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Abstrac t .  We express conditions for a term to be a finite grid-like struc- 
ture. Together with definitions of term properties by excluding "forbid- 
den patterns" we obtain three new undecidability results in three ar- 
eas: the 3*Y*-fragment of the theory of one-step rewriting for linear and 
shallow rewrite systems, the emptiness for automata with equality tests 
between first cousins (i.e. only tests at depth 2 below the current node 
are available), and the 3*V*-fragment of the theory of set constraints. 

1 I n t r o d u c t i o n  

Domino games and Taring machines are well-known tools to prove undecidability 
results. The grid structure provides convenient means for encoding computation 
sequences of Turing machines. In its infinitary version (i.e. Z x Z), it has been used 
for instance to obtain undecidability results for monadic second order theories 
[21,19,6,14,15]. A classical encoding of the computation of a Turing Machine can 
be done only with a local matching on a grid, where, roughly speaking, row i 
contains a description of the tape at time i, and column j contains the values of 
cell j of the tape during the computation. Only local tests are necessary to verify 
that successive rows in the grid correspond to successive tapes in a successful 
computation of the machine. 

In this paper we prove undecidability results for computational mechanisms over 
finite terms. Intuitively, a term is a grid-like term if from each node, going one 
step up and then one step to the right yields the same subterm than going one 
step to the right and then one step up. In other words, the directed acyclic graph 
associated with a grid-like term is a grid. 
Basically, the common approach for the results we prove here is the following. 
We have to express two properties: that a term is a grid-like term, and that the 
grid encodes a computation of a Turing machine. Since the latter can be done 
using local tests only, regular tools such as rewrite systems or tree automata  can 
be used to exclude certain "forbidden" patterns. 
Using these techniques we prove that the following theories are undecidable: 
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- the 3*V*-fragment of the theory of one step rewriting for the class of shallow 
and linear rewrite system, and 

- the emptiness property for tree automata  with equality tests between first 
cousins, and 

- the 3*g*-fragment of the theory of set constraints. 

O n e - s t e p  r e w r i t i n g  The theory of one-step rewriting for a given rewrite system 
/ / a n d  signature ~ is the first-order theory of the following structure: its universe 
consists of all Z-ground terms, and its only predicate is the relation "x rewrites to 
y in one step by R". The structure contains no function symbols and no equality. 
In [23] it has been shown that there is no algorithm which decides the 3*V*- 
fragment of the theory of one-step rewriting for any rewrite system R. This result 
has been refined to the 3*V*-fragment for the class of linear rewriting systems in 
[22], to the 3*V*-fragment for the class of right ground rewriting systems in [16] 
and to the 3*V*3*-fragment for the class of linear noetherian rewriting systems 
in [24]. Recently, decidability of the positive existential fragment has been shown 

in [12]. 
In this paper we restrict the class of rewriting systems for which the theory of 
one-step rewriting is undecidable to the class of linear and shallow term rewriting 
systems. This undecidability result is surprising in the light of the decidability 
result for the quotient algebra by a finite set of shallow equations [5]. 

T r e e  a u t o m a t a  w i t h  e q u a l i t y  t e s t s  Tree automata  with equality tests have 
been introduced by Dauchet and Mongy to tackle non-linearity problems in vari- 
ous fields such as rewriting, program approximation, and partial evaluation [17]. 
On the one hand, the class of languages recognized by tree automata  with equal- 
ity tests is closed under non linear morphisms and classical boolean operations. 
On the other hand, when unrestricted equalities are allowed the emptiness prop- 
erty for these aeceptors is undecidable. This negative result stems from the fact 
that  equalities can be propagated in a term as far as desired using transitiv- 
ity of the equality and repeated application of non-linear rules. In the original 
paper, the authors encode the Post correspondence problem using overlapping 
equalities between subterms at different depth. 
When only equalities between direct subterms (brothers) are allowed it is not 
possible to overlap equalities, and Bogaert and Tison have shown that  in this 

case the emptiness problem is decidable [2]. 
Closely related, Caron et al [3] have defined encompassment automata,  that  is 
au tomata  with equality tests which can handle a bounded number of equalities 
along each path of a tree and between brothers in an unrestricted way. They 
generalized the result of [2] because the emptiness problem is decidable for en- 

compassment automata.  
Consequently, one could hope to keep decidability while testing equalities (and 
disequalities) at the same depth. However, we prove in this paper that  the empti- 
ness problem for Tree Automata with equality tests between First Cousins - 
Tra f ic -au tomata -  is undecidable. 
Se t  c o n s t r a i n t s  Set constraints are relationships between sets of terms of a 
Herbrand Universe. Because of their expressive power and their naturalness, 
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they have been used in program analysis [9,11]. The main idea is to associate 
with a program variable an approximation of the set of its possible values. Set 
constraints have also enriched (constraint) logic programming languages, in order 
to compute with sets [13]. 
Relations between automata  and set constraints have been first pointed out by 
Heintze and Jaffar in [10]: the case of set constraints between sets of words can 
be treated using a translation into monadic second order logic of k successors, i.e. 
Rabin tree automata  [18]. In [7] this approach is reused and a new class of tree 
au tomata  which can handle the case of set (of terms) constraints is defined. As an 
advantage, tree automata  provide for decision algorithms and closure properties 
[8]. 
In a more general way, we can examine the satisfiability problem for formulas of 
a theory based on set constraints denoted by 7so. The language of this theory 
is defined in the following way: atomic formulas are elementary set constraints 
of the form t C t'; formulas are obtained from atomic formulas by closure under 
boolean operators (and, or, not) and quantifiers. More precisely, the syntactic 
definition of atomic formulas relies on a set of variables X and a finite set s 
of functions symbols. Then, an elementary set constraint is of the form I C t t 
where t, t t E T r (X) .  An interpretation Z of a set constraint maps each variable 
of X onto a subset of Tr .  
The complete theory 7so is undecidable because of the undecidability of the 
monadic theory of finitely generated free algebras [20] and the existential frag- 
ment is decidable [1,4,7]. This paper states that the satisfiability problem for 
formulas of the ~*V*-fragment is undecidable. 

The paper is organized as follows. In Section 2.1 we explain how local grid- 
patterns can be used in order to describe compution sequences of a Turing ma- 
chine. In Section 2.2 we introduce finite grid-like terms. The definition has to 
take care of the borders of the grid. This implies a special treatment at the leaves 
of the terms. The encoding of the halting problem is then presented in Section 3 
for rewrite systems and Section 4 for tree automata.  Finally, the undecidability 
result, for set constraints is given in Section 5. 

2 P r e l i m i n a r i e s  

Let T r ( X )  denote the set of terms over a ranked alphabet F and a set X of 
variables, and let t E Tv(X) .  We denote by Var(t) the set of variables which 
occur in t and by lip the subterm of t  rooted at position p .  We have head(t) = 
iff t(0) -=- a, that  is o~ is the root symbol of l. 

2.1 T u r i n g  M a c h i n e s  a n d  C o m p u t a t i o n s  

For the rest of the paper we fix an instance of a restricted class of Turing ma- 
chines: let T = (Q, I, q,, q/) be a Turing machine with tape alphabet {a, b} (rq 
is the blank symbol), state set Q = {qa , . . . ,  qk}, initial state q,, accepting state 
q/ and instruction set I. We can assume w.l.o.g. 

- that T never accesses a tape position to the left of the starting position, 
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- tha t  it never writes a [] on the tape (hence, [] can never occur to the left of 
the head). 

The signature E as well as several other entities to be constructed during the 
proof depend on the Turing machine T. For the sake of brevity we do not mention 
the index T which strictly speaking is in order here. 

We specify the configuration of the Turing machine by a string called instan- 
taneous description. As usual, the configuration is noted by concatenating the 
part  of the tape left to the head, the state, and the part  of the tape start ing at 
the head position (such that  the tape symbol seen by the head is written to the 
immediate  right of the state). For technical reasons, we will in addition delimit 
the string by the $ start  mark  and the # stop mark;  the stop mark  is always 
preceding by the blank symbol and furthermore the symbols on the left half of 
the tape will always be indexed with l, while the symbols on the second half are 

indexed with r. 

D e f i n i t i o n  1 ( I n s t a n t a n e o u s  D e s c r i p t i o n ) .  We define the following sets of 

constants: 
(leftchar) := al I bl {state} := ql [ . - - I q ~  

(rightchar) := ar I br I []r {constant} := $ I:~ I (leftchar) ] (rightchar} I(state} 
An instantaneous description (1D) is a string licensed by the following regular 
expression: (id) := ${leftchar)*(state)(rightchar)+[:]r# 

D e f i n i t i o n  2 (Pid). The set Pid is the following set of pat terns where _ matches 

any character: 
=$1$(rightchar) l $(C l (leftchar)(rightchar} l (leftchar)(C [ (state)(leftchar) ] 

�9 , ,  , , ) ~ -  - ,  ~rtghtchar.,,,~ta&) i "  a ~  I b~: (state)(state) I (state)# [ (r~ghtchar]~leftcha ") ] ~-  [ a, 

L e m m a  3. A string w 6 {constant}* is an instantaneous description if w starts 
with $, ends with # ,  and none of the patterns of P~d matches w. 

A sequence of IDs can be stored in the upper right quarter of an infinite plane 
part i t ioned into cells (recall that  a Turing machine's tape is left bounded) where 
each line corresponds to an ID. We detail now conditions for such a plane (or 
grid) to be a computat ion by means of 2-dimensional patterns.  

D e f i n i t i o n  4 (PT). The set PT is the following set of patterns: 
where (q, c) ~+ (V, d, 0) and 

x where x r $. %- ulqlc~ ( x T k u o r y ~ k p ~  

where x -~ # and 
( x r []r or u # #) .  ulql cr 

where u ~ {state} and x 7s ct, x ~ z  
c, 6 (leftchar) ulql cr 

where u r (state} and x • cr, 
cr C (rightchar) 

where (q, c) ~ (p, d, R) and 
( x # u  or y #  d~ or z # p )  

where (q, c) ~-+ (p, d, L) and 
( x 0 k p o r  y~k u or z ~k dr). 
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L e m m a  5. A grid g represents a computation if the first line o f t  is the initial 
configuration $qsDr# and none of the patterns of Pid or PT matches 9. 

2.2 Terms R e p r e s e n t i n g  Grids 

D e f i n i t i o n  6 ( S i g n a t u r e  s  The signature F consists of the ternary symbol 
f and the constants • al, bl, aT, br, c]~, $, # ,  q t , . . .  , qk. 

The symbols of F are used to represent computat ion sequences of the machine T. 
Note that  the tape symbols come in two variants: left and right handed. 

D e f i n i t i o n  7 ( F - g r i d ) .  A ground term t over some super-signature of F is 
called a F-grid if 

1. t E T r ;  
2. for 

(a) 
(b) 
(e) 

3. for 
(a) 
(b) 

4. for 

every subterm f ( x ,  y, z) we have 
x = 10 or head(x) = f ,  
y = 10 or head(y) = f and 
z E {al, bt, a~, br, [%, $, --/#, q l , . . .  , qk}; 
each subterm f ( f ( x l ,  Yl, zl), f(x2,  Y2, z2), z3) 
the equation Yl = x2 holds and 
head(y1) = f; 
each subterm f ( x l ,  f ( f ( x2 ,  y2, z2), Y3, z3), zl), head(x1) = f . 

Hence, the directed acyclic graph of a F-grid t is a grid in the sense of the last 
section. In a term t, the last argument of an f - t e r m  is the content of a cell, the 
first argument  is the upper neighbour, and the second argument is the neighbour 
to the right. The "end" of the grid (on a row or on a column) corresponds to a 
leaf -1-0 of t. The last three conditions need some explanations: 
Condition 3a states that  by going one step up and then one step to the right 
one gets the same description than by going first one step to the right and then 
one step up. Condition 3b states that  when there is a description of the upper  
neighbour and of the right neighbour of some cell, then there is also a description 
of the upper right neighbour. Consequently, every i + 1-th row is as least as long 
as the i-th row. Finally, condition 4 states that  if a cell has an upper-right 
neighbour then it has an upper neighbour, too. Consequently, all lines s tar t  at 
the same position (see Figure 1). 

3 Rewriting 

3.1 P r e l i m i n a r i e s  

A rewrite system is called shallow, resp. linear, if all its rules are shallow, resp. 
linear. A rewrite rule 1 --+ r is called shallow, resp. linear, if both l and r are 
shallow, resp. linear. A term t is shallow if all its variables occur at depth at most  
one. A term t is linear if it does not contain any multiple variable occurrences. 
We employ the following abbreviations: 
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br 

~r # 

f 

f f a~ 

. . .J ~ "%% 

/ o  f b~ f -Lo # 
.-'1 ~'~. .j.....'"]'%%, 

............ '%'N. .... i -~ 

�9 Lo f []~ "Lo f [] 
r , .j1%%. .~ %%. 

.......... i ' - - ,  ...... ! -, 
�9 Lo "Lo # -Lo "Lo # 

Fig. 1. A grid of two lines and its corresponding F-grid t. 

x --+ I y := x - +  y 
x ~ y := x -+ y A y ~/+ x 

x ~ l y : = x ~ y  

x __+,.+1 y :__ 3z (x -+ z A z __+n y) 
x ::>n+l y :_ 3z (x :::> z A z :=>n y) 

The set of leaf positions of a term t is denoted by s  and its set of non-leaf 
positions by ZPos( t ) .  The set of all positions of t  is Pos(t)  = s  
The implication sign of predicate logic is written D in order to distinguish it 
f rom the rewrite relation symbol -+. 

D e f i n i t i o n  8. Let Z be a signature and R be a ~-rewri te  system. The struc- 
ture ~4~,R is defined as follows: The language of .A~,R contains no constants or 
function symbols, and its only predicate symbol is the binary predicate symbol  
-+. The universe of ,4~,R is the set T (Z) ,  and t --+ s holds in .A.v,n iff t rewrites 
to s in one rewriting step of R. 

3.2 T h e  U n d e c i d a b i l i t y  P r o o f  

T h e o r e m  9. There is no algorithm which decides for any signature ~ and any 
linear and shallow Z-rewri te  system R the 3*V*-fragment of  the theory of  .Az,R. 

We are going to reduce the halting problem for the restricted class of Turing 
machines defined in Section 2.1 to the validity of a certain formula in some 

structure .A~,R. 

D e f i n i t i o n  10 ( S i g n a t u r e  Z,  r e w r i t e  s y s t e m  R).  The signature ~ is the 
extension of f by the constants u, r, u ~, # .  The ~-rewri te  system R consists 
of the following rules (note that  R is shallow and linear): 

f (x ,  y, z) ~ u(x) I r(y) I u'(~) I "'(Y) r  ~ r(x) r'(~) -+  u (x )  

L e m m a  11. For every finite set P of linear terms in T ~ ( X )  there exist a sig- 
nature extension ~ p  ~ ~ ,  a shallow and linear ~p-rewri te  system RF D R, a 
quantifier-free formula ad(x) and for every p E P an ~*-formula match[p](x) 

such that: 



363 

- for every t E Tsp:  Asp ,Re  ~ ad(t) i f f t  E Tr;  
- for every p E P and t E T~: A~p,Rp ~ match[p](t) i f fp  matches t. 

Proof. Let P = { Q , . . .  , tn}. We define 

.-,~p : :  S U  {ct,o It  E P, oE :rT)os(t)}U {el,j I 1 < i < n, 1 <_ j < n +  i -  1} 

For any t E P and o E Pos(t), let dt,o : =  t]o if o E s and dt,o := %0 if 
o ~ Z'Pos(t). 

• p  : =  R u {h(~) ~ h(~) I h r r }  

U {.f(dt,ol,. . .  , dt,op) --+ %0 [ t C P, o E ZPos(t),  head(rio ) = f,  ari ty( f )  = p} 

U {dti,e --+ ei,1, e i , j  --+ e i , j + l ,  el,n-t-i-1 -'st dti,e I 1 < i < n,  1 ~_ j < n + i -- 2} 

Finally, we define, where ti E P and k is the cardinali ty of ZPos(ti): 

ad(x) := x ~ x 

match[tl](x) := ?y  (x _+k Y A y ~,~+i-1 y) 

D e f i n i t i o n  12 (grid(x)). 

grid(x) := ad(x) A A (-,match[f(h(_),_,_)](x) A -,match[f(_, h(_), _)](x)) 
hff{-ko,f} 

A -~match[I(_, _, f(_))](x) A -,match[f(_, _, J-0)](x) 

A Vy, z , z ' , v  ( x  _+2 y A match[f(r(_),u'(_),_)](y) A y -+ z 
/ ,  match[u(r(_))](z) ,X ~ ~ ~' A mat~h[~'(~'(_))](z') 
A z' -+ v A match[r'(r(_))](v)) D V Z 

A A ~m.atch[f(f(_, h(_), _), f(_, _, _), _)](x) 
h ~ f  

A A -,match[f(h(_), f ( f (_ ,  _, _),-, _), _)](x) 
h#f 

Note tha t  grid(z) is a V* formula since each occurrence of a match-formula is 
negated. 

L e m m a  13. Let ~ p  D_ ~ and Rp D_ R be constructed according to Lemma i1, 
where P contains all the patterns mentioned in Definition 12. Then a term t E 
T (Zp )  is a l'-grid iff .4sp,R,. ~ grid(t). 

D e f i n i t i o n  14 ( in i t ) .  

init(x) := match[f(_, f(_, f(_, f(_, A-o, #) ,  ~ ) ,  q~), $)](x) 

A~match[f(f(_,  f(_, f(_, f(_,-1-o, ://:), I::1,.), q~), $),-, _)] (x) 
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The first part  of init(g) where g is a F-grid states that  some row of the grid 
g starts  with S q , ~ : ~ ,  that  is with the instantaneous description of the initial 
configuration. The second part  states that  there is no preceding line to the initial 
configuration (there might be some line that  is not an instantaneous description). 
Note that  init(x) is a 3*V*-formula. 

Each two-dimensional pat tern on the grid can be expressed as a term of T r ( X ) .  

D e f i n i t i o n  15. We associate with each pat tern of P~d and PT a term of TF(X).  
This yields sets P ~  and PT of terms of TF(X).  

We illustrate the last definition with an small example of a pa t tern  p of PT and 
its associated term T_r(X): 

f 

f f u 

xl f u f f q 
.-'i',. ...--'1%." --""| ~ x ~ %. .. .. f - "  i ".~ 

.... "" i ..... -. ..-'/ �9 ....... , .... i \ 
X2 f dt x5 f dt y xlo c,. 

. . . i , .  ' '  
.. " " ~  j , . .  % . f | "% 

�9 " ' , \  , , 

x3 x4 q~ x6 x7 qr xs x9 q' 

D e f i n i t i o n  16. We define the following formulae: 

traos( ) : =  A -~rnatch[p](x) A A -~match[p](x) 

/i.al(~) := mateh[qA(x) 

Proof of Theorem 9. Let A ~ , n  ~ grid(t) A init(t) A trans(t). Then t represents a 

computa t ion  sequence. 
Let M be the set of all pat terns used in the above constructions, and let ~M 
and RM be according to L e m m a  11. Then the Turing machine T halts on the 
empty  input iff A s ~ , n ~  ~ halts. This completes the proof of Theorem 9. 

4 A u t o m a t a  

D e f i n i t i o n  17. A Trafic-automaton is a 4-tuple .4 = (F, E,  F, R) where F is 
a finite ranked alphabet;  E is a finite set of unary letters called states disjoint 
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from F; F C_ E is a set of final states; and R is a finite set of transition rules, 
all being of the following two forms, where ql, �9 -., q,~, q C E and xi, xkj E X: 

f(q, q 
�9 , X n . . Z n f (q l ( fa(x~ , . ,  x~l ) ) , . . . ,q~( f~(  1 , . ,  p=)))--+q. 

Note that  rules may be non-linear, that  is the same variable may occur twice or 
more often in a left hand side. 
The tree language recognized by a Trafic-automaton ,,4 is the set of terms of T r  
which are reduced by the rewrite system R into a final state: 

L(A) = {t E TF It Z~ q(t) where q e F}.  

The class of languages recognized by Trat /c-automata is closed under union and 
intersection. 
Let us recall that  the class of languages recognized by tree au toma ta  are closed 
under union, intersection and complementation.  Let us remark that  languages 
recognized by tree au tomata  are also recognized by Tratlc-automata.  

T h e o r e m  18. The emptiness problem in the class of Trat~c-automata is unde- 
eidable. 

We are going to reduce the halting problem for the restricted class A/tT of 
Turing machines defined in Section 2.1 to the emptiness problem in the class of 
Trat /c-automata.  In other words, given a Turing machine T, we build a Trafic- 
automaton  Ah~u~ such that  s encodes all successful computat ions of 
T. 
In the proof, we first state in Lemma 19 that  F-grids are recognizable by Trafic- 
au tomata .  Then, Lemma  20 proves that  codes of a successful computa t ion  are 
also recognizable by Trafic-automata.  

L e m m a  19. There exists a Tratic-automaton Ag~id such that s = {t ] 
t is a F-grid}. 

Proof. Let us consider F0 the set of constants of F and the Trat ic-automaton 
.Ag = (F, {q}, {q}, R) whose rules are: 

Va, b, c E Fo a --+ q f(q(a), q(b), q(c)) --+ q 
f(q(a), B, q(c)) --9, q f(q(a), B, C) --+ q 

f (A ,  q(b), C) --+ q f (A ,  B, q(c)) --+ q 
with A =- q( f (x l ,  Yl, zl)) t3 = q(f(x2, Y2, z2)) 

f(q(a), q(b), C) --+ q 
f (A ,  q(b), q(c)) --+ q 

f (A ,  B, C) --+ q 
C = q(f(x3, Y3, z3)) 

We prove that  E(.A9) = {t E Tr [ t satisfies Condition 3a of Definition 7} using 
induction on the structure of terms for the D part  and using induction on the 
number  of derivations for the _C part .  

Conditions 2, 3b and 4 of Definition 7 correspond to local tests on subterms 
and hence {t G TF ] t satisfies Conditions 2, 3b and 4 of Definition 7} is a reg- 
ular language, then recognizable by a (classical) tree automaton.  Then we can 
construct a tree au tomaton  Agt such that: 

s = {t E Tr ] t satisfies Conditions 2, 3b and 4 of Definition 7}. 
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Moreover s n s = {t I t is a F-grid}. Finally, since every tree au- 
tomaton is also a trafic-automaton and the class of TrMic-automata is closed 
under intersection, there exists a Tra/~c-automaton A~rid such that/:(Mm.id ) = 

l](Ag) f"l l~(Agl). 

L e m m a  20. Let T be a Turing machine in r There exists a TrMic-automaton 
Ahalts such that f~ (.Ahatt s) = {successful computations of the Taring machine T}. 

Proof. Let T be a Taring machine. For any term p of Pig and PT, P is linear 
then {t E Tv I some instance of p is a subterm oft}  is a regular langage. 

Moreover {t e Tr  I tl0 = f (u l , f (u2 ,  f(ua, f(u4,-ko,#),r%),q,),$)} and {t E 
Tv ] f(-L0, u, q]) is a subterm of t}  are also regular langages. Then we define in 
the same way than in Section 3.2 (classical) tree automata  Ai~it, A t ~ , , ,  Afi,~l 
and Ah~Us such that: 

f~(.Ahalts) : ~,(r ) N s  ) f~ s162 N ~,(.Afinal) 
= { successful computations ofT}.  

The Turing machine T halts on the empty input iffs ~k ~. This completes 
the proof of Theorem 18. 

5 Theory  of Set C o n s t r a i n t s  

T h e o r e m  21. There is no algorithm which decides for any ranked alphabet F 
the 3*V*-fragment of TSc. 

The proof first relies on Lemma 24 which states that there exists a formula 
grid(X) in the 3*V*-fragment of 7~c such that grid(X) is satisfiable if and only 
if X denotes a singleton set containing a F-grid. Then, following the construction 
of Section 3, in Lemma 25 we build a formula halts which is satisfiable if and 

only if the machine T halts on the empty input. 

D e f i n i t i o n  22. For the sake of brevity, we define the emptyset 0 and the inter- 

section N as follows: 0 = VX 0 C_ X 
X a y  = O = g Z  (Z C X A Z  C Y)=> Z =O 

D e f i n i t i o n  23. Let C = F0 \ {-L0} and grid(X) be a formula defined as follows: 
grid(X) -- sing(X) A (3S subterms(X, S) A shape(S) A equalities(S) A edge(S)) 

where sing(X) = X • 0 A (VY Y C_ X ~ X C Y V Z C O) 

subterms(X,S) ~ S C_ I ( S , S , C )  U-l-0 A X C_ S 
A VS' (S' C f(S' ,  S', C) U 1o A X C S') :=> ,5' C S' 

shape(S) =-- g r , ,  Y2, Za, 2 I(I(Y1, J-o, Y2), f (Z) ,  Ya) n S = 0 

equality(S) =- VY1, Y2, Ya, ]/4, Ys, Y6 
(A~ Y~ g: 0 A f ( f (Y , ,  Y2, Ya), I(Y4, Yh, Ya), Yr) C_ S) ~ Y= = u 

edge(S) - VE,  Y2, Ya, Y4, Ys, Y6 f (  J_a, f ( I (Y , ,  Yu, Ya), Y4, Ys), Y6) rq S = 0 
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L e m m a  24. gX  (grid(X) r162 3t r-grid st x = {,)) 

Proof. The formula s ing(X) is satisfied iff X is a singleton. Let t E X.  The 
formula subterms(X, S) defines the set S of subterms of t except the elements 
of C. The first line of the formula defines a subterm-closed set containing t. For 
example, let t in S (t r -L0): 

t e S => t ~ f (S ,S ,  C) :::> 3 t l , t2 , t3  st t = f ( t l , t2, t3)  => Q, t2  E S, 13 C C. 
The second one defines S as the smallest set satisfying the first line. 
Finally, the formulae shape(S), equality(S) and edge(S) translate Conditions 2, 
3 and 4 of Definition 7. 

L e m l n a  25. There exists a formula halts of the ~*V*-fragment of Tsc such that 
halts is satisfiable iff the Turing machine T halts on the empty input. 

Proof. Let T be a Turing machine and X such that  grid(X). Then, according 
to L e m m a  24, there exists a / ' - g r i d  t such that  X = {t}. grid(X) is a formula of 
the ~*V*-fragment of 7sc,  and it defines the set S of all subterms of the te rm t. 
We define now in a same way than in Section 3.2 formulas ini t(S) ,  trans(S), 
final(S) and halts. To this aim, we just note that  for any term p of Pid and PT, 
we can say that  p matches or does not match a term in S: 

, . a t ~ h [ p ] ( S )  - 3~ p C_ S A p  # O 
where ~ denotes the set of variables of the term p. The preceding formula is sat- 
isfied if there exists set of terms I ( x l ) . . . ,  Z(xl) (Z interpretation and x l , . . . ,  xl 
variables of p) such that  Z(p) C__ Z(S) and I ( p )  r 0. 

The Turing machine T halts on the empty input iff halts is satisfiable. This 
completes the proof of Theorem 21. 
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