
Grid Structures and Undecidable Constraint
Theories*

Franck Seynhaeve 1 , Marc Tommasi *.1, Ralf Treinen 2

1 LIFL, B&t M3, Universit~ Lille 1, F59655 Villeneuve d'Ascq cedex, France
emaih {seynhaev, tommasi}@lifl, fr, Web: http ://www. lifl. fr/~tommasi

2 LRI &: CNRS, Bgt. 490, Universit4 de Paris-Sud, F91405 Orsay cedex, France
email: treinen@Iri, fr, Web: http://www. Iri. fr/~treinen

Abstrac t . We express conditions for a term to be a finite grid-like struc-
ture. Together with definitions of term properties by excluding "forbid-
den patterns" we obtain three new undecidability results in three ar-
eas: the 3*Y*-fragment of the theory of one-step rewriting for linear and
shallow rewrite systems, the emptiness for automata with equality tests
between first cousins (i.e. only tests at depth 2 below the current node
are available), and the 3*V*-fragment of the theory of set constraints.

1 I n t r o d u c t i o n

Domino games and Taring machines are well-known tools to prove undecidability
results. The grid structure provides convenient means for encoding computation
sequences of Turing machines. In its infinitary version (i.e. Z x Z), it has been used
for instance to obtain undecidability results for monadic second order theories
[21,19,6,14,15]. A classical encoding of the computation of a Turing Machine can
be done only with a local matching on a grid, where, roughly speaking, row i
contains a description of the tape at time i, and column j contains the values of
cell j of the tape during the computation. Only local tests are necessary to verify
that successive rows in the grid correspond to successive tapes in a successful
computation of the machine.

In this paper we prove undecidability results for computational mechanisms over
finite terms. Intuitively, a term is a grid-like term if from each node, going one
step up and then one step to the right yields the same subterm than going one
step to the right and then one step up. In other words, the directed acyclic graph
associated with a grid-like term is a grid.
Basically, the common approach for the results we prove here is the following.
We have to express two properties: that a term is a grid-like term, and that the
grid encodes a computation of a Turing machine. Since the latter can be done
using local tests only, regular tools such as rewrite systems or tree automata can
be used to exclude certain "forbidden" patterns.
Using these techniques we prove that the following theories are undecidable:

* Partially supported by The Esprit working group CCL II (22457) and the HCM
project CONSOLE (CHRXCT940495)

** Partially supported by "GDR AMI" Groupement De Recherche 1116 du CNRS

358

- the 3*V*-fragment of the theory of one step rewriting for the class of shallow
and linear rewrite system, and

- the emptiness property for tree automata with equality tests between first
cousins, and

- the 3*g*-fragment of the theory of set constraints.

O n e - s t e p r e w r i t i n g The theory of one-step rewriting for a given rewrite system
/ / a n d signature ~ is the first-order theory of the following structure: its universe
consists of all Z-ground terms, and its only predicate is the relation "x rewrites to
y in one step by R". The structure contains no function symbols and no equality.
In [23] it has been shown that there is no algorithm which decides the 3*V*-
fragment of the theory of one-step rewriting for any rewrite system R. This result
has been refined to the 3*V*-fragment for the class of linear rewriting systems in
[22], to the 3*V*-fragment for the class of right ground rewriting systems in [16]
and to the 3*V*3*-fragment for the class of linear noetherian rewriting systems
in [24]. Recently, decidability of the positive existential fragment has been shown

in [12].
In this paper we restrict the class of rewriting systems for which the theory of
one-step rewriting is undecidable to the class of linear and shallow term rewriting
systems. This undecidability result is surprising in the light of the decidability
result for the quotient algebra by a finite set of shallow equations [5].

T r e e a u t o m a t a w i t h e q u a l i t y t e s t s Tree automata with equality tests have
been introduced by Dauchet and Mongy to tackle non-linearity problems in vari-
ous fields such as rewriting, program approximation, and partial evaluation [17].
On the one hand, the class of languages recognized by tree automata with equal-
ity tests is closed under non linear morphisms and classical boolean operations.
On the other hand, when unrestricted equalities are allowed the emptiness prop-
erty for these aeceptors is undecidable. This negative result stems from the fact
that equalities can be propagated in a term as far as desired using transitiv-
ity of the equality and repeated application of non-linear rules. In the original
paper, the authors encode the Post correspondence problem using overlapping
equalities between subterms at different depth.
When only equalities between direct subterms (brothers) are allowed it is not
possible to overlap equalities, and Bogaert and Tison have shown that in this

case the emptiness problem is decidable [2].
Closely related, Caron et al [3] have defined encompassment automata, that is
au tomata with equality tests which can handle a bounded number of equalities
along each path of a tree and between brothers in an unrestricted way. They
generalized the result of [2] because the emptiness problem is decidable for en-

compassment automata.
Consequently, one could hope to keep decidability while testing equalities (and
disequalities) at the same depth. However, we prove in this paper that the empti-
ness problem for Tree Automata with equality tests between First Cousins -
Tra f ic -au tomata - is undecidable.
Se t c o n s t r a i n t s Set constraints are relationships between sets of terms of a
Herbrand Universe. Because of their expressive power and their naturalness,

359

they have been used in program analysis [9,11]. The main idea is to associate
with a program variable an approximation of the set of its possible values. Set
constraints have also enriched (constraint) logic programming languages, in order
to compute with sets [13].
Relations between automata and set constraints have been first pointed out by
Heintze and Jaffar in [10]: the case of set constraints between sets of words can
be treated using a translation into monadic second order logic of k successors, i.e.
Rabin tree automata [18]. In [7] this approach is reused and a new class of tree
au tomata which can handle the case of set (of terms) constraints is defined. As an
advantage, tree automata provide for decision algorithms and closure properties
[8].
In a more general way, we can examine the satisfiability problem for formulas of
a theory based on set constraints denoted by 7so. The language of this theory
is defined in the following way: atomic formulas are elementary set constraints
of the form t C t'; formulas are obtained from atomic formulas by closure under
boolean operators (and, or, not) and quantifiers. More precisely, the syntactic
definition of atomic formulas relies on a set of variables X and a finite set s
of functions symbols. Then, an elementary set constraint is of the form I C t t
where t, t t E T r (X) . An interpretation Z of a set constraint maps each variable
of X onto a subset of Tr .
The complete theory 7so is undecidable because of the undecidability of the
monadic theory of finitely generated free algebras [20] and the existential frag-
ment is decidable [1,4,7]. This paper states that the satisfiability problem for
formulas of the ~*V*-fragment is undecidable.

The paper is organized as follows. In Section 2.1 we explain how local grid-
patterns can be used in order to describe compution sequences of a Turing ma-
chine. In Section 2.2 we introduce finite grid-like terms. The definition has to
take care of the borders of the grid. This implies a special treatment at the leaves
of the terms. The encoding of the halting problem is then presented in Section 3
for rewrite systems and Section 4 for tree automata. Finally, the undecidability
result, for set constraints is given in Section 5.

2 P r e l i m i n a r i e s

Let T r (X) denote the set of terms over a ranked alphabet F and a set X of
variables, and let t E Tv(X) . We denote by Var(t) the set of variables which
occur in t and by lip the subterm of t rooted at position p . We have head(t) =
iff t(0) -=- a, that is o~ is the root symbol of l.

2.1 T u r i n g M a c h i n e s a n d C o m p u t a t i o n s

For the rest of the paper we fix an instance of a restricted class of Turing ma-
chines: let T = (Q, I, q,, q/) be a Turing machine with tape alphabet {a, b} (rq
is the blank symbol), state set Q = {qa , . . . , qk}, initial state q,, accepting state
q/ and instruction set I. We can assume w.l.o.g.

- that T never accesses a tape position to the left of the starting position,

360

- tha t it never writes a [] on the tape (hence, [] can never occur to the left of
the head).

The signature E as well as several other entities to be constructed during the
proof depend on the Turing machine T. For the sake of brevity we do not mention
the index T which strictly speaking is in order here.

We specify the configuration of the Turing machine by a string called instan-
taneous description. As usual, the configuration is noted by concatenating the
part of the tape left to the head, the state, and the part of the tape start ing at
the head position (such that the tape symbol seen by the head is written to the
immediate right of the state). For technical reasons, we will in addition delimit
the string by the $ start mark and the # stop mark; the stop mark is always
preceding by the blank symbol and furthermore the symbols on the left half of
the tape will always be indexed with l, while the symbols on the second half are

indexed with r.

D e f i n i t i o n 1 (I n s t a n t a n e o u s D e s c r i p t i o n) . We define the following sets of

constants:
(leftchar) := al I bl {state} := ql [. - - I q ~

(rightchar) := ar I br I []r {constant} := $ I:~ I (leftchar)] (rightchar} I(state}
An instantaneous description (1D) is a string licensed by the following regular
expression: (id) := ${leftchar)*(state)(rightchar)+[:]r#

D e f i n i t i o n 2 (Pid). The set Pid is the following set of pat terns where _ matches

any character:
=1(rightchar) l $(C l (leftchar)(rightchar} l (leftchar)(C [(state)(leftchar)]

�9 , , , ,) ~ - - , ~rtghtchar.,,,~ta&) i " a ~ I b~: (state)(state) I (state)# [(r~ghtchar]~leftcha ")] ~- [a,

L e m m a 3. A string w 6 {constant}* is an instantaneous description if w starts
with $, ends with # , and none of the patterns of P~d matches w.

A sequence of IDs can be stored in the upper right quarter of an infinite plane
part i t ioned into cells (recall that a Turing machine's tape is left bounded) where
each line corresponds to an ID. We detail now conditions for such a plane (or
grid) to be a computat ion by means of 2-dimensional patterns.

D e f i n i t i o n 4 (PT). The set PT is the following set of patterns:
where (q, c) ~+ (V, d, 0) and

x where x r $. %- ulqlc~ (x T k u o r y ~ k p ~

where x -~ # and
(x r []r or u # #) . ulql cr

where u ~ {state} and x 7s ct, x ~ z
c, 6 (leftchar) ulql cr

where u r (state} and x • cr,
cr C (rightchar)

where (q, c) ~ (p, d, R) and
(x # u or y # d~ or z # p)

where (q, c) ~-+ (p, d, L) and
(x 0 k p o r y~k u or z ~k dr).

361

L e m m a 5. A grid g represents a computation if the first line o f t is the initial
configuration $qsDr# and none of the patterns of Pid or PT matches 9.

2.2 Terms R e p r e s e n t i n g Grids

D e f i n i t i o n 6 (S i g n a t u r e s The signature F consists of the ternary symbol
f and the constants • al, bl, aT, br, c]~, $, # , q t , . . . , qk.

The symbols of F are used to represent computat ion sequences of the machine T.
Note that the tape symbols come in two variants: left and right handed.

D e f i n i t i o n 7 (F - g r i d) . A ground term t over some super-signature of F is
called a F-grid if

1. t E T r ;
2. for

(a)
(b)
(e)

3. for
(a)
(b)

4. for

every subterm f (x , y, z) we have
x = 10 or head(x) = f ,
y = 10 or head(y) = f and
z E {al, bt, a~, br, [%, $, --/#, q l , . . . , qk};
each subterm f (f (x l , Yl, zl), f(x2, Y2, z2), z3)
the equation Yl = x2 holds and
head(y1) = f;
each subterm f (x l , f (f (x2 , y2, z2), Y3, z3), zl), head(x1) = f .

Hence, the directed acyclic graph of a F-grid t is a grid in the sense of the last
section. In a term t, the last argument of an f - t e r m is the content of a cell, the
first argument is the upper neighbour, and the second argument is the neighbour
to the right. The "end" of the grid (on a row or on a column) corresponds to a
leaf -1-0 of t. The last three conditions need some explanations:
Condition 3a states that by going one step up and then one step to the right
one gets the same description than by going first one step to the right and then
one step up. Condition 3b states that when there is a description of the upper
neighbour and of the right neighbour of some cell, then there is also a description
of the upper right neighbour. Consequently, every i + 1-th row is as least as long
as the i-th row. Finally, condition 4 states that if a cell has an upper-right
neighbour then it has an upper neighbour, too. Consequently, all lines s tar t at
the same position (see Figure 1).

3 Rewriting

3.1 P r e l i m i n a r i e s

A rewrite system is called shallow, resp. linear, if all its rules are shallow, resp.
linear. A rewrite rule 1 --+ r is called shallow, resp. linear, if both l and r are
shallow, resp. linear. A term t is shallow if all its variables occur at depth at most
one. A term t is linear if it does not contain any multiple variable occurrences.
We employ the following abbreviations:

362

br

~r #

f

f f a~

. . .J ~ "%%

/ o f b~ f -Lo #
.-'1 ~'~. .j.....'"]'%%,

............ '%'N. i -~

�9 Lo f []~ "Lo f []
r , .j1%%. .~ %%.

.......... i ' - - , ! -,
�9 Lo "Lo # -Lo "Lo #

Fig. 1. A grid of two lines and its corresponding F-grid t.

x --+ I y := x - + y
x ~ y := x -+ y A y ~/+ x

x ~ l y : = x ~ y

x __+,.+1 y :__ 3z (x -+ z A z __+n y)
x ::>n+l y :_ 3z (x :::> z A z :=>n y)

The set of leaf positions of a term t is denoted by s and its set of non-leaf
positions by ZPos(t) . The set of all positions of t is Pos(t) = s
The implication sign of predicate logic is written D in order to distinguish it
f rom the rewrite relation symbol -+.

D e f i n i t i o n 8. Let Z be a signature and R be a ~-rewri te system. The struc-
ture ~4~,R is defined as follows: The language of .A~,R contains no constants or
function symbols, and its only predicate symbol is the binary predicate symbol
-+. The universe of ,4~,R is the set T (Z) , and t --+ s holds in .A.v,n iff t rewrites
to s in one rewriting step of R.

3.2 T h e U n d e c i d a b i l i t y P r o o f

T h e o r e m 9. There is no algorithm which decides for any signature ~ and any
linear and shallow Z-rewri te system R the 3*V*-fragment of the theory of .Az,R.

We are going to reduce the halting problem for the restricted class of Turing
machines defined in Section 2.1 to the validity of a certain formula in some

structure .A~,R.

D e f i n i t i o n 10 (S i g n a t u r e Z, r e w r i t e s y s t e m R). The signature ~ is the
extension of f by the constants u, r, u ~, # . The ~-rewri te system R consists
of the following rules (note that R is shallow and linear):

f (x , y, z) ~ u(x) I r(y) I u'(~) I "'(Y) r ~ r(x) r'(~) -+ u (x)

L e m m a 11. For every finite set P of linear terms in T ~ (X) there exist a sig-
nature extension ~ p ~ ~ , a shallow and linear ~p-rewri te system RF D R, a
quantifier-free formula ad(x) and for every p E P an ~*-formula match[p](x)

such that:

363

- for every t E Tsp: Asp ,Re ~ ad(t) i f f t E Tr;
- for every p E P and t E T~: A~p,Rp ~ match[p](t) i f fp matches t.

Proof. Let P = { Q , . . . , tn}. We define

.-,~p : : S U {ct,o It E P, oE :rT)os(t)}U {el,j I 1 < i < n, 1 <_ j < n + i - 1}

For any t E P and o E Pos(t), let dt,o : = t]o if o E s and dt,o := %0 if
o ~ Z'Pos(t).

• p : = R u {h(~) ~ h(~) I h r r }

U {.f(dt,ol,. . . , dt,op) --+ %0 [t C P, o E ZPos(t), head(rio) = f, ari ty(f) = p}

U {dti,e --+ ei,1, e i , j --+ e i , j + l , el,n-t-i-1 -'st dti,e I 1 < i < n, 1 ~_ j < n + i -- 2}

Finally, we define, where ti E P and k is the cardinali ty of ZPos(ti):

ad(x) := x ~ x

match[tl](x) := ?y (x _+k Y A y ~,~+i-1 y)

D e f i n i t i o n 12 (grid(x)).

grid(x) := ad(x) A A (-,match[f(h(_),_,_)](x) A -,match[f(_, h(_), _)](x))
hff{-ko,f}

A -~match[I(_, _, f(_))](x) A -,match[f(_, _, J-0)](x)

A Vy, z , z ' , v (x _+2 y A match[f(r(_),u'(_),_)](y) A y -+ z
/ , match[u(r(_))](z) ,X ~ ~ ~' A mat~h[~'(~'(_))](z')
A z' -+ v A match[r'(r(_))](v)) D V Z

A A ~m.atch[f(f(_, h(_), _), f(_, _, _), _)](x)
h ~ f

A A -,match[f(h(_), f (f (_ , _, _),-, _), _)](x)
h#f

Note tha t grid(z) is a V* formula since each occurrence of a match-formula is
negated.

L e m m a 13. Let ~ p D_ ~ and Rp D_ R be constructed according to Lemma i1,
where P contains all the patterns mentioned in Definition 12. Then a term t E
T (Zp) is a l'-grid iff .4sp,R,. ~ grid(t).

D e f i n i t i o n 14 (in i t) .

init(x) := match[f(_, f(_, f(_, f(_, A-o, #) , ~) , q~), $)](x)

A~match[f(f(_, f(_, f(_, f(_,-1-o, ://:), I::1,.), q~), $),-, _)] (x)

364

The first part of init(g) where g is a F-grid states that some row of the grid
g starts with S q , ~ : ~ , that is with the instantaneous description of the initial
configuration. The second part states that there is no preceding line to the initial
configuration (there might be some line that is not an instantaneous description).
Note that init(x) is a 3*V*-formula.

Each two-dimensional pat tern on the grid can be expressed as a term of T r (X) .

D e f i n i t i o n 15. We associate with each pat tern of P~d and PT a term of TF(X).
This yields sets P ~ and PT of terms of TF(X).

We illustrate the last definition with an small example of a pa t tern p of PT and
its associated term T_r(X):

f

f f u

xl f u f f q
.-'i',. ...--'1%." --""| ~ x ~ %. f - " i ".~

.... "" i -. ..-'/ �9 , i \
X2 f dt x5 f dt y xlo c,.

. . . i , . ' '
.. " " ~ j , . . % . f | "%

�9 " ' , \ , ,

x3 x4 q~ x6 x7 qr xs x9 q'

D e f i n i t i o n 16. We define the following formulae:

traos() : = A -~rnatch[p](x) A A -~match[p](x)

/i.al(~) := mateh[qA(x)

Proof of Theorem 9. Let A ~ , n ~ grid(t) A init(t) A trans(t). Then t represents a

computa t ion sequence.
Let M be the set of all pat terns used in the above constructions, and let ~M
and RM be according to L e m m a 11. Then the Turing machine T halts on the
empty input iff A s ~ , n ~ ~ halts. This completes the proof of Theorem 9.

4 A u t o m a t a

D e f i n i t i o n 17. A Trafic-automaton is a 4-tuple .4 = (F, E, F, R) where F is
a finite ranked alphabet; E is a finite set of unary letters called states disjoint

365

from F; F C_ E is a set of final states; and R is a finite set of transition rules,
all being of the following two forms, where ql, �9 -., q,~, q C E and xi, xkj E X:

f(q, q
�9 , X n . . Z n f (q l (fa(x~ , . , x~l)) , . . . ,q~(f~(1 , . , p=)))--+q.

Note that rules may be non-linear, that is the same variable may occur twice or
more often in a left hand side.
The tree language recognized by a Trafic-automaton ,,4 is the set of terms of T r
which are reduced by the rewrite system R into a final state:

L(A) = {t E TF It Z~ q(t) where q e F}.

The class of languages recognized by Trat /c-automata is closed under union and
intersection.
Let us recall that the class of languages recognized by tree au toma ta are closed
under union, intersection and complementation. Let us remark that languages
recognized by tree au tomata are also recognized by Tratlc-automata.

T h e o r e m 18. The emptiness problem in the class of Trat~c-automata is unde-
eidable.

We are going to reduce the halting problem for the restricted class A/tT of
Turing machines defined in Section 2.1 to the emptiness problem in the class of
Trat /c-automata. In other words, given a Turing machine T, we build a Trafic-
automaton Ah~u~ such that s encodes all successful computat ions of
T.
In the proof, we first state in Lemma 19 that F-grids are recognizable by Trafic-
au tomata . Then, Lemma 20 proves that codes of a successful computa t ion are
also recognizable by Trafic-automata.

L e m m a 19. There exists a Tratic-automaton Ag~id such that s = {t]
t is a F-grid}.

Proof. Let us consider F0 the set of constants of F and the Trat ic-automaton
.Ag = (F, {q}, {q}, R) whose rules are:

Va, b, c E Fo a --+ q f(q(a), q(b), q(c)) --+ q
f(q(a), B, q(c)) --9, q f(q(a), B, C) --+ q

f (A , q(b), C) --+ q f (A , B, q(c)) --+ q
with A =- q(f (x l , Yl, zl)) t3 = q(f(x2, Y2, z2))

f(q(a), q(b), C) --+ q
f (A , q(b), q(c)) --+ q

f (A , B, C) --+ q
C = q(f(x3, Y3, z3))

We prove that E(.A9) = {t E Tr [t satisfies Condition 3a of Definition 7} using
induction on the structure of terms for the D part and using induction on the
number of derivations for the _C part .

Conditions 2, 3b and 4 of Definition 7 correspond to local tests on subterms
and hence {t G TF] t satisfies Conditions 2, 3b and 4 of Definition 7} is a reg-
ular language, then recognizable by a (classical) tree automaton. Then we can
construct a tree au tomaton Agt such that:

s = {t E Tr] t satisfies Conditions 2, 3b and 4 of Definition 7}.

366

Moreover s n s = {t I t is a F-grid}. Finally, since every tree au-
tomaton is also a trafic-automaton and the class of TrMic-automata is closed
under intersection, there exists a Tra/~c-automaton A~rid such that/:(Mm.id) =

l](Ag) f"l l~(Agl).

L e m m a 20. Let T be a Turing machine in r There exists a TrMic-automaton
Ahalts such that f~ (.Ahatt s) = {successful computations of the Taring machine T}.

Proof. Let T be a Taring machine. For any term p of Pig and PT, P is linear
then {t E Tv I some instance of p is a subterm oft} is a regular langage.

Moreover {t e Tr I tl0 = f (u l , f (u2 , f(ua, f(u4,-ko,#),r%),q,),$)} and {t E
Tv] f(-L0, u, q]) is a subterm of t} are also regular langages. Then we define in
the same way than in Section 3.2 (classical) tree automata Ai~it, A t ~ , , , Afi,~l
and Ah~Us such that:

f~(.Ahalts) : ~,(r) N s) f~ s162 N ~,(.Afinal)
= { successful computations ofT}.

The Turing machine T halts on the empty input iffs ~k ~. This completes
the proof of Theorem 18.

5 Theory of Set C o n s t r a i n t s

T h e o r e m 21. There is no algorithm which decides for any ranked alphabet F
the 3*V*-fragment of TSc.

The proof first relies on Lemma 24 which states that there exists a formula
grid(X) in the 3*V*-fragment of 7~c such that grid(X) is satisfiable if and only
if X denotes a singleton set containing a F-grid. Then, following the construction
of Section 3, in Lemma 25 we build a formula halts which is satisfiable if and

only if the machine T halts on the empty input.

D e f i n i t i o n 22. For the sake of brevity, we define the emptyset 0 and the inter-

section N as follows: 0 = VX 0 C_ X
X a y = O = g Z (Z C X A Z C Y)=> Z =O

D e f i n i t i o n 23. Let C = F0 \ {-L0} and grid(X) be a formula defined as follows:
grid(X) -- sing(X) A (3S subterms(X, S) A shape(S) A equalities(S) A edge(S))

where sing(X) = X • 0 A (VY Y C_ X ~ X C Y V Z C O)

subterms(X,S) ~ S C_ I (S , S , C) U-l-0 A X C_ S
A VS' (S' C f(S' , S', C) U 1o A X C S') :=> ,5' C S'

shape(S) =-- g r , , Y2, Za, 2 I(I(Y1, J-o, Y2), f (Z) , Ya) n S = 0

equality(S) =- VY1, Y2, Ya,]/4, Ys, Y6
(A~ Y~ g: 0 A f (f (Y , , Y2, Ya), I(Y4, Yh, Ya), Yr) C_ S) ~ Y= = u

edge(S) - VE, Y2, Ya, Y4, Ys, Y6 f (J_a, f (I (Y , , Yu, Ya), Y4, Ys), Y6) rq S = 0

367

L e m m a 24. gX (grid(X) r162 3t r-grid st x = {,))

Proof. The formula s ing(X) is satisfied iff X is a singleton. Let t E X. The
formula subterms(X, S) defines the set S of subterms of t except the elements
of C. The first line of the formula defines a subterm-closed set containing t. For
example, let t in S (t r -L0):

t e S => t ~ f (S ,S , C) :::> 3 t l , t2 , t3 st t = f (t l , t2, t3) => Q, t2 E S, 13 C C.
The second one defines S as the smallest set satisfying the first line.
Finally, the formulae shape(S), equality(S) and edge(S) translate Conditions 2,
3 and 4 of Definition 7.

L e m l n a 25. There exists a formula halts of the ~*V*-fragment of Tsc such that
halts is satisfiable iff the Turing machine T halts on the empty input.

Proof. Let T be a Turing machine and X such that grid(X). Then, according
to L e m m a 24, there exists a / ' - g r i d t such that X = {t}. grid(X) is a formula of
the ~*V*-fragment of 7sc, and it defines the set S of all subterms of the te rm t.
We define now in a same way than in Section 3.2 formulas ini t(S) , trans(S),
final(S) and halts. To this aim, we just note that for any term p of Pid and PT,
we can say that p matches or does not match a term in S:

, . a t ~ h [p] (S) - 3~ p C_ S A p # O
where ~ denotes the set of variables of the term p. The preceding formula is sat-
isfied if there exists set of terms I (x l) . . . , Z(xl) (Z interpretation and x l , . . . , xl
variables of p) such that Z(p) C__ Z(S) and I (p) r 0.

The Turing machine T halts on the empty input iff halts is satisfiable. This
completes the proof of Theorem 21.

A c k n o w l e d g e m e n t

We thank Sophie Tison for her useful comments and corrections, and Nachum
Dershowitz and Joachim Niehren for pleasant discussions.

References

1. A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints
with negative constraints. Information and Computation, 122(1):30-44, Oct. 1995.

2. B. Bogaert and S. Tison. Equality and disequality constraints on direct subterms in
tree automata. In Lectures Notes in Computer Science, volume 577, pages 161-171,
Paris, 1992. Symposium on Theoretical Aspects of Computer Science.

3. A. Caron, H. Colnon, J. Coquid6, M. Dauchet, aa~d F. Jacquemard. Pumping,
cleaning and symbolic constraints solving. In Lectures Notes in Computer Science,
volume 820, pages 436-449, Jerusalem, july 1994. 21st international colloquium
on Automata, Languages and Programming.

4. W. Charatonik and L. Pacholski. Set constraints with projections are in NEXP-
TIME. In IEEE, editor, Proe. 35 th Syrup. Foundations o] Computer Science, pages
642-653, 1994.

368

5. H. Comon, M. Haberstrau, and J.-P. Jouannaud. Syntacticness, cycle-syntacticness
and shallow theories. Information and Computation, 111(1):154-191, May 1994.

6. B. Coureelle. The monadic second-order logic of graphs I. recognizable sets of finite
graphs. In]ormation and Computation, 85:12-75, 1990.

7. R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints with
negated subset relationships. In Proceedings of the 34 th Syrup. on Foundations
of Computer Science, pages 372-380, 1993. Full version in the LIFL Tech. Rep.
IT-247.

8. R. Gilleron, S. Tison, and M. Tommasi. Some new decidabihty results on positive
and negative set constraints. In Proceedings, First International Conference on
Constraints in Computational Logics, volume 845 of LLNCS, pages 336 351, 1994.

9. N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

10. N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set Constraints. In
Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages
42-51, Philadelphia, Pennsylvania, 4-7 June 1990. IEEE Computer Society Press.

11. N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic
programs. In Proceedings of the 17 th ACM Syrup. on Principles of Programming
Languages, pages 197-209, 1990. Full version in the IBM tech. rep. RC 16089
(#71415).

12. P. R. Joachim Niehren, Manfred Pinkal. On equality up-to constraints over finite
trees, context unification, and one-step rewriting, Dec. 1996.

13. D. Kozen. Logical aspects of set constraints. In Proceedings of Conf. Computer
Science Logic (CSL'!}3), volume 832 of LNCS, pages 175 188, 1993.

14. H. Ls and C. Savioz. Monadic second order definable relation on the binary
tree. Journal o/Symbolic Logic, 52:219-226, 1987.

15. It. Lewis and C. Papadimitriou. Elements of the Theory o/Computation. Prentice-

Hall, 1981.
16. J. Marcinkowski. Undecidability of the first-order theory of one-step right ground

rewriting. To appear in RTA'97, 1997.
17. J. Mongy. Transformation de noyaux reconnaissables d'arbres. For~ts RATEG.

PhD thesis, Laboratoire d'Informatique Fondamentale de Lille, Universit~ des Sci-
ences et Technologies de Lille, Villeneuve d'Ascq, France, 1981.

18. M. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.
Transactions of the American Mathematical Society, 141:1-35, 1969.

19. D. Seese. The structure of the models of decidable monadic theories of graphs.
Annals of Pure and Applied Logic, 53:169-195, 1991.

20. M. Taitslin. Some further examples of undecidable theories. Algebra and Logic,
7:127-129, 1968. Original paper (russian) in Algebra i Logica 6(3):105-111, 1967.

21. W. Thomas. On logics, tilings, and automata. In Annual International Colloquium
on Automata, Languages and Programming, 1991.

22. R. Treinen. The first-order theory of one-step rewriting by a linear term rewriting
system is undecidable (extended abstract) , June 1996.

23. R. Treinen. The first-order theory of one-step rewriting is undecidable. In
H. Ganzinger, editor, 7th International Conference on Rewriting Techniques and
Applications, volume 1103 of LNCS, pages 276-286, New Brunswick, N J, USA,

July 1996. Springer-Verlag.
24. S. Vorobyov. The first-order theory of one step rewriting in linear noetherian

systems is tmdecidable. To appear in RTA'97, 1997.

