
Generalized Quantitative Temporal Reasoning:
An Automata-Theoretic Approach *

E. Allen Emerson and Richard J. Trefler

Computer Sciences Department and Computer Engineering Research Center
University of Texas, Austin TX, 78712, USA

Abstract. This paper proposes an expressive extension to Propositional
Linear Temporal Logic dealing with real time correctness properties and
gives an automata-theoretic model checking algorithm for the extension.
The algorithm has been implemented and applied to examples.

1 I n t r o d u c t i o n

In a landmark paper, [Pn77], Pnueli identified a very general and important class
of computing systems now called 'reactive systems' (cf. [HP85] [Pn86]). Char-
acterized by their ongoing behavior, reactive systems and their sub-components
interact with an environment over which they have little control. Such systems,
e.g. operating systems, tend to be quite complex and they have necessitated the
development of powerful tools for their verification. In [Pn77] it was argued that
temporal logic is a highly appropriate formalism for specifying and verifying the
ongoing operation of reactive systems.

Propositional Linear Time Logic (PLTL) [Pn77] allows the simple expression
of many important system properties at a quMitative level. Using operators such
as 'G' and 'F' meaning, respectively, 'always' and 'sometime' PLTL can express
the requirement that 'every request from a client should be eventually met with
a response from the server' as G(request =r [:response).

Recently, however, it has been recognized that in many applications the
specification of correct operation requires quantitative as well as qualitative
properties. Real time systems, those systems whose correct operation includes
time-critical specifications, require such quantitative analysis. One can introduce
quantitat ive operators such as 'F ~-~' which, informally, means 'sometime before
more than five time units have elapsed'. With the resulting formalism we can
express properties such as 'every request from a client should be met with a
response from the server within five time units' as G(request ~ F~-Sresponse).

In this paper we present a simple but general framework for handling an
enriched class of quantitative problems. Our formalism, R T P L T L + (Real Time
PLTL+) , is an extension of PLTL that employs natural notations from formal
language and automata theory. In particular we have identified an expressive

* This work was supported in part by NSF grant CCR9415496 and SRC contract
95-DP-388.

190

yet tractable fragment of regular expressions enhanced with 'and', 'negation',
and 'exponentiation' operators. Testing emptiness of arbi trary extended regular
expressions is non-elementary, however, the fragment used here in conjunction
with PLTL can be tested for emptiness in t ime exponential in the size of the
regular expression. An example of the types of specifications we are interested
in, a constraint on the set of computations of a system, is exhibited below.

The term (request 4- response* request) is a requirement on strings of sys-
tem actions specifying strings which contain request as the last element of the
string and no occurrences of either request or response anywhere else in the
string. (request 4- response*request) 3 specifies three consecutive occurrences of
strings satisfying (request 4- response* request), i.e. request occurs three times
and response has not occurred, true specifies any computation; therefore the sub-
formula (request 4- response * request) 3 true is satisfied by any computat ion with a
prefix satisfying (request + response *request) 3. Similarly, (response * response) 0
(~ * request) 33 specifies that exactly one response has occurred while fewer
than four requests have occurred. These fragments are used to express the fol-
lowing specification. If the server ever receives three successive requests from a
client, and the server has issued no response since receiving the first request,
then the server will issue a response before receiving a fourth request. This
is expressed as G ((request 4- response * request)a true ~ ((response *response) 71
(~ * request) ~3) true) .

Verifying that a reactive system obeys a specification, written as a formula
in one of the formalisms mentioned above, can be accomplished with a technique
known as model checking [CE81] (cf. [QS82]). Model checkers answer the ques-
tion 'given a specific reactive system M and a formula r do all computations
of M satisfy the formula r We present an automata-theoret ic model checking
algorithm that allows us to model check formulae of R T P L T L + over general rep-
resentations of reactive systems. The algorithm has been implemented on top of

the SMV [Mc92] model checking system.
Section 2, below, discusses syntax and semantics. Model checking is described

and analyzed in Section 3. Section 4 contains some examples and discusses the
implementation of the model checking algorithm. Finally, section 5 contains a

summary.

2 Preliminaries

2.1 Syntax

The full paper [ET96] presents a unified syntax for CTL, PLTL, CTL* and cer-
tain quantitat ive extensions, viz., RTCTL, RTPLTL, RTCTL-F, R T P L T L + and
RTCTL*+. Here, however, we will focus on PLTL and its extension I~TPLTL+.

We use the symbol AP to denote the finite set of underlying atomic propo-
sition symbols. ACT denotes the finite set of atomic action symbols. Elements
of AP will be represented by P,Q, etc., elements of ACT by B , C , D , etc.,
and)~f will represent the set of non-negative integers.

191

The set of regular expressions over ACT are constructed by the following
rules.

E1 For each B E A C T , B is a regular expression.
E2 A is a regular expression.
E3 For r, r ' regular expressions, (rr'), (r A r'); and (F) are regular expressions.
E4 For r a regular expression, i E H , (r*), (ri), (r<-i), and (r >i) are regular

expressions.

Path formulae are formed according to the rules:

P1. Each atomic proposition P is a formula.
P2. If r and r are path formulae then so are -1r and r A r
P3a . If r and r are path formulae then so are Xr and (r162
P3b . If r and r are path formulae and r is a regular expression then (r162 is

a path formula.

In the sequel we will sometimes drop parentheses from formulae and expressions
when the parsing seems clear.

PLTL is the set of formulas formed by rules P1, P2, and P3a while Regular
PLTL (RPLTL) extends PLTL with rule P3b.

RTPLTL+ is a subset of RPLTL that restricts the type of regular expressions
allowed in rule P3b. Supposing ACT -- {B1, . . . , B,~} then we will sometimes use
ACT to denote the regular expression (B-~I A . . . A B-~-~).

Let n E Af and B E ACT a term is one o f ' = nB' , '-< nB' , or '~- nB ' which are
shorthands for ((B-)* B)~, ((B)* B)<n (~-)., and ((B)* B) '~ (ACT)*respectively. A
ce expression is any boolean combination of terms.

Le tm, n, bEAf, i E [1 : n] , B I , C E ACT a n d T i C ACT such thatB~ ETi.
IfT~ = {B~, D1, �9 . . , Drn} then ~-is a shorthand for (B~ + D1 + . . . + Dry), which,
to avoid the proliferation of parentheses, may be written as Bi + D1 + �9 + Drn

Regular formulae are formed by the four rules below.

R l a . (~-*B1 ...%-~*Bn) is a regular formula.
R l b . (~l-*Bt ...%-n *Bn)--- b, a shorthand for (~-*B1 . . .~-j*Bn)b(ACT) *, is a

regular formula.
R l c . (~-*B1 ...%-~ *B~)- ~b, a shorthand for (~-*B1 - - * B . . .7~ ~)b+I(ACT)*, is a

regular formula and is .

R2. If pt and P2 are regular formulae then so are (plp2) and (pt ;3 p2) which
are shorthands for (p~ A pACT*)p2 and (Pl A P2) respectively.

RTPLTL+ is the subset of RPLTL such that for any sub-formula CUre either
r is a c e expression or r = -~(P A -~P) and r = p A (pACT*) for some regular
formula p. When dealing with regular expressions which contain a p formula we
typically write (-~(p A-~P))UP^(pACT')r as (p)r

Derived operators, similar to PLTL, F, G ~ and (\(p))r ___ -~(p(-,r are also
allowed.

We also use the following shorthand notation. Given formulae of the form
((p~p2) . . .p ,) , if the pl are all identical then we will write (pl)~ as a shorthand
for ((plp~). . .Pn) .

192

2.2 S e m a n t i c s

Before defining the semantics of the formulae, some intuition regarding regu-
lar 'formulae may be in order. Formulae of the type (~-*B1 . . .~-~ *B~) have a
straightforward meaning. These formulae express restrictions on the order of the
atomic actions of computat ions (paths through a structure); furthermore, the
meaning of the formulae is equivalent to the meaning of their identical regular
expressions. (~-T* B ~ . . . ~-n * B,~)b is a shorthand for b copies of (~-* B 1 . . . ~-~ * B~)
and formulae of this type are also equivalent to their identical regular expres-
sions. However, formulae of the form (~-*B1 ...~-~ *B~) ~b do not have a mean-
ing .equal to their identical regular expressions. (~-* B1 . . . ~-~ * B~)-b expresses
the requirement that there are no more than b occurrences of the sequence
(~-*B1 . . .~-~*B~), , i t does not require that there exists a b' E [0 : b] such tha t
(~-*B1 ~-j~*B,~) b be satisfied. In particular (~-*B~. . .~ -~*B~) ---~ is true of a
sequence so long as the sequence does not satisfy (~-*B1...~-~-~ *B~). While the
empty string satisfies these requirements it is not the only string tha t does so.

Temporal logics, such as PLTL, are usually interpreted over the computa t ions
or paths in (Kripke) structures, cf.[Ar94]. A Kripke structure is a triple which
consists of a set of states S, a transition relation on the state set R, and a labeling
function L. L labels the states and/or transit ion relation arcs with, respectively,
the atomic propositions true at a state and the a tomic actions associated with

transitions.
Unlike RTCTL, defined in [EMSS90], R T P L T L + does not implicit ly asso-

ciate a 'clock event ' with each transition. Here we can denote clock events by a
distinguished action C and stipulate that the clock ticks infinitely often. In fact
R T P L T L + allows the use of multiple independent clocks.

Let M = (S, R, L) be a structure such that S is a finite set of states. R C_

S • (A C T • S) is a total transition relation and L : S U R - - ~ 2 A P U A C T

such that for a l l s E S , L(s) E 2 A P and for a l l s , s I E S, ando" ~ ACT such

that (s, o-, s') E R , L(s, o', s') = o'.
Let x be a 'full pa th ' in M, then x is of the form x0o-0xlo-1 �9 �9 �9 where for i > 0,

x~ E S, o-i E ACT and (xi,o'i,x~+l) E R. xi,o-~ denote, respectively, the i th

state and the ith action of a pa th while x i denotes the full pa th xio-ixi+lo-i+l...,
and x]ACT denotes the projection of x onto ACT.

Given a full pa th x in M we denote tha t x satisfies or models pa th formula
r by M, x ~ r Similarly x does not satisfy r is denoted by M, x ~ r When M
is understood we will sometimes drop it f rom the ~ notation.

is defined for RPLTL formulae by the following rules.
Let o- E ACT* then the meaning of regular expression r is defined as follows.

E S l O-EB, f o r B E A C T i f f o - = B "
ES2 o- E)~ iff o- is the empty string.
ES3 If r ---- (rlr2) then cr C r iff o- = o'lo'2 such that o'1 E r l and o'2 E r2 . If

r = (r lAr2) t h e n o ' E r i f f o - E r ~ a n d o - E r 2 . I f r = r - T t h e n o - E r i f f o ' ~ r l "
E S 4 If r -- (rl) ~ then o- e r iff o- e A. r = (rl) ~, for 0 < i, then o" e r iff

o- = o-lo-2 and o-1 E r and o-2 E (rl) ~-1. If r = (rl) -<i then o- e r i f f there

193

exists j < i such that a E (rl) j. I f r = (rl) ->i then cr C r i f f there exists j _> i
such that ~ E (r~) j . If r = (r~)* then r E r i f f there exists a j E A; such
that ~r E (rl) j.

Let x = x0c~0., be a full path in M, r 1 6 2 1 6 2 are path formulae and r i s a
regular expression then

P S l . r : M , x ~ r
PS2 . r 1 6 2 M , x ~ r x ~ = r 1 6 2 1 6 2 1 6 2 M , x ~ r x ~ r and

M , x ~ r
PS3a . r 1 6 2 M , x ~ r x 1 ~ r r 1 6 2 1 6 2 t : M , x ~ r exists

i E A/" such that M, x ~ ~ r and for all j E [0 : i - 1], M, x j b r
P S 3 b . r = CUre ~ : M , x ~ r iff there exist i E A f such that cr0...~i_l E r,

M , x i ~ r and for all j E [0: i - 1] ,M,x j ~ r

We denote the length of an RTPLTL+ formula r by]r and the magni-
tude of the formula by I]r Ir corresponds to the number propositions and
operators. When r is an atomic proposition it has magnitude 0. HTr = Nr
and when r is a positive boolean combination of r and r then and IIr =
llr + IIr Formulae of the form Xr have magnitude IIr formulae of the
form r162 have magnitude Hr + IIr ce terms kB , -~ k B and ~- k B all
have magnitude k. II-~ceiI _= 1 + Hcell and Hce A ce'II = ticeH . Iice'II . Then
IIr162 = I]r +]lr +]lce]] �9 Regular formulae of type R l a have (respectively
Rib, a l c) have magnitude n(max(ITi])), where I7~] is equal to the number of el-
ements in the set 7~, (bn(max(171I)), bn(max(171 I)))-Formulae of the type (#1#2)
and (Pl N P2) have magnitude liP1]] + I]p2H and IlPl I] Hp211, respectively. Finally,
IIpr = Ilpll + 11r

A formula is in positive normal form, PNF, when only propositional constants
are negated. Using the appropriate short forms, given above, and DeMorgan
rules any RTPLTL+ formula r can be transformed into an equivalent formula
r which is in PNF, in time linear in the length of of r

3 M o d e l C h e c k i n g R T P L T L +

Given structure M = (S, R, L), as defined above, and a formula r of R T P L T L +
we define a mode] checking procedure which determines whether there is a path
x in M such that M , x ~ r This is the dual of the question posed in the
introduction but can be shown to be equivalent via the following observation.
The computations of M satisfy specification r iff there is no computat ion x of
M such that M, x ~ 7 r

We extend a standard automata theoretic technique to decide this prob-
lem [VW86]. The technique consists of creating an automaton, .A-~r on infinite
strings, cf.[Bu62] and [NP85], which accepts only those strings which satisfy the
formula --r Combine the structure M with .A~r to form the product automaton
M •162 M •162 is an automaton, on infinite strings, whose language is empty
if and only if M is a model of r

194

Before considering the automaton for arbitrary R T P L T L + formula r we
first define automata which recognize infinite strings that satisfy formulae of the
form ptrue and automata which recognize finite strings that satisfy counting
expressions.

Suppose r = ptrue such that p = ((~ * B 1 . . . ~ - n *Bn) CI (-C*C)~-b), and for
all i E [1 : n], Be r C. ,zip = (ACT, Q, 8, q(0,0), F) is a Biichi au tomaton where
Q = {q(0,0),- . . ,q(0,b+l), . . . ,q(m0),. . . ,q(mb)}, F = {q(m0), ' ' ' ,q(mb)}, and 8 :
Q • ACT --+ Q is a deterministic transition relation defined by the transition
diagram in figure 1 . Note that in the figure Z stands for ACT, Z1 = (Z \ 3'1) \
{C}, $ 2 = (S \ 72) \ {C}, etc, and 7~ = 7r \ {BI,C}. In the sequel we shall
sometimes refer to states qf and qf, the states so marked in the diagram.

B2 B2

B(n-l)

�9 n ']~

Bn Bn

Fig. 1. automaton for ((~i-*B1...~-~ *B~) n (-C*C) ~-b)true

As constructed .4p accepts w-strings over the alphabet ACT that conform to
p, Le. the strings contain B1, B~ to B~ in order before the appearance of more
more than b C's and no action in */1 occurs before B1, no action in 72 occurs
between the first occurrence of B1 and the next occurrence of B2, etc.

We can in an algorithmic manner construct au tomata like the above for all

195

the p expressions in the language; the details are straightforward and have been
left out due to space restrictions.

We will sometimes refer to formulae such as r (respectively r formulae with
unnegated (negated) regular components as their primary connective, as positive
(negative) formulae. By extension we refer to .4p (.4F) as positive (negative)
automata.

C l a i m 1 Let x be a full path in arbitrary M and r and r formulas as above
then x ~ r iff (x] A C ~ E s and x ~ r iff (xlACT) E/:(.4~).

Let ce be a counting expression, then there exists a deterministic finite au-
tomaton `4c, = (ACT, Q, 5, q0, F) such that for a l l , C ACT*, c~ e s iff
~r ~ ee. Constructed recursively from the structure of ce according to the rules
for creating product and complementary finite automata, the basic idea is to
keep track of the number of occurrences of the actions specified in the counting
expressions.

Claim 2 Given a counting expression ce, deterministic automaton .Ace can be
constructed in time linear in [Ice[[such that s = {~ E ACT*] ~ ~ ce} and
l`4c~l is linear in IlceH.

Let r be a formula of RTPLTL+ in PNF. For each regular sub-formula p (~)
and counting expression ee there is a corresponding automaton .4p (.4F) or .4ce.
Number these automata 1...a. Then for j E [1 : a], .4j = (ACT, Qj, ~j, qJo, Fj)
and we refer to the i-th state of the j-th automata by qJ.

T h e o r e m 3 . Given a formula r of RTPLTL+ there is a Biichi automaton .4r
such that for any structure M = (S, R, L) and full path x of M, M, x ~ r iff
x ~ L(.4~) .

Proof." We proceed as follows. Using a modified version of the tableaux con-
struction for PLTL, a tableaux T is constructed from the formula r T encodes
models of r and we can use the structure of T to form the automaton .4r

Before describing the tableaux construction we give a categorization of RT-
PLTL+ formulae as elementary or non-elementary formulae. Non-elementary
formulae are then separated into Alpha-formulae and Beta-formulae. Intuitively,
an Alpha-formulae r with constituents r r is true iff r and r are true while
a Beta-formula r with constituents r and r is true iff one or both of the con-
stituents is true. Note that in the following we will abuse notation and consider
individual states of the automata .4j as formulae.

Propositions and formulae of the form Xr are elementary. The following
lists characterize Alpha- and Beta-formulae and give their constituent formu-
lae. Alpha-formulae : r A r with constituents r and r q~, where .4y is the
automaton associated with pr or ~r with constituent r PC, where .4j is the
automaton associated with pr with constituent q~; ~r where Aj is the automa-
ton associated with Fr with constituent qJ; r162 ~, where Aj is the automaton

196

for ce with constituent cuq~r ' ; CUq~r ', where qJ ~ Fj with constituents r

and •162162 ') V .. V •162162 ') where q~0," J �9 ., qhn are the successor states
of qJ; CVCer where A j is the automaton for ce : with constituent CVq~or
Beta-formulae : r V r with constituents r and r r162 ~ with constituents r
and r A X(r162 r162 with constituents r A r and r A X(r162 cuq~r

where qJ E Fj with constituents r and r A (•162162 ') V . . . V X(r162
where J J q h o , ' ' ' , q h n are the successor states of q~; cvq~r where qJ ~ Fj with

constituents r and X(r162 V X(r162 where j J qho, " �9 ", qhn are the
Vq~ ' J successor states of qJ; r r , where qi E F j with constituents r A r and

r A (X(r162 V . . . V X(r162 where qho, j �9 �9 �9 qh,J are the successor states
of q~; qJ, where qJ is not labeled with f with constituents X(q{0), . . . , X(qh,) j

where j J q h o , " �9 � 9 q h n are the successor s t a tes of qJ.

The tableaux for a formula r is created by 'growing' a finite graph whose
nodes represent sets of sub-formulae of r which are satisfied along computations
satisfying r Nodes are labeled by 'downwardly' consistent sets of sub-formulae,
i.e. if a node is labeled by an Alpha formula r then it is also labeled by both
of r constituents. If r is a Beta formula then the node must be labeled with
at least one of r constituents. Nodes with no next-time formulae have a single
successor which is labeled by the empty set. Otherwise, node V's successors
consist of the entire set of nodes which are first labeled with r iff Xr is in the
label of V, and then are made downwardly consistent. Arcs from a node, V to
its successor(s)~ U are labeled by actions B E ACT according to the following
rules: for all q~ E V, q~ fL Fj there is a q~, E U such that 5j (q~, B) = j" qi', for all

qJ, E U either i' = 0 and .Aj is the automaton for p (~) and PC E U (~r E U),

or there is an q~ E V and 5 j (q{ ,B) J" = qi,, for all cuq{r E V either qJ E Fj and
J

r E V, or there is an CUq,'r E U and 5j(q~,B) = qi,J', for all cuq~'r E U either

i ~ = 0 and r162 E U and Aj is the automaton for ee, or there is a CUq~r E V

and J' = qr for allCV ~r E V then r E V and r E V, or r E V and
qi,, or r E V qJ f[Fj, or q~ f~ Fj and there is a cvq~ ' r E U such that 5j (q~, B) = j

and there is a CVq~'r E U such that 5j(q~, B) = q~,; for all CVq~'r E U either

i ~ = 0 and r 1 6 2 E U and Aj is the automaton for ce, or there is a cvq~r E V
and 5j (q~, B) = qi"J When no such B exists we label the arc with the empty set.
When V contains no automata related formula then the arc is left unlabeled,
meaning that any B E ACT can cause that transition.

We identify similarly labeled nodes by one representative with multiple in-
coming and outgoing arcs. By requiring the uniqueness of node labels, it is
guaranteed that the graph is finite, and of size no more than double exponential

in the length of formula r
Once the graph has been completed it is pruned by removing any inconsistent

nodes. Any remaining eventualities are then numbered and a Biichi acceptance
condition is then used to ensure that no eventuality is pending forever.

Given a non-empty tableaux T for formula r we construct a Biichi automaton

197

Ar whose language contains all stings in (2 AP • ACT) ~ satisfying r and does
not contain any string that does not satisfy r

Ar = (Z, T, 5, To, F) where Z = 2 AP • ACT, T = (AND • {0 , . . . , l}) U sink,
where AND is the set of nodes ofT, and To = {(t, 0)]r E t}. 5 : Z • T ~ 27- such
that (t', k') E 5((t, k), (s, c,}) iff for all P E t, P �9 L(s), for all - ,P �9 t, P ~ L(s),
t ~ is a child of t in T, a is an element of the subset of ACT which labels the
arc from t to t ~, and if eventuality k is pending in t then k = k ~ otherwise
k' = (k-t-l) mod (l+l) . s ink �9 5((t, k), (s, c,)) ifft contains no next time formulae
and for all P �9 t, P �9 L(s) and for all -,P �9 t, P r L(s). s ink �9 r (s, or))
for all (s, o) �9 Z. Finally, F = {sink} U {(t, k)lk = 0}.

The theorem follows from the construction of the automaton and the defini-
tion of the satisfaction relation for RTPLTL+ formulae. []

T h e o r e m 4 . /2(M xAr r 0 iffthere is a fullpath x in M such that M , x ~ r

Proof : The proof is immediate from the previous theorem. []
Theorem 3 gives a model checking procedure that runs in time linear in the

size of the structure M and polynomial in the size of the tableaux for formula r
T, the tableaux for r is at most of size exponential in the]r + I1r since each
node has a unique label.

T h e o r e m 5 . Given a formula r of RTPLTL+ and structure M = (S, R, L), let
size = Ir + I1r then the model checking problem 'do the computations of M
satisfy r is decidable in time O(IM I • EXP(s ize)) .

Proof : Theorem 3 gives a method for creating the Biichi automaton `4 for
the RTPLTL+ formula --(~ ~ r which accepts only those computations that
satisfy ~/i and do not satisfy r From the construction in the theorem .4 is of size
exponential in the length and magnitude of the formula -,(~ ~ r

Form the product automaton M x .4, and test this automaton for emptiness.
Testing Bfichi automaton .4' for emptiness is in 0(].4'1) . Hence we can t e s t
whether s • .4) = ~ in time linear in the size of M x .4. s • .4) = r iff
for all computations x of M, M, x ~: -,(~ ~ r iff for all computations x of M,
M, x ~ (~ ~ r iff M is a fair model of r []

The structure M is typically of immense size while the specification formula
is nsualIy small. Since the model checking algorithm is of linear complexity in
the structure size, the potentially exponential blowup in the formula size should
be tolerable, cf. [LP85]. The complexity is further ameliorated by the use of
symbolic model checking techniques in the implementation of the algorithm.

4 E x a m p l e s

We list a few example specifications which exhibit a pattern typical of real time
systems requirements. The requirements are of the general form 'G (antecedent :=~
consequent)' where the antecedent specifies the occurrence of some time bounded
condition and the consequent specifies a time bounded extension to the an-
tecedent. In the sequel C represents one time unit.

198

E x a m p l e 1. K B occurs exactly two times within five t ime units, then imme-
diately following the second occurrence of B, D occurs within three t ime
units. G(F2B^ Z5C true ==~ F2B^ ~-SCFDA ~3C true).

E x a m p l e 2. If B occurs, then immediately following B, D should occur at
least five times within eighteen time units and there should be at least
three time units between any two of the five consecutive occurrences of D.
G((-B * B)true ~ (((-B * B)((--D * D)(D + C * C) 3) 4 (D * D)) N (-C* C)'<-lS)true).

E x a m p l e 3. If the actions B, D, E, F occur, exactly once each and in order,
within ten time units, i.e. F occurs before eleven time units have elapsed
since the o c c u r r e n c e ; f F B ,, then G occurs within nine t ime units of F.
Let A = B + D + E . G(((A B A D A E A F) N (-C*C)<-l~ ==~
((A B A D A E A F) N (-C* C)~l~

We have implemented an R T P L T L + model checking algorithm on top of
SMV model checking environment. Model checking R T P L T L + is accomplished
by converting formulae of the logic into their au tomata and then translating the
au tomata into SMV modules.

We have employed our model checker in solving the Generalized Railroad
Crossing problem [HJ93]. The problem is to build a controller which will sense
the approach of a train to the railroad crossing and lower a gate across the road

preventing road traffic from crossing the tracks.
Correct behavior of the controller can be expressed by two specifications: first,

a safety property which guarantees that the gate is down whenever a train is
crossing the road ; and second, a liveness property which ensures tha t if no train
is in or approaching the crossing then the gate will be in the upright position. The
safety property can be expressed as G(incrossing ~ safe). G(G<-5d~
F ZsCl~ ((upU train) V G (up A -,train))) expresses the liveness property.

Using our R T P L T L + model checking system we were able to verify or find
errors in various implementations of the railroad crossing system. For example,
if not enough lead time is given to the gate it may not be able to close before
a train enters the crossing. The tests conducted were done on an IBM RS6000.
Translating the specifications into SMV modules took under a minute. Testing
the combined specification and railroad system modules for emptiness also took

less than a minute.

5 S u m m a r y

We have presented and implemented a general and natural framework for reason-
ing about quantitative temporal properties. Our models of systems can encode
the computations of asynchronous systems using the abstraction of an inter-
leaving syntax. Our logics allow one to reason about properties expressible in
PLTL and we have added the ability to discuss regular sequences over paths
at a very reasonable cost. Combining the logics with the models allows for the
consideration of quantitative properties of independent events. In particular, the
R T P L T L + formula GF blcl^<-b2c~ true expresses a restriction on the divergence

199

of independent clocks C1 and C2. While the syntax for regular formulas is dif-
ferent from, and does not encompass all regular expressions, our techniques are
general enough to handle any deterministic finite state machine in place of reg-
ular formulae. Model checking R T P L T L + preserves the utility of PLTL model
checking procedures in that the algorithm is linear in the size of the structure.

There has been a great deal of related work in the field and we only men-
tion the work that most closely bears on our own. Alur and Henzinger have
written an excellent survey [AH92] which covers many theoretical and practical
considerations involved in designing a real t ime logic.

[AHS9][AH94] defines the logic T P T L (Timed Propositional Temporal Logic),
which is a real t ime extension to PLTL. However, unlike T P T L , R T P L T L + is
not restricted to models involving a single time sequence.

Presburger arithmetic is an expressive language for writing quanti tat ive spec-
ifications in but has a costly decision procedure. Combining CTL or PLTL with
Presburger arithmetic allows the specification of non-regular properties [BE95a]
[BE95b], i.e. properties which are not definable as w-regular sets.

Extended Temporal Logic (ETL) [Wo83] is an extension of PLTL that allows
each right linear grammar to define a temporal operator.

A c k n o w l e d g m e n t s
We would like to thank Insup Lee and Hong-liang Xie for drawing our atten-

tion to example specifications similar to the ones in Section 4. We are grateful
to Panagiotis Manolios and Kedar Namjoshi for their many insightful comments
and questions regarding this work.

References

[AH89]

[AH92]

[AH94]

[Ar94]

[BE95a]

[UE95b]

[Bu62]

Ahir, R., and Henzinger, T. A. , A Really Temporal Logic. In Proceedings
o] the 30th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, New York, pp. 164-169, 1989.
Alur, R. and Henzinger, T. A. , Logics and Models of Real Time: A Survey.
In Real Time: Theory in Practice. J. W. de Bakker, K. Huizing, W. -P. de
Roever, and G. Rozenberg, eds. Lecture Notes in Computer Science, Vol.
600. Springer-Verlag, New York, pp. 74-106, 1982.
Alur, R. and Henzinger~ T. A. , A Really Temporal Logic. In Journal of the
Association for Computing Machinery. Vol. 41, No. 1, January 1994, pp.
181-204, 1994.
Arnold, A., Finite Transition Systems : Semantics of Communicating Sys-
tems. Translated by John Plaice, Prentice Hall, 1994.
Bouajjani, A., Echahed, R. and Habermehl, P., Verifying Infinite State Pro-
cesses with Sequential and Parallel Composition. In ACM POPL95 pp. 95-
106.

Bouajjani, A., Echahed, R. and Habermehl, P., On The Verification Problem
of Nonregular Properties for Nonregular Processes. In IEEE LICS95 pp.
123-133.

Buchi, J. R., On a Decision Method in restricted Second Order Arithmetic,
Proc. 1960 Inter. Congress on Logic, Methodology, and Philosophy of Sci-
ence, pp. 1-11.

200

[CE81]

[Em95]

[EMSS90]

[ET96]

[H J93]

[HP85]

[LP85]

[Mc92]

[NP851

[pn77]

[Pn86]

[QS82]

[vw86]

[WoSa]

Clarke, E. M., and Emerson, E. A., Design and Verification of Synchroniza-
tion Skeletons using Branching Time Temporal Logic, Logics of Programs
Workshop, IBM Yorktown Heights, New York, Springer LNCS no. 131, pp.
52-71, May 1981.
Emerson, E. A., Automated Temporal Reasoning about Reactive Systems.
In Logics for Concurrency, Faron Moller and Graham Birtwistle, Eds.,
Springer Verlag, Berlin, 1996, pp. 41-101.
Emerson, E. A., Mok, A. K., Sistla, A. P., and Srinivasan, J., Quantita-
tive Temporal Reasoning. In CA V 90: Computer-aided Verification. E. M.
Clarke and R.P. Kurshan Eds. Lecture Notes in Computer Science, Vol. 531.
Springer-Verlag, New York, pp. 136-145, 1990.
Emerson, E. A. and Trefler, Richard J., Generalized Quantitative Tempo-
ral Reasoning. Dept. of Computer Sciences, University of Texas at Austin,
technical report TR-96-20, 1996.
Heitmeyer, C. L., Jeffords, R.D., Labaw, B.G., A Benchmark for Comparing
Different Approaches for Specifying and Verifying Real-Time Systems. In
Proc., lOth Intern. Workshop on Real-Time Operating Systems and Soft-
ware, May, 1993.
Hard, D. and Pnueli, A., On the Development of Reactive Systems. In Logics
and Models of Concurrent Systems. K. Apt Ed. NATO Advanced Summer
Institutes, Vol. F-13. Springer-Verlag, pp. 477-498, 1985.
Litchtenstein, O., and Pnueli, A., Checking That Finite State Concurrent
Programs Satisfy Their Linear Specifications, POPL85, pp. 97-107, Jan. 85.
McMillan, K.L., Symbolic Model Checking: An approach to the state ex-
plosion problem. Ph.D. Thesis, Department of Computer Science, Carnegie
Mellon University, 1992.
Nivat, M., and Perrin, D., Eds. Automata on Infinite Words. Springer-
Verlag, Berlin, 1985.
Pnuel~, A., The Temporal Logic of Programs, 18th annual IEEE-CS Syrup.
on Foundations of Computer Science, pp. 46-57, 1977.
Pnueli, A., Applications of Temporal Logic to the Specification and Verifi-
cation of Reactive Systems: A Survey of Current Trends, in Current Trends
in Concurrency: Overviews and Tutorials, ed. J. W. de Bakker, W.P. de
Roever, and G. Rozenberg, Springer LNCS no. 224, 1986.
QueiUe, J. P., and Sifakis, J., Specification and verification of concurrent
programs in CESAR, Proc. 5th Int. Symp. Prog., Springer LNCS no. 137,

pp. 195-220, 1982.
Vardi, M., and Wolper, P. , An Automata-theoretic Approach to Automatic
Program Verification, Proc. IEEE LICS, pp- 332-344, 1986.
Wolper, P., Temporal Logic Can Be More Expressive Information and Con-
trol, Vol. 56, 1983, pp. 72-99.

