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Abs t r ac t .  During the last years, Statecharts have gained wide accep- 
tance for the specification of reactive, embedded systems. However, most 
semantics suggested so far are either informal or hard to grasp. In this 
contribution, we present a Statecharts dialect that permits nondeter- 
ministic specifications, offers zero-delay broadcast communication, and 
handles negation in trigger expressions in a new way. We give a com- 
positional formal semantics for this dialect, which is abstract enough for 
formal reasoning and yet easy to operationalize for simulators, model 
checking tools and code generation. 

1 I n t r o d u c t i o n  

Statecharts  [6] are a visual specification language proposed for specifying reactive 
systems. They extend conventional s tate transition diagrams with structuring 
and communication mechanisms. Since there is also tool support  through State- 
mate  [11], Statecharts  have become quite successful in industry. 

However, the semantics of Statecharts  used in Sta temate  [7] is based on a 
delayed broadcast  (cause and action are separated in time), which leads to a very 
operational,  implementation-level specification style. For a modeling language 
for abst ract  requirements specifications more abst ract  approaches are needed. 
Such approaches should contain the following concepts: 

- Nondeterminism is needed to express underspecification of systems. With 
nondeterminism, detailed specifications can be abstracted to allow model 
checking; in the other direction, there is a natural  concept of behavioral 
refinement through reduction of nondeterminism [3]. 

- For refinement, delayed broadcast  as used in Sta temate  is not a suitable 
communication concept. When refining a subchart  to a set of more concrete 
subcharts, additional delays are introduced. Thus, the I/O-behavior of the 
Statechart changes. Refinement rules would have to be more complex to 
compensate the additional delays. As observed in [I0], this is not the case 
for instantaneous feedback. 

* This work is partially funded by the German Federal Ministry of Education and 
R e s e a r c h  (BMBF) as part of the compound project "KorSys'. 
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Instantaneous feedback enjoys other nice properties for reactive systems; see 
[2] for a discussion. In this contribution, we introduce a dialect of Statecharts 
called #-Charts; it features a formal semantics for nondeterministic Statecharts 
with instantaneous feedback. It is an extension of the Mini-Statecharts dialect 
presented in [15, 22]. As noted in previous works on the semantics of Statecharts 
[9, 19], or Statechart-like languages like Argos [13, 14], or imperative synchronous 
languages like Esterel [2], instantaneous feedback can lead to causality conflicts 
when trigger events with negation are allowed. Argos and Esterel require a static 
analysis to reject those programs where a conflict might occur. Both languages 
provide very elaborated but expensive analysis techniques. We handle these 
conflicts semantically through oracle variables and therefore do not have to apply 
such algorithms. 

This paper is structured as follows. In Section 2 we introduce our State- 
charts dialect and give an abstract syntax and a compositional step semantics 
for it. Section 3 shows how to extend the step semantics to a stream semantics, 
modeling the complete input/output behavior of a system. Finally, in Section 4 
we give a brief conclusion and discuss future extensions. 

Example 

As running example we use a simplified specification of the central locking sys- 
tem for cars. The corresponding Statechart  is pictured in Figure 1; it specifies 
the locking system of a two-door car. Table 1 shows the signals used for the 

specification. 
The doors can be either unlocked, locked, or protected. Protected doors can 

only be opened with a key from outside the car, while locked doors can only 
be opened from inside the car by pushing a button.  Locking and unlocking is 
specified in the subchart  NORMAL. Most of the time, the controller is in state 
READY. (Actually, this state has to be further decomposed. However, this 
is not important  to understand our contribution and is therefore omit ted for 
reasons of brevity.) When the driver locks the doors, the controller moves to 
s tate  LOCK, and signals the low-level controllers for the doors to lower the lock. 
When the doors are locked, the controller returns to READY. The behavior for 
unlocking and protecting the doors is similar. The subcharts MOTORLEFT and 
IViOTORRIGHT specify the behavior of the door locks themselves: they either 
raise or lower the lock but tons on the driver and passenger door. The state 
CRASH is entered from either of the states in NORMAL, when the car 's  crash 
sensor is activated. Then the doors are automatical ly unlocked. 

The  specification need not store the current s tate of the doors; the locking 
mechanism is not damaged when it tries to lock an already locked door. 

2 A b s t r a c t  S y n t a x  and S e m a n t i c s  

In this section, we formally define syntax and semantics of our #-Charts.  They 
are based on Mini-Statecharts,  as first presented in [15] and later refined in [20, 
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CONTROL 
NORMAL 

lrnr obut/{lup, rup} 

crash/{lup, rup} @ 

MOTORLEFT 

M O T O R I ~ I G H ~  

{lup, Idn, lmr, rup, rdn, rrnr } 

F i g u r e  1. Central locking system 

21, 22]. We only repeat  those concepts that  are a prerequisite for the extension 
to nondeterminism. 

Throughout  this paper,  M denotes a set of signal names, States a set of s tate 
names, and Ident a set of identifier names for sequential au tomata .  For any 
Statechart ,  only a finite number of signal, state, and au toma ta  names can be 
used; ~ (X)  denotes the set of finite subsets of some set X.  

In our dialect, the set of p-Char ts  S is defined inductively. A #-Char t  is 
either a sequential automaton,  a parallel composition of two p-Charts ,  the de- 
composition of a sequential au tomaton ' s  s tate by another  p-Char t ,  or the result 
of a feedback construction. The inductive steps are motivated and defined in 
Sections 2.1 to 2.4. The semantics of a p-Char t  S C S has the type 

For each input signal set, the semantics determines a set of possible reactions. 
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Signal 

crash 
okey 
ckey 
obut 
ebut 
lmr 
rmr 
lup 
Idn 
rup 
rdn 

Meaning 

Crash sensor 
Opened with external key 
Closed with external key 
Opened with internal locking button 
Closed with internal locking button 
Left motor ready 
Right motor ready 
Left motor up 
Left motor down 
Right motor up 
Right motor down 

Source 

External 
External 
External 
External 
External 
Internal 
Internal 
Internal 
Internal 
Internal 
Internal 

Table  1. Signals used in the locking system 

Each reaction is a pair consisting of an output  signal set and the #-Chart  result- 
ing from S after taking a step. The reaction set can be empty, if a chart cannot 
react to a given input. When we define the possible executions of a #-Chart  
in Section 3, empty reaction sets are handled by letting the chart remain in its 
current configuration; the output will be empty. 

2.1 S e q u e n t i a l  A u t o m a t a  

Sequential automata  are the basic elements of our Statecharts dialect. The 

construct 

Seq (N, Z ,  ~Td, ~, 6) 

is an element of $ iff the following constraints hold: 

1. N C Ident  is the unique identifier of the automaton. 
2. ~ E p(States) is a nonempty finite set of all states of the automaton. 
3. ~d, a E ~ represent the default state and the current state, respectively. 
4. 6 : & x p(M) -+ p ( Z  • p(M))  is the finite, total state transition function 

that takes a state and a finite set of signals and yields a set of next states 
paired with a finite set of output signals. If this set contains more than one 
pair, the automaton is nondeterministie; if the set is empty, the automaton 
cannot react to the current input when it is in state a. 

In our concrete syntax (see the example), we use a Boolean term t instead of 
a set of signals x E p(M) as trigger. It is straightforward to translate a partial 
transition function that deals with arbitrary Boolean terms as trigger condition 
into a set-valued total function (see for example [22]). 

Example 2.1 (Sequential Automaton). Our running example contains four se- 
quential automata: MOTORLEFT~ MOTORRIGHT, CONTROL~ and the automa- 

ton NORMAL, which refines one of CONTROL'S states. 
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Each transition is annotated with a label such as "t/y", where t is a Boolean 
trigger condition and y the set of signals that  are generated when the transition 
is taken. If y is empty, we simply write the transition label as "t"; if t equals 
true we omit it and just write "/y". Note that  the two motor control automata  
allow nondeterministic behavior in the state OFF. For example, the left motor 
controller MOTOP, LEFT can follow any of the two transitions originating in OFF 
when both signals Idn and lup are present. 

A transition takes place in exactly one time unit. In a specification with several 
automata  working in parallel, more than one automaton can make a transition; 
all transitions taken in parallel automata  are assumed to occur in the same time 
unit. The set of all system actions in one time unit is called a step. 

We expect of sequential automata that: 

- No two consecutive transitions in a sequential automaton are taken in a step. 
- Only one branch of a nondeterministic choice is taken in a step. 

To ensure these restrictions, we introduce additional signals. For each sequential 
automaton Seq (N, Z,  ad, or, 5) we introduce a signal �9  Informally, this is a 
copyright on transitions of the automaton. When the signal is not present, the 
automaton may make a transition, whereupon it will generate @N. If it is 
already present, the automaton has to stay in its current state. 

The copyright signals are introduced in the following way. Each transition 
t /y of N is modified such that: 

- The trigger condition c is strengthened by conjoining ~ � 9  to it. 
- The action set y is extended by @N- 

ldn A ~@LM/{(~L LM/{ lmr' @LM} 

F i g u r e  2. Motor control with copyrights 
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Example 2.2 (Sequential Automaton). Figure 2 shows the modified chart LEFT- 
MOTOR, where we abbreviated its name by LM. 

Let C be the set of all possible copyright signals, C := { �9  I N C Ident}. We 
write M c  to abbreviate M U C. The step semantics for a chart S then has the 
functionality: 

[[S]] : p (Mc)  ~ gv(p(Mc) x 8) 

Informally, a sequential, nondeterministic automaton Seq (N, Z,  aa, a, 5) takes 
a set of input signals, say x, produces a set of signals as output,  say y, and then 
behaves like an automaton with modified actual state. This is formally denoted 
by: 

[Seq (N,~F, ad, a, 5)]]x = {(y, Seq (N,Z, (Td,a ' ,6) )  l (a' ,y) e 5(a,x)} 

Note that the reaction set may contain more than one pair. This reflects that 
the behavior of the automaton may be nondeterministic. Moreover, the reaction 
set may be empty, when the trigger condition of no transition from the current 

state is fulfilled. In this case, the automaton should remain in its current state 
without emitting any output signals. In Section 3, when the complete reactive 

behavior of a chart over time is introduced, empty reaction sets will indeed cause 

the chart to remain in its current state. 

2.2 P a r a l l e l  C o m p o s i t i o n  

If SL and $2 are elements of the set $ then their parallel composition denoted 

by the syntax 

And ($1, $2) 

is in 8, too. There are no syntactic restrictions on this composition. In the 
graphic notation parallel components are separated by spl i t t ing a box into com- 
ponents using dashed lines [6]. 

In our framework, parallel composition does not imply broadcast communi- 
cation between the subcharts. Both subcharts operate independently; commu- 
nication is introduced by an explicit feedback operator (see Section 2.4). 

Example 2.3 (Parallel Composition). To specify the central locking system, we 
used three parallel composed charts: the controller and the two motors. One 
possible configuration of the overall system is that  both motors are off and the 
controller is in its normal mode, while waiting for new input of the environment 
in its READY state. If no communication is specified, all parallel charts operate 
without any mutual interaction. 

Informally, the parallel composition of #-Charts behaves as $1 and $2 syn- 
chronously together. Generated signals of the parallel components are joined. 
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The formal semantics is defined by three cases. An And-chart  can perform a 
step when at least one of the subcharts makes a step (notice tha t  in our setting 
also a self-loop is a step); one or more of the charts may not react at all. This 
is the case, when the reaction set of such a chart returns an empty  set. The 
reaction set of a parallel composition is the union of these cases: 

U {(yl,And(S ,S2)) I (yl,S'l) C [[S1 x A [[S2 X ---- 

U {(Y2, And(S , I f[Si z = A (Y2, E [22 x} 

Thus, when neither Statechart makes a transition, the semantics of the parallel 
composition yields an empty reaction set, too. 

Obviously, And (S1, $2) is commutative and associative. We therefore write 
And ($I,..., Sn) to denote n C IN nested parallel #-Charts. 

2.3 Hierarchical Decomposi t ion  

The concept of hierarchically structuring the state space is essential for State- 
charts. In our Statecharts  dialect, hierarchy is introduced by replacing states of 
a sequential au tomaton (the master) with arbi t rary  charts (the slaves). This 
replacement is expressed by a finite function 6, which for any state a of the 
master  yields either the corresponding slave-Statechart,  or NoDec, if the state is 
not replaced by a slave. 

Suppose that  Seq (N, Z,  ad, a, 6) is a sequential automaton,  then hierarchical 
decomposition is denoted by 

Dec (N] &, ca, a, 6) by 

where ~ : & -~ $ 0 {NoDec}. 
Like other formal Statechart  semantics [9, 13, 14], the semantics presented 

here has no history states. It  is possible to extend our semantics along the lines 
of [1@ Due to space limitations we omit  this extension here. Throughout  this 
paper,  we assume that  the slave is always re-initialized when leaving it. 

Example 2.4 (Hierarchical Decomposition). In our example, the NORMAL state 
of the CONTROL is replaced by another sequential automaton,  also called NOR- 
MAL, which describes the current action of the locking system. Here CONTROL 
and NORMAL represent master  and slave, respectively. As current system con- 
figuration, we assume that  CONTROL iS in the LOCK state and both motors  
are notifying the CONTROL tha t  they have finished the lowering process. Thus, 
the current set of internal signals is {lmr, rmr}. We furthermore presume that  
exactly while the motors are sending lrnr and rmr, respectively, an external 
crash signal occurs. The overall signal set is then denoted by {lmr, rmr, crash}. 
Hence, NORMAL changes its current s tate from LOCK to P~EADY. In addition, 
the system moves from the NORMAL state to the CRASH state while generat- 
ing the signal set {lap, rap}. Note tha t  all actions come about  instantaneously. 
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Altogether, in the next instant of time, NORMAL is in its READY state, the 
CONTROL in the CRASH mode and both motors are in their OFF states. The 
au tomaton  NORMAL is "frozen" until it is re-entered. Thus, we say tha t  it has 
been interrupted. However, NORMAL still was able to change its current s tate 
from LOCK to READY, i .e,  has not been immediately interrupted: we say that  
the crash signal has induced a non-preemptive interrupt.  By strengthening the 
transitions in the slave chart with tests for the absence of signals, preemptive 
interrupt  can be modeled as well. 

To define the formal semantics for the decomposition, we distinguish four 
mutual ly  exclusive cases. The first case occurs whenever the current s tate a of 
the master  A =de/ Seq (N, Z,  ad, 0, 6) is refined by a slave (Q(a) ~ NoDec), and 
both master  and slave produce a non-empty reaction set: ~A[x ~ ~ ~ ~Q(a)[x. 
The reaction set of the hierarchical decomposition is then 

~Dec d by ~[x = {(y,~ U Ys, Dec A' by Q') I 3S'  �9 $ :  

(y,~,A') �9 ~A[x A (ys,S') �9 ~(a)[x A O' = o[init(S')/a]} 

Here init(S') initializes all sequential au toma ta  contained in S '  according to 
their default states. 

If the master  is not further decomposed in the current s tate r (~(cr) -- 
NoDec), but  by itself may react ([A~x ~ ~), we get 

[Dec d by ~[x = {(y, Dec d '  by ~) I (Y, d') �9 [A[x} 

Whenever the master  can react and the current s tate a is decomposed by a slave 
which however cannot react in its current state: 

~Dec A by Q~x = {(y, Dec A' by Q') I (Y, d') �9 ~d~x A ~' = Q[init(Q(a))/a]} 

Although the slave cannot react it is re-initialized because we follow the 
convention tha t  whenever the master  makes a step the slave has to be initialized. 
The next case occurs if, al though the master  cannot react in the current step, 

the slave can react: 

~Dec A by Q[x = {(y, Dec A by Q') I 3S'  �9 S :  (y ,S ' )  �9 ~(a)~x A ~' = @[S'/a]} 

In this case, the function ~ is changed to Q' to reflect the slave's change. 
Finally, if none of the above-mentioned cases is true, the overall reaction of 

the hierarchical decomposition is simply the empty  set. 

2.4 B r o a d c a s t  C o m m u n i c a t i o n  

Parallel composition is used to construct independent, concurrent components.  
To allow interaction of such components,  our language provides a broadcast  com- 
munication mechanism. In [6], for example, this mechanism already is integrated 
in the parallel composition of Statecharts.  Broadcasting is achieved by feeding 
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back all generated signals to all components. This means that  there exists an 
implicit feedback mechanism at the outermost level of a Statechart.  Unfortu- 
nately, this implicit signal broadcasting leads to a non-compositional semantics. 
We avoid this problem by adding an ezplicit feedback operator.  

In the literature different semantic views of the feedback mechanism can be 
found I23]. For the deterministic version of our language [15, 20, 22], we provided 
different syntactic constructs with different communication timings. We believe 
that  for nondeterministic, abstract specifications, instantaneous feedback is the 
proper concept, and present here only this operator. 

Suppose that  S C S is in an arbitrary #-Chart  and L E p(M)  is the set of 
signals which should be fed back, then the construct 

Feedback (S, L) 

is also in $. Graphically, the feedback construction is denoted with a box below 
the #-Chart  S. The box contains the signals L that are fed back. 

Example 2.5 (Feedback). When the chart is in the state READY, and the driver 
locks the door with the car key, then NORMAL moves to state PROTECT, and 
emits the signals Idn and rdn. Without  feedback, these signals would not be 
sent to the motor control subcharts. But since both signals are fed back, they 
are added to the input of the specification. Thus, both motors move to their 
DOWN states. This feedback is instantaneous, i.e. upon input of the signal ckey 
the three state changes and the output  of ldn and rdn occur at the same time. 

Instantaneous feedback follows the perfect synchrony hypothesis of Berry [1]; it 
demands that  an action and the event causing this action occur at the same 
instant of time. Therefore, the signals in z generated by chart S are instanta- 
neously intersected with the signals L to be fed back and then joined with the 
external signals x. This signal set is passed to S at the same instant of time. 

We first define the semantics of Feedback (S, L) for the case that  no transition 
trigger refers negatively to signals. In Section 2.5 we extend the semantics to 
handle negation as well. 

In the unnegated case we have to find a solution for the following equation: 

Z =  { z U y l z � 9  Z A y � 9  

where 7r1 filters the first component of the output  set: 

~ , ({ (y ,S)  l Y �9 MMc)  A S �9 8}) =des {Y l Y �9 p(Mc)}  

This solution can be found by computing the least fixpoint for the first projection 
of the subsequent function: 

f#L (z )  =deZ {(=Uy, S') I z e Z A (y,S') �9 l [S~(xU(znL)) ) }  

with respect to the following reflexive and transitive standard ordering on ~(~(/ lfc)  ). 
For all X, Y C P(p(Mc))  we define: 

X ~ Y = d e S Y x � 9  
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Formally, the semantics of the instantaneous feedback is defined by: 

1 S [[Feedback (,g, L)~x = {(y, Feedback(S', L)) [ (y, S') E "fP(f~,L! {~})} 

lfp computes the least fixed point for the first projection of the above function 
with respect to the subset ordering. The computat ion starts  with an empty  
set of signal sets, since at the beginning of the communication no signals are 
generated yet. Ifp is defined as follows: 

s l f p ( f~n ,Y  ) if Tcl(fs Y then s s = = fx,L(Y) else lfp(f~L,Trl(f~,L(Y)) ). 

Notice that  in general the first projection of f s  L is not monotonic w . r . t . K .  But 
s since for each set of signal sets Z it holds tha t  Z E_ 7rl(f~,L(Z)), and since there 

are only finitely many  signals - -  hence, finitely many  sets of signal sets - -  the 
existence of least fixpoints is ensured. 

Unfortunately, this proper ty  does not hold when trigger expression with nega- 
tion are handled in the s tandard way. Instead, we make use of oracle variables. 

2.5 Negation in Trigger Expressions 

So far we only considered p-Char ts  where each event expression occurs positively 
in a transit ion trigger. It  is desirable, however, to be able to test for the absence 
of signals as well as for their presence. For example, negative signal expressions 
allow us to introduce priorities between transitions. As an example, we examine 
our locking system again. The two motor  control charts in Figure 1 suffer from 
the following problem: when a crash occurs in the same instant the driver wants 
to lock the door, pressing the locking button,  the motor  controllers can choose 
nondeterministically between raising or lowering the locks. This is a safety- 
critical problem that  must  be avoided. We therefore modify the charts as in 
Figure 3 by conjoining the trigger condition on the transit ion originating from 
OFF and ending in DOWN with -~crash. Now the controller can only lock the 
door, when there is no signal from the crash sensor. 

Negation in trigger expressions can lead to some tricky causality problems. 
For example, what  would be the semantics of a transit ion labeled -~a/a? Some 
Statecharts  semantics simply disallow Statecharts  with causality problems. They 
require either a static analysis of the chart, which might reject charts that  do not 
really have causality conflicts, or a thorough state exploration, which even with 
today 's  advanced model checking techniques is untractable  for larger charts. This 
is for instance the approach taken by Argos [13] or the reactive programming 

language Esterel [2]. 
We handle these conflicts semantically. In case of a causal conflict, the transi- 

tion is simply not taken. We accomplish this through oracles tha t  predict which 
signals will be input from the environment or generated by the system in each 

step. 
For each signal a tha t  occurs negatively in the trigger of a transition, we 

introduce a new oracle signal "~ tha t  replaces a in the trigger part  of a transit ion 
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~crash A ldn A ~@LM / { @L LM / { lrnr, @ L M }  

l~tp A ~@LM / { ( ~ L M ~ ( ~ L M /  { ~  ~[', @LM } 

F i g u r e  3. Motor control with priorities 

label. For example, the transition label 

~crash A ldn 

is transformed into 

-,crash A Idn 

Oracle signals are never generated by transitions. At the beginning of each 
step in the execution of a chart, the system makes a guess about  the input or 
generation of signals, and thus determines the value of the oracle signals. This 
guess introduces additional nondeterminism; for n oracle signals, there are 2 n 
possible oracle guesses. For those signals a tha t  are predicted to become present, 
the oracle signal ~ is added to the input from the environment. Then, the step 
construction is similar to the unnegated case. In particular, the existence of 
fixpoints is guaranteed: since all negatively occurring signals are converted to 
oracles, and oracle signals can never be generated by the system, a choice made 
by the system can never be invalidated. Whereas in the unnegated case there 
always is a least fixpoint, we now get a set of minimal fixpoints. As we will see 
later, this introduces additional nondeterminism into a specification. 

However, some fixpoints may be inconsistent in the following sense: 

- A signal a is generated by the system, although the oracle forecasts its 
absence. In other words, a is in the event set, but not ~. 

- A signal a that  is predicted to be present, is neither input nor generated by 
the system. In other words, ~ is in the event set, but not a. 

Thus, we must ensure tha t  neither of these cases holds. The first condition can 
be checked locally when a transit ion is taken. We only have to extend the step 
function f from the unnegated case to: 

g~,L(Z)S =aoS {z e fSn(Z)l,  Va �9 7rl(Z ) : a �9 71-1 (Z)} 
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The second consistency condition, however, can only be checked once a fix- 
point is reached. We therefore define the self-fulfilling fixpoints as those signal 
sets SF C M where 

~ E S F  ~ s E S F  

Note that  while there are always fixpoints, the existence of consistent fixpoints 
is not guaranteed. Am example is a / t -Char t  with two states connected by the 
single t ranskion ~a/a. The modified transition tabeI reads 

-~g/a 

Assume now that  a is not input by the environment. When the oracle guesses 
a to become generated, i.e. a is added to the input set, a will not be generated, 
hence the fixpoint reached is not self-fnlfilling~ If, otherwise, the oracle guesses a 
to not be generated, then a is not added to the input set, and a will be generated, 
violating the local consistency condition. Since the~e is no consLstent fixpoint, 
the system must remain in its current state. When a is input by the environment, 
the system will also remain in its current state. This time, however, there is a 
consistent fixpoint {a,a}. In other words, the transition will never be taken. 

~ { a , b }  l 

F i g u r e  4. Pathological case 

Oracles Signal set 

Figure 4 shows another example. When no external input is provided, what 
should be the reaction of this chart? Our construction introduces two oracle 
signals, g and b. The transition labels are then translated to ~'d/b and @ a ,  re- 
spectively. When neither a nor b is provided from the environment, the fixpoint 
construction results in the output signal sets shown to the right of the specifi- 
cation. For each possible oracle guess there is one solution. The solution in the 
first row violates local consistency, and must therefore be rejected. The solution 
in the last row is not self-fulfilling, and must be rejected, too. Thus, there are 
only tyro solutions: either only the upper transition is taken, resulting in the 
output  signal set {b}, or only the lower transition is taken, resulting in output  
signal set {a}. Intuitively, there is a race between the two transitions; whichever 
transition is taken first, determines the reaction of the composed chart. 
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Thus, negation can introduce nondeterminism into a p-Chart .  In the older 
deterministic version of our dialect, [22], this chart would have to be rejected. 
The same holds for other deterministic dialects, like for instance Argos. Since 
pathological cases such as this one can be handled semantically in our dialect, we 
do not need to perform a static analysis of specifications to determine whether 
they must be rejected. 

3 R e a c t i v e  B e h a v i o r  

In the previous section we have introduced a formal step semantics, which ex- 
presses the behavior of #-Char ts  in one single instant of time. Reactive systems 
however have continuously to interact with the environment.  Hence, their com- 
plete inpu t /ou tpu t  behavior has to be described by the aid of communication 
histories. 

We model the communication history of p-Char ts  by streams carrying sets 
of signals. Mathematically,  we describe the behavior of p-Char ts  by s t ream 
processing functions. Hence, we briefly discuss the notion of s t reams and s t ream 
processing functions. For a detailed description we refer for example to [3]. 

Given a set X of signals a s t ream over X,  denoted by X ~, is an infinite 
sequence of elements from X. Our notat ion for the concatenation operator  is &. 
Given an element x of type X and a s t ream s over X,  the te rm x & s  denotes the 
s t ream tha t  starts  with the element x followed by the s t ream s. In our setting, 
a s t ream processing function is a function with type X ~ --+ X ~. 

To describe the complete inpu t /ou tpu t  behavior, the semantic model asso- 
ciates with every chart S a set of s t ream processing functions: 

[Sb: ~(~(M)  ~ + ~(M)~) .  

A function f : p ( M )  ~ -+ Vj(M) ~ is in [ S ~ ,  liT." 

f ( x & s )  = y&g(s )  

where 

((y, s ' )  e [ s i x  v y = r A 5'  = s A = r A g e [ s ' L  

Note tha t  at this point empty  reactions of p-Char ts  are resolved: the charts 
then remains in the current configuration, and the set of output  signals is empty. 

4 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The Statecharts  dialect presented in this paper  offers instantaneous feedback and 
nondeterminism. Both concepts are under discussion: [23] for example, argues 
tha t  specifications with instantaneous feedback are unintuitive and difficult to 
understand. While this is certainly true for Statecharts  with causality conflicts, 
where as default behavior the Statechart  remains in its current state, it remains 
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to be seen how often these cases occur in practice. Also, the delayed step se- 
mantics, as implemented for instance in Statemate, forces the designer to use 
a low-level, operative specification style with variable assignments and artificial 
sequentializations of component behaviors. 

Leveson [8] rejects nondeterminism on the ground that  the behavior of safety- 
critical systems should not allow arbitrary choices. While this may be true for 
specifications that  are close to an implementation, we believe that  in the early 
design phases nondeterminism is essential to avoid overspecification. Nondeter- 
minism can also be used to model the system's environment. 

Our language, while offering the main concepts of Statechart,  does not yet 
cover the whole spectrum of practical applications. Current work is focused on 
extending the language to deal with integer-valued signals in the style of [20, 21], 
and with constructs for the abstract specification of real-time properties. 

Further research is also necessary in the areas of code generation, compilation 
into hardware, and model checking techniques. In [17] we outline how determin- 
istic p-Chart  specifications can be implemented in hardware. First steps towards 
model checking of our language are described in [16]. 

The obvious problem for these operational applications of our semantics is 
the handling of the oracle variables, since fixpoints can be reached that  are 
not self-fulfilling. Simple interpreters would need backtracking to implement a 
full step semantics; a more sophisticated approach would be to use symbolic 
techniques like BDDs [5] and a p-calculus formalization similar to the one in 
[18]. For interpreters without BDDs the combinatorial explosion resulting from 
the oracle variables can be reduced through lazy oracle guesses, as introduced 

in [12]. 
Nevertheless, for time critical industrial applications it will be necessary to 

reduce the nondeterminism caused by the oracle guesses. A medium-term goal 
is therefore the development of a refinement rule system in the tradition of the 
F o c u s  rule system [4], where a refinement step reduces nondeterminism. 
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