unnegated case there
always is a least fixpoint, we now get a set of minimal fixpoints. As we will see
later, this introduces additional nondeterminism into a specification.

However, some fixpoints may be inconsistent in the following sense:

- A signal a is generated by the system, although the oracle forecasts its
absence. In other words, a is in the event set, but not ~.

- A signal a that is predicted to be present, is neither input nor generated by
the system. In other words, ~ is in the event set, but not a.

Thus, we must ensure tha t neither of these cases holds. The first condition can
be checked locally when a transit ion is taken. We only have to extend the step
function f from the unnegated case to:

g~,L(Z)S =aoS {z e fSn(Z)l, Va �9 7rl(Z) : a �9 71-1 (Z)}

648

The second consistency condition, however, can only be checked once a fix-
point is reached. We therefore define the self-fulfilling fixpoints as those signal
sets SF C M where

~ E S F ~ s E S F

Note that while there are always fixpoints, the existence of consistent fixpoints
is not guaranteed. Am example is a / t -Char t with two states connected by the
single t ranskion ~a/a. The modified transition tabeI reads

-~g/a

Assume now that a is not input by the environment. When the oracle guesses
a to become generated, i.e. a is added to the input set, a will not be generated,
hence the fixpoint reached is not self-fnlfilling~ If, otherwise, the oracle guesses a
to not be generated, then a is not added to the input set, and a will be generated,
violating the local consistency condition. Since the~e is no consLstent fixpoint,
the system must remain in its current state. When a is input by the environment,
the system will also remain in its current state. This time, however, there is a
consistent fixpoint {a,a}. In other words, the transition will never be taken.

~ { a , b } l

F i g u r e 4. Pathological case

Oracles Signal set

Figure 4 shows another example. When no external input is provided, what
should be the reaction of this chart? Our construction introduces two oracle
signals, g and b. The transition labels are then translated to ~'d/b and @ a , re-
spectively. When neither a nor b is provided from the environment, the fixpoint
construction results in the output signal sets shown to the right of the specifi-
cation. For each possible oracle guess there is one solution. The solution in the
first row violates local consistency, and must therefore be rejected. The solution
in the last row is not self-fulfilling, and must be rejected, too. Thus, there are
only tyro solutions: either only the upper transition is taken, resulting in the
output signal set {b}, or only the lower transition is taken, resulting in output
signal set {a}. Intuitively, there is a race between the two transitions; whichever
transition is taken first, determines the reaction of the composed chart.

649

Thus, negation can introduce nondeterminism into a p-Chart . In the older
deterministic version of our dialect, [22], this chart would have to be rejected.
The same holds for other deterministic dialects, like for instance Argos. Since
pathological cases such as this one can be handled semantically in our dialect, we
do not need to perform a static analysis of specifications to determine whether
they must be rejected.

3 R e a c t i v e B e h a v i o r

In the previous section we have introduced a formal step semantics, which ex-
presses the behavior of #-Char ts in one single instant of time. Reactive systems
however have continuously to interact with the environment. Hence, their com-
plete inpu t /ou tpu t behavior has to be described by the aid of communication
histories.

We model the communication history of p-Char ts by streams carrying sets
of signals. Mathematically, we describe the behavior of p-Char ts by s t ream
processing functions. Hence, we briefly discuss the notion of s t reams and s t ream
processing functions. For a detailed description we refer for example to [3].

Given a set X of signals a s t ream over X, denoted by X ~, is an infinite
sequence of elements from X. Our notat ion for the concatenation operator is &.
Given an element x of type X and a s t ream s over X, the te rm x & s denotes the
s t ream tha t starts with the element x followed by the s t ream s. In our setting,
a s t ream processing function is a function with type X ~ --+ X ~.

To describe the complete inpu t /ou tpu t behavior, the semantic model asso-
ciates with every chart S a set of s t ream processing functions:

[Sb: ~(~(M) ~ + ~(M)~) .

A function f : p (M) ~ -+ Vj(M) ~ is in [S ~ , liT."

f (x & s) = y&g(s)

where

((y, s ') e [s i x v y = r A 5' = s A = r A g e [s ' L

Note tha t at this point empty reactions of p-Char ts are resolved: the charts
then remains in the current configuration, and the set of output signals is empty.

4 C o n c l u s i o n a n d F u t u r e W o r k

The Statecharts dialect presented in this paper offers instantaneous feedback and
nondeterminism. Both concepts are under discussion: [23] for example, argues
tha t specifications with instantaneous feedback are unintuitive and difficult to
understand. While this is certainly true for Statecharts with causality conflicts,
where as default behavior the Statechart remains in its current state, it remains

650

to be seen how often these cases occur in practice. Also, the delayed step se-
mantics, as implemented for instance in Statemate, forces the designer to use
a low-level, operative specification style with variable assignments and artificial
sequentializations of component behaviors.

Leveson [8] rejects nondeterminism on the ground that the behavior of safety-
critical systems should not allow arbitrary choices. While this may be true for
specifications that are close to an implementation, we believe that in the early
design phases nondeterminism is essential to avoid overspecification. Nondeter-
minism can also be used to model the system's environment.

Our language, while offering the main concepts of Statechart, does not yet
cover the whole spectrum of practical applications. Current work is focused on
extending the language to deal with integer-valued signals in the style of [20, 21],
and with constructs for the abstract specification of real-time properties.

Further research is also necessary in the areas of code generation, compilation
into hardware, and model checking techniques. In [17] we outline how determin-
istic p-Chart specifications can be implemented in hardware. First steps towards
model checking of our language are described in [16].

The obvious problem for these operational applications of our semantics is
the handling of the oracle variables, since fixpoints can be reached that are
not self-fulfilling. Simple interpreters would need backtracking to implement a
full step semantics; a more sophisticated approach would be to use symbolic
techniques like BDDs [5] and a p-calculus formalization similar to the one in
[18]. For interpreters without BDDs the combinatorial explosion resulting from
the oracle variables can be reduced through lazy oracle guesses, as introduced

in [12].
Nevertheless, for time critical industrial applications it will be necessary to

reduce the nondeterminism caused by the oracle guesses. A medium-term goal
is therefore the development of a refinement rule system in the tradition of the
F o c u s rule system [4], where a refinement step reduces nondeterminism.

Acknowledgments

We would like to thank Herbert Ehler, Christian Preh0fer, and the anonymous
reviewers for many constructive remarks.

R e f e r e n c e s

1. G. Berry. Real Time Programming: Special Purpose or General Purpose Lan-
guages. Information Processing 89, 1989.

2. G. Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. scp, 19(2):87-152, nov 1992.

3. M. Broy. Interaction Refinement - The Easy Way. In Program Design Calculi,
volume 118 of NATO ASI Series F: Computer and System Sciences. Springer,

1993.

651

4. M. Broy and K. Stolen. Specification and Refinement of Finite Datafiow Networks
- a Relational Approach. volume 863 of Lecture Notes in Computer Science, pages
247-267, 1994.

5. R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 8(C-35):677-691, 1986.

6. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231 - 274, 1987.

7. D. Harel and A. Naamad. The Statemate Semantics of Statecharts. IEEE Trans-
actions on Software Engineering Method~ 1996.

8. M.P.E. Heimdahl and N.G. Leveson. Completeness and Consistency Analysis of
State-Based Requirements. Proceedings on the 17th International Conference on
Software Engineering, pages 3 - 14. IEEE Computer Society Press, 1995.

9. J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Axiomatization
of Statecharts. Theoretical Computer Science, 101:289 335, 1992.

10. C. Huizing and W.-P. de Roever. Introduction to Design Choices in the Semantics
of Statecharts. Information Processing Letters, 37, 1991.

11. i-Logix Inc., 22 Third Avenue, Burlington, Mass. 01803, U.S.A. Languages of
Statemate~ 1990.

12. K. Inoue, M. Koshimura, and R. Hasegawa. Embedding Negation as Failure into
a Model Generation Theorem Prover. In D. Kapur, editor, CADE-11, number 607
in Lecture Notes in Artificial Intelligence, pages 400-415, 1992.

13. F. Maraninchi. Operational and Compositional Semantics of Synchronous Au-
tomaton Compositions. volume 630 of Lecture Notes in Computer Science, pages
550 - 564. Springer-Verlag, 1992.

14. F. Maraninchi and N. Halbwachs. Compositional Semantics of Non-deterministic
Synchronous Languages. ESOP'96, 1996.

15. D. Nazareth, F. Regensburger, and P. Scholz. Mini-Statecharts: A Lean Version
of Statecharts. Technical Report TUM-I9610, Technische Universit/it Miinchen,
D-80290 M/inchen, 1996.

16. J. Philipps and P. Scholz. Formal Verification of Statecharts with Instantaneous
Chain Reactions. 1997. TACAS'97.

17. J. Philipps and P. Scholz. System-Level Hardware Design with p-Charts . 1997.
CHDL'97.

18. J. Philipps and T. Yoneda. Symbolic Model Checking of Statecharts. Technical
Report FTS-95-37, IEICE, 1995.

19. A. Pnueli and M. Shalev. What is in a Step: On the Semantics of Statecharts. In
T. Ito and A.R. Meyer, editors, Proccedings of the :'Theoretical Aspects in Com-
puter Software gl", volume 526 of Lecture Notes in Computer Science, pages 244
- 2 6 4 . Springer-Verlag~ 1991.

20. P. Scholz. An Extended Version of Mini-Statecharts. Technical Report TUM-I9628,
Technische Universit&t Mtinehen, D-80290 M/inchen, 1996.

21. P. Scholz. A Light-Weight Formalism for the Specification of Reactive Systems.
1996. SOFSEM'96.

22. P. Scholz, D. Nazareth, and F. Regensburger. Mini-Statecharts: A Compositional
Way to Model Parallel Systems. 1996. PDCS'96.

23. M. v o n d e r Beeck. A Comparison of Statecharts Variants. volume 863 of Lecture
Notes in Computer Science, pages 128 148. Springer, 1994.

