
F o r m a l i s m a n d M e t h o d *

Egidio Astesiano - Gianna Reggio

DISI
Dipartimento di Informatica e Scienze dell'Informazione

Universit~ di Genova, Italy
Via Dodecaneso, 35 - Genova 16146, Italy

{ as tes , reggio) ~ d i s i . u n i g e . i t
h t tp : llwww, disi. unige, it

~ A T Z G ET VIA

Abst rac t . Luckily, is getting strength the view that formal methods are
useful tools within the context of an overall engineering process, heavily
influenced by other factors that developers of formalisms should take into
account.
We argue that the impact of formalisms would much benefit from adopt-
ing the habit of systematically and carefully relating formalisms to methods
and to the engineering context, at various levels of granularity. Consequently
we oppose the attitude of conflating formalism and method, with the in-
evitable consequence of emphasizing the formalism or even just neglecting
the methodological aspects.
In order to make our reflections more concrete we illustrate our viewpoint ad-
dressing one particular activity in the software development process, namely
the use of formal specification techniques.

1 Introduct ion

1.1 I n t r o d u c i n g the case

Giving another invited talk, ten years after, at the last edition of T A P S O F T , in an
ideal relay with the next year new ETAPS-FASE, inevitably stimulates a reflection
on the variations of needs, attitudes and work witnessed in the past decade.

Ten years ago, in '87, we were still in a period of great optimism on the funda-
mental role of theory, and consequently the value, I would say the necessity, of formal
methods in designing and developing software systems. One year before, at his in-
augural lecture for LFCS, the Edinburgh Laboratory for Foundations of Computer
Science, Robin Milner, also an invited speaker at TAPSOFT '87, was providing the
following two principles for LFCS activity"

1. the design of computer systems can only properly succeed, if it is well grounded
in theory

* This work has been partially supported by the projects 40%: "Modelli della computazione
e dei linguaggi di programmazione" and "Progetto di una workstation multimediale ad
architettura parallela'.

94

2. the important concepts in a theory can only emerge through protracted exposure
to application.

When in November '96, at the decennial celebration of LFCS, the current Director
Don Sannella was recalling those principles, some of the attendees were feeling a bit
uneasy, asking themselves and colleagues whether the second principle can still be
asserted on experimental grounds. Indeed, the question was implicitly reflected in
Cliff Jones's speech, when he was asking about the role of theoretical investigations,
in particular of semantics, in the many enormously successful software products
emerged in the decade. This problem was also touched in some of the invited lectures
at T A P S O F T '95. Ehrig and Mahr, surveying a decade of T A P S O F T in [12], made
a mixed-feeling remark that

"Theory and practice today have further separated and the pressure for marketable
solutions and routine application has increased. But again, it seems that new tech-
nology can not be thought without the contributions from theoretical and con-
ceptual work. The question is therefore anew what formal methods can do in the
future."

Goguen and Luqi in [16] began their talk with

"Formal methods have not been accepted to the extent for which many computing
scientists hoped."

Tony Hoare in his brilliant lecture at FME 96 [18] with the suggestive title "How
did software get so reliable without proof?" admits a "large gap between theory and

practice".
However, the reactions to this rather common feeling are quite different, begin-

ning with the explanations of this situation. For Hoare in [19]

"the problem of program correctness has turned out to be far less serious than
predicted. Ten years ago, researchers into formal methods (and I was the most
mistaken among them) predicted that the programming world would embrace with
gratitude every assistance promised by formalisation to solve the problems of reli-
ability that arise when programs get large and more safety-critical. Programs have
now got very large and very critical - well beyond the scale which can be comfort-
ably tackled by formal methods. There have been many problems and failures, but
these have nearly always been attributable to inadequate analysis of requirements
or inadequate management control. It has turned out that the world just does
not suffer significantly from the kind of problem that our research was originally

intended to solve."

Later on rather sadly he comments in [18] that

"false predictions and broken promises . . . nowadays are needed just to maintain a

declining flow of funds for research."

A completely different view is taken by Goguen and Luqi who in [16] maintain

tha t

95

"Failures of large software development projects are common today, due to the
ever {ncreasing s~ze, complexity and cost of software systems. Although billions are
spent each year on software ia the US alone, many software systems do not actually
satisfy users' needs. Moreover, many systems that are built are never used, and
even more are abandoned before completion. Many systems once thought adequate
no longer are."

Their view is very much in line with those in [15], the article "Software's Chronic
Crisis" repor t ing on a second NATO workshop in '94 on the t i t le issue.

"Studies have shown that for every six new large-scale software systems that are
put into operation, two others are cancelled.
The average software development project overshoots its schedule by half; larger
projects generally do worse. And some three quarters of all large systems are
"operating failures" tha~ either do not function as intended or are not used at all."

The failure of Ar ianne 5 in June '96, (after Hoare ' speech at FME'96) , with the
careful explana t ion in the conclusions of the inquiring commit tee , was a spectacular
(but exceptional ?) confirmat ion of this s ta tement .

The discrepancies are not weaker when coming to draw the consequences. For
Hoare in [18] ra ther drast ical ly

"The final recommendation is that we must aim our future theoretical research on
goals which are as far ahead of the current state of the art as the current state
of industrial practice lags behind the research we did in the past. Twenty years
perhaps ?"

And in [:19 l he proposes the "unification of theories" as the main "Challenge for
Comput ing Science". Hoare ' s views are far from exotic and touch, from a par t icular
angle, some deep t ruths; however he seems to discourage a close involvement of
researchers in formal methods in the technology transfer process:

" . . . there are still grounds for hope. But this hope should be based on a more
realistic appreciation of the proper and realistic timescales for technology transfer,
wb_/ch in every mature engineering discipline is measured in decades or centuries."

There is however a large number of other researchers who take a more posit ive
approach, beginning with recognizing some mistakes in the promot ion of formal
methods. In the '89 edi t ion of [24], a widely known book on SE, together with a
significant suppor t for formal methods, we find the following remark, which sounds
par t icu lar ly sad today.

"Some members of the computer science community who are active in the develop-
ment of formal methods misunderstand practical software engineering and suggest
that software engineering can be equated with the adoption of formal methods of
software development. Understandably, such nonsense makes pragmatic software
engineers very wary of their proposed solutions."

In the very informat ive announcement [23] of the '94 Monterey Workshop, on
Formal Methods for Compute r Aided Software Development we find the remark
tha t

96

"The excessive optimism of the atti tude that that everything important is provable
helps to explain the excessive pessimism of the at'titude that nothing important is
provable."

The same overall problem has been addressed retrospect ively by Chris t iane Floyd
in her invited ta lk at T A P S O F T 95 [14], where she remarks tha t the survey by Ehrig
and Mahr in [12]

"shows that many of the original claims associated with formal methods could not
be fulfilled. Thus, the success reported rests on restating more realistic claims with
respect to formal methods . . . "

This is echoed in [12] itself, where Ehrig and Mahr, repor t ing on HDMS, an
interest ing concrete exper imental appl icat ion of formal methods , conclude tha t

"the experience around HDMS shows both advantages and difficulties of formal
methods in software development and hints at ways of further research and at the
same time teaches the limitations of formal methods in regard to the overall task

of software development."

Indeed what is emerging now in recent years is a diverse a t t i tude viewing the
software (system) development process as an overall engineering process into which
formal methods can play a useful, not always prominent , role. On this view converge
many of the au thor i ta t ive ci tat ions repor ted in [15]. For Goguen and Luqi in [16], in

line with [14],

"One major problem has been that formal methods have not taken sufficient ac-

count of the social context of computer systems."

From another perspective in [23] we find:

"Formal means definite, orderly, and methodical, and does not necessarily entail
logic or proofs of correctness . .. we believe this is the most appropriate sense for

the word formal in the phrase formal methods."

We are among those who share the above a t t i tude and, together with some other
deep causes for the slow success of formal methods , we consider a ma jo r one the
l i t t le concern of researchers about transfer issues, as indica ted in the NIST survey

[I i] .
Our ta lk will t ry to address what we see as a potent ia l problem for the transfer

issue, namely the excessive emphasis on formal ism w.r.t , me thod which sometimes
leads to conflate the two things, always at the expense of the method. This danger
is also reflected in [7], the edi tor ia l of Broy and Jones for the 1996-8 issue of Formal

Aspects of Comput ing where they warn tha t

"nor can the role of formal methods work be to develop branches of mathematics
which only bear a superficial resemblance to the needs of computer science"

"the role of formalism must be to help design better systems and ensure that they

are put on a firmer footing."

97

In a straight way the difference of attitudes is explained in [14]:

"I suppose that from the formalist point of view the main point of interest here
is the use of formal concepts in dealing with a practical problem. But from the
human activity point of view, a formalized procedure is implied, prescribing at
what time and for what purposes these concepts are supposed to be worked within
software development projects. When and how this can or must be done, makes
the difference."

Ideally our talk is in the line of continuing the dialogue, proposed in [14], be-
tween promoters of formal methods and experts/researchers in software engineering
practice. Moreover we see it as an opportunity for contributing to the shift of em-
phasis from FASE as Formal Aspects of SE to FASE within ETAPS as Fundamental
Approaches to SE.

1 . 2 S t a t i n g o u r a ims

Sometimes it is illuminating to go back to the origin of the word and this is indeed
the case: "method" come from Greek and means "way through"; the Latin substitute
for it quite significantly is "via et ratio" but also "ratio et via", both conveying the
meaning of "something rational with the purpose of achieving something, together
with the way of achieving it". Looking at what happens, practice and literature, one
often gets the impression that only either "ratio" or "via" is left.

Nowadays the suggestion of more closely connecting formalisms to methods is
more or less explicit in many papers and books and it is not our intention to repeat
warnings and suggestions, often more authoritative. Moreover let us clarify that by
formal method here we do not mean at all just a comprehensive method for software
development, but also one addressing a specific aspects of software development.

Here we want to advocate few peculiar points:

- a formalism does not provide a method by fiat; in principle a formalism can be
associated with different methods or lead to no useful method at all; thus we
propose to regard the "method", which includes a formalism, as the appropriate
target of investigations concerned with formal aspects of software engineering;
we even suggest to investigate the appropriate use of description patterns for
presenting methods;

- in order to get and/or understand a method it is essential to locate it within
the context of the overall development process, in particular defining the kind
of activity in the context and the target it addresses;

- a rationale should be mandatory; but "rationale" should mean something much
more precise than just some accompanying words of explanation;

- a clear picture of the purely formal and methodological parts (the various aspects
of the mentioned pattern) is an essential tool for analysing and relating different
methods;

- finally, at the metalevel, we believe that the study of methodological aspects of
formal methods is in itself an interesting target of useful investigations and can
be pursued with scientific rigour.

98

Our points come out of some years of experience in formal specifications and not
in investigations on methodology. Thus on one hand we have not enough experience
for handling with the above issues in general, nor for addressing aspects far from
our experience. On the other hand we feel that addressing one particular rather
well-known activity, namely the production of formal specifications, we can make
our points more concrete and understandable. However we feel that some of the
ideas presented in this paper can be exploited in some generality in relation to other
aspects of the software development process.

Thus we first present a "pattern" for analysing a formal specification activity;
then we provide some illustrative examples of analysis on that basis; finally we
briefly discuss how to relate methods. Both for lack of room and for purpose (we
hope to be read by people outside of the community of formalists) our style will be
quite informal and sketchy. A more complete presentation, with some more rigorous
discussions, especially on relating methods, is in a full paper [5].

We hope to be able to address other significant activities in some near future but
also we much encourage other researchers to work on the issue. Finally, we invite the
reader to consider this paper mainly as stimulating a debate and further research
more than proposing definitive conclusions/solutions.

2 A Pattern for Specification

2.1 L o c a t i n g t h e m e t h o d w i t h i n t h e d e v e l o p m e n t p roces s c o n t e x t

P r e l i m i n a r i e s We illustrate our points by analysing, as a case example, the prob-
lem of providing a formal specification. We use some generic assumptions about
the software development process, without any commitment to a particular process
model. For general references see [24, 26] and [13] for a specific treatment of process

modelling.

- A development process will return at the end some kind of product (end prod-
uct); thus for each development process we may qualify what is the kind of its
end product. Notice that the end product may be pure software, as a program
for statistic analysis, or a whole system having also non-software parts, as an
information system (which may have as components the clerks using it) or an
embedded system (which may have as components some controlled mechanic/
electronic devices). For the purpose of the current presentation our concept of
end product will abstract from the features specific of the application domain.
Domain knowledge and analysis is of paramount importance in practice, but it is
not considered here, also because their role has not yet been investigated enough
at the methodological level in connection with the use of formal methods.
In Tab. 1 we present a list of keywords qualifying end products currently found
in the literature. Some items are enough standard and well-understood, while
other are rather ambiguous (marked by *) and others may be just variants used
in some particular community (marked by +). Each of them has been found in
papers presenting formal methods.

- A development process is a collection of some activities with temporal/causal
relationship among them; furthermore there are "super/mete" activities con-
cerning the definition and management of the development process. In Tab. 2

99

C/C-F+ programs
Ada programs
Imperative programs without pointers
Imperative programs with pointers
Imperative programs
Functional programs
Functional modules/data types
Nondeterministic programs
Programs in an asynchronous language
�9 Parallel programs
�9 Distributed programs
�9 Distributed systems
�9 Distributed architectures
�9 Concurrent programs
�9 Reactive programs

* Reactive systems
Real-time programs
Real-time systems
Hybrid programs
Hybrid systems
, Dynamic systems
Object-oriented programs
Object-oriented systems
Protocols
Information systems
Database systems
Embedded systems
q- Agent systems

Table 1. End products of a development process

we present a tentative list of possible activities. The items in this list have been
found in papers about software engineering.

To give a requirement specification
To validate a requirement specification
To give a design specification
To validate a design specification
To verify a design specification against a requirement specification
To give an intermediate specification (those not classifiable as requirement or design)
To validate an intermediate specification
To verify an intermediate specification against some other specification
To give some code
To validate some code
To verify some code against a design/intermediate specification
To check the quality of some specification/code
To reuse (replay) [a part of] a development process, or just an activity by changing some-
thing in the "inputs"
To produce a new version of the end product (maintenance)
To support the development process definition and management

Table 2. Activities in a development process

- Each activity at the end will return some "products" (specification, code, docu-
mentat ion, a development process, etc.).

- Some activity may require as mandatory inputs some "products" which are the
results of other activities.

100

- A method (formal method) is a way to perform an activity of a particular kind
(supported by "formal techniques/tools").

- In a very general way a specification is a description of (possibly some aspects
of) an end product at some level of abstraction, which can be also intended as
at some point in a development process.

In the following we will consider only the generic task of providing a formal
specification. We will outline, so-to-speak, a "pattern" (in a broad sense, in the
line of [1] and followers) for qualifying a formal specification method; our pattern
illustrates in particular the relationships between formalism and method. A warning:
we do not intend to be prescriptive; the paper has the main purpose of exploring some
ideas and of stimulating a reflection; much has still to be clarified. The structure of
the pattern is shown in Fig. 1.

C O N T E X T

END PRODUCT s the end products of the development process

ACTIVITY location of the activity in a development process

F O R M A L I S M

FORMAL MODEL .,~ mathematical structures representing the end products

SPECIFICATION S'Ps i[-] specifications as artifacts

RATIONALE
I GUIDELINES

PRESENTATION

~DOCUMENTAT ION

e-+

IMPACT ON METHOD

P R A G M A T I C S

how the formal models model the end products

guidelines for the specification task

presentation of the specifications for humans

documenting the specification activity

Fig. 1. Aspects and components of a specification formal method

E n d p r o d u c t Since a specification method supports the activity of giving a de-
scription of some kind of end product, we have to qualify the kind of such end

products.
The END PRODUCT part is expressed by qualifying the set of the considered

end products, denoted by EP. Generally speaking the description of the set is not
formal. For our discussion we assume the existence of an oracle for deciding whether
or not some end product is in g~ or not, for every EP. End products will play a
major role in relating formalism to methods, as we are going to illustrate.

101

Quite often end products are structured, i.e. they exhibit an inner structure.

A c t i v i t y We need to qualify the kind of specification we are dealing with and its
place within the development process we are using. We stress the importance of
locating an activity within its context.

A quick look at standard books on SE ([24, 26], e.g.) or to the various papers on
development process models (see [13]), will show the reader the many ways "speci-
fication" is intended and the different roles in the process.

For example, the activity of giving the requirement specification may be used
in a classic waterfall or spiral model; the activity of giving an intermediate spec-
ification may be used either in a uniform multistage model or in an intermediate
step between design and code; within an object-oriented approach the distinction
between requirement and design is blurred and the activity is much constrained by
the specific approach.

This information allows also to know whether the formal method is part of a uni-
form/coordinated group of other formal methods to support the whole development
process.

The parts/aspects END PRODUCT and ACTIVITY should allow to have a coarse
idea of the "functionality" of the formal method.

2.2 Fo rma l i sm

Formal m o d e l The formal models are a class of mathematical (set theoretic) struc-
tures Ad, which formally represent the elements in EP at some abstraction level,
depending on the kind of specification we are providing.

In this paper, we denote them by the words "formal models" to avoid confusion
with the models of some logic and with the development process models.

Very well-known classes of formal models used by some formalism are:

- computable functions from memories (maps from locations into values) into
memories for imperative programs;

- many-sorted algebras or first-order structures for functional modules and data
types;

- synchronization trees (see, e.g. [22, 20]) for processes;
- sets of action traces (see, e.g. [17]) for processes.

Strangely enough, in several cases we find that this part is either obscure or given
implicitly; instead, in our opinion, it should be given explicitly and in a very clear
way.

Most often the formal models are classified into disjoint subclasses by considering
structural/syntactic properties using a general concept of signature, as when using
institutions (see e.g., [8]). Following this view we need to give:

- a class of signatures gIG,
- for each X' element of SZ~ the class of the formal models on that signature .h4~.

Sometimes the formal models are structured, i.e. exhibit an inner structure.

102

Speci f ica t ions In a very general way a specification, as an artifact, is a description
of an end product at some level of abstraction, which can also be intended at some
point in the development process.

A formal specification is a way to determine a class of formal models: all those
modelling the end product at such point in the development process.

Usually formal specifications are expressed by terms/programs in an appropriate
specification language.

The specification component of a formal method consists of:

- a set of specifications SPSC (programs/terms of the specification language);
- and a semantic function [_] (for the specification language), associating with

each specification a class of formal models.

Notice that there are no assumptions on the cardinality of [SP]; it may be just a
singleton.

[_] must be a total (non-injective) function, whenever S79~C contains only the
admissible specifications.

[[_] may be non-surjective: only some classes of formal models may be expressed
using this specification language. The specification language is more or less powerful
depending on how is large the codomaln of [[_].

If the formal models are classified by signatures, then the specifications must
have the form of pairs, whose first component is a signature, and the semantics will
be a class of formal models on such signature.

2 . 3 I m p a c t o f f o r m a l i s m o n m e t h o d

We outline the impact that some features of a formalism may have on the method
and thus on pragmaties; conversely some requirements on pragmatics have to be
taken care in developing a formalism. Here we deal only with some aspects of the
specification languages; in the full paper ([5]) we also analyse the role of formal

models in this respect.

S t r u c t u r i n g It is important to distinguish two different kinds of structuring:

Specification structuring A reasonable specification language should provide ways to
modularly present complex specifications, by allowing to split them in sensible
pieces, also to help maintenance and reuse, but these constructs are linked neither
to the formal models nor to the end products. The importance of this kind of
structuring has been widely recognized since early times, as witnessed in the
various specification languages (see [28]).

End product structuring As indicated, sometimes the end products and/or the for-
mal models are structured. A good specification language should offer ways to
express this kind of structure, possibly avoiding to confuse it with the above one.
A typical example is a combinator for parallelism (contrasted with a mechanism
for incremental specification building, like enrichment or inheritance).

103

A b s t r a c t i o n level Once we have given the formal models, we can qualify the ab-
straction degree of the specification language in the sense how much abstract its
specifications can be, an so providing some information about at which points in
the development process it may be used. The abstraction degree is related to the
cardinality of the classes of formal models which are semantics of the specifications.

Seman t i c s The technique used for providing semantics is not neutral. The semantic
of a specification language can be given in:

- a rather direct/explicit and denotational way (e.g., as done by Hoare for CSP,
[17]), by exhibiting the relative class of formal models;

- an indirect/implicit way, say as the limit of a diagram in some category (1) or
defining two programs/specifications semantically equivalent iff their equality
may be proved by a deductive system (2).

Techniques as (1) may be used as a quick way to establish the existence of such
semantics, but after a direct characterization has to be provided; while those as
(2) may be used to help work with the specifications, in order to provide simpler
forms. However, in our opinion, providing an explicit way seems to be essential for
SE purposes.

S ty le There are various specification styles. The most quoted distinction is between
axiomatic/property-oriented and model-oriented; still other hybrid styles are possi-
ble.

Property-oriented (axiomatic) We prefer property-oriented, as more suggestive.
In general property-oriented specification methods use formal models classified

by signatures. The ingredients are (see the concept of institution for a more general
setting, also accounting for change in signatures, [8]): for each S E SZ~,

- a set of sentences over S, SSA/'s;
- a validity notion, i.e. a binary relation ~s_C A4z x SSA/'s.

Specifications in this case are pairs, whose components are a signature and a
subset of SgA/'z.

For what concerns the semantics, the basic way to define it is:
[(,U, S)] = Mod((Z, S))

where

Mod((S, S)) = {M I M E M s and M ~ r for all r E SEAls} 2.
The methodological ideas supporting this specification style are:

we describe the end product at a certain moment in its development by ex-
pressing all its "relevant" properties by formulae of the used logic.

Clearly this aspect will have an enormous impact on the use of the formalism, as it
should be reflected in the guidelines. In the presentation part, the formulae of the

2 The elements of this class are usually called the models of the specification or of S.

104

used logic should be intuitively described by using the natural language in terms of
properties of the formM models and via the rationale in terms of properties of the
end products.

A property-oriented specification language may be evaluated by considering:

expressive power: how many/which are the classes of M which can be expressed by
these specifications;

adequacy: which properties of the end products may be expressed by these specifi-
cations.

As an example, consider the specification languages/~-calculus and UNITY ([9]).
The first has a big expressive power and a low adequacy for specifying protocols;
indeed, it is hard to qualify its combinators in terms of properties on protocols. The
latter is not very expressive, but it is quite adequate for nondeterministic imperative
programs (its end products); indeed its few combinators correspond to basic relevant
properties on them.

Model-oriented The ingredients for model-oriented specifications are:

- a class of specifications (a specification language) S:Ps
- a basic semantic function: [_~: SPs --~ A4 (i.e. associating essentially one model

with one specification);
- a partial order on A4: ~-.

Then the semantics is defined by:
lISP] --- {M E M I [SP~' ~- M}

The methodological ideas supporting this specification style are:

we describe the end product at a certain moment in its development by giving
a prototype/archetype of it using the specification language; then apart we say
which are the irrelevant features of this archetype by the order ~ (M ~- M'
means that M ~ differ from M for irrelevant details, which can thus be freely
fixed later in the development).

Perhaps, a better way to name this style should be construction-oriented, with the
meaning that we specify an end product by construction (at the abstraction level sup-
ported by the method, i.e. depending on the formal models and on the specification
language); afterward we would say when another construction may be equivalent.

If ~- is the identity, then we have a purely constructive specification style, the

lowest-level in a classification by abstraction degree.
A model/construction-oriented specification language may be evaluated by con-

sidering:

expressive power: how many/which are the formal models which can be expressed
by [_~ and how many/which are classes of A4 which can be expressed using

these specifications;
formal model or end product-oriented: the formal model-oriented specification lan-

guage may be further classified depending on whether their constructs are ori-
ented towards the features of the formal models (e.g. -+- and _.- of CCS) or
towards the end products (e.g. the LOTOS constructs for protocols).

105

A formal model-oriented specification language is more general and can be used in
several different formal methods considering different classes of end products (think
of A-calculi); but it may be not very flexible and convenient for special classes of end
products (it is possible to model any imperative program by using A-calculi, but it
is not sensible for useful purposes in practice). On the other hand, the end product-
oriented specification languages could be used for very successful formal methods
for particular classes of end products, and cannot easily nor sensible be adopted for
very different end products (e.g. it is not convenient, if possible at all, to use CCS
to specify fully distributed systems).

Some controversy between property and model-oriented has been and it is still
going on, on various grounds. Perhaps different styles serve different purposes and
different communities.

Borderline cases Sometimes, in an property-oriented specification formalism we have
also another ingredient: a way to select one (some) special element out of the model
class by additional properties, which cannot be expressed by using the formulae
(constraints). In these cases the semantics is given by:

~(Z, S)] = {M [M E Mod((Z, S)) a n d . . , additional const ra in ts . . . }
Usually, we need to give some restrictions on (s S) in order to have that the

[[(,U, S)] is not empty.
Most typical examples are the observational and initial semantics; in the first

we pick up a class of models, considered equivalent w.r.t, a set of observations; in
the second we defined essentially one model on the basis of an induction principle
in defining the individual elements of the model, p/us an equality defined by logical
deduction.

If the constraints pick up a single model, then a specification formalism given in
this way is both property-oriented, we give the/some properties of the end product,
but in the same time is model/constructive-oriented, since we build up in the end
one model.

2.4 P r a g m a t i c s

R a t i o n a l e In order to provide a rationale for why some end products have been
given some specifications, and thus a basis for validation and comprehension, a
method should provide the connection between the formal models and the end prod-
ucts it is addressing. On the basis of some years of experience, we believe this to be
a fundamental aspect, whose importance is unfortunately often underestimated.

Let us provide some suggestions, at the risk of some oversimplification, on how
to handle this issue in a somewhat rigorous way.

Essentially we must provide the means for establishing a binary relation "~-~"
between end products and formal models, where P ~-~ M means intuitively that P is
modelled by M (or M is a model for P or M models P). In general ~-4 is not injective;
this is sound, since the formal models cannot, and should not, cover all aspects of
the end products, and so several end products may be modelled by the same formal
model. Also the codomain of~+ may be a subclass of M ; in such cases we have more
formal models than we need, but that is not a problem.

106

The domain of ~-~ should coincide with s otherwise the formal method consid-
ers only a part of the end products, and thus it is better to change the definition of

Assuming ~-4, we can then formally define a connection pair (A, Z) between end
products and formal models:

- for every set of end products Ps, -4(Ps) is the class of formal models M s.t. for
some P E Ps, P ~-~ M;

- for every class of models Mc, 2:(Mc) is the set of the end products P s.t. for some
M E Mc, P ~-+ M.

We call ,4 abstraction of end products and Z interpretation of formal models and
assume that if P ' ~t M', P ~-+ M' and P ~-+ M, then also P' ~-} M; graphically

P ' ~ . x ~- M'

P ~ M ;
then this amount to say that

a) Z(A(Z(Mc))) = Z(Mc)
b) A(Z(A(Ps))) : A(Ps)

Moreover we have to require some consistency with the semantics of specifications,
namely the semantics to be closed w.r.t. ~-+: if M and M' both models P and M E
lISPS, then M' E [SP], thus further constraining a) to have also

c) .A(Z([SP])) : [SP].

Most often it will be sensible to have a (partial) equivalence relation ~, on formal
models, with the intuitive meaning of being "essentiMly equivalent" in representing
an end product, thus requiring the relation ~-+ to be compatible with -~ (i.e.: if
P ~-+ M, P ~-+ M', then M ,-~ M'; and if M --~ M', P ~-+ M, then P ~-+ M').

Under this assumption .4 associates with each end product essentially one model
(an equivalence class); thus if Mc is closed w.r.t. ~, then .4(I(Mc)) = Mc and also
a) and b) hold together with c), if we require, as it should, the semantics to be

closed w.r.t. ~.
It is worthwhile noticing that such a --~ always exists, under our assumption

defined by M ,~ M' iff there exists P s.t. P ~-~ M and P ~+ M'.

The following three items in our pattern are only briefly qualified, but our brevity
should not be taken as a sign of scarce relevance. From our experience we firmly
believe that they are rather fundamentM for the practical acceptance of a formMism.
However, we have not much room here for such important parts and moreover their
relevance is luckily becoming more and more recognized.

G u i d e l i n e s This part consists of the guidelines for steering and helping the task
of producing in the best possible way the specifications of the end products. These
guidelines should consider Mso the use of software tools.

107

The guidelines are understandably driven by the preceding parts in our pattern,
but notice the fundamental role played by context and rationale, if we want seriously
provide professional guidelines.

P re sen ta t i on We mean by this the interface with the user, in a broad sense, of a
specification product. Users, here, can range from the clients, those financing the end
product, who need to understand a requirement specification in its own language (see
[24], distinguishing requirement definition from requirement specification), to the
implementors, to the specification builder herself/himself, when a change is needed
at some later stage. A presentation should hopefully consists of text, with formal
and natural language parts, graphical interfaces and animation. A presentation can
influence the formalism, which should demonstrably be compatible with sensible
friendly presentations.

Doc ume n t a t i on We refer to documenting the specification process for use in evo-
lution and maintenance. The evolution in software development is now taken care
in every process model (see [13]) and its importance in formal methods recognized
(see [16]) also some prototype support tools are appearing ([25]).

3 A n a l y s i n g a n d R e l a t i n g M e t h o d s

The pattern we have outlined for relating formalism and method also provides a key
for analysing and relating formal methods or just formalisms.

We will first give few illustrative examples, exploring the relevance of method-
ological aspects. Then we touch the issue of relating methods.

3.1 S o m e I l lustrat ive Cases

M e t h o d s b a s e d o n CCS CCS, the calculus of communication systems (see [22]),
has been introduced originally as a formalism for describing reactive/concurrent
systems, in close analogy with the role of A-calculus for sequential computations.
Together with CSP (see [17]) it has been recognized as a major theoretical advance
in concurrency and has provided a basis for some derived methods.

It is very interesting to explore the differences between the original CCS formal-
ism and its use in a method. We will pick up two particular methods, among the
many possible, based on CCS, used in practice and shown in the literature.

END PRODUCT: Dynamic systems (reactive, concurrent, parallel).

FORMAL MODEL: Let us consider here, for simplicity, as models the synchroniza-
tion trees, i.e. labelled transition trees modulo strong bisimulation. A variety of other
choices, usually variations of strong bisimulation, are possible, not always easily de-
finable in an explicit way (see e.g. [22]).

108

RATIONALE: A dynamic system D is modelled by a synchronization tree, where the
nodes in the tree represent the intermediate (interesting) situations of the life of D
and the arcs of the tree the possibilities of D of passing from a state to another one.
It is important to note that

l
- here an arc (a transition) s) s' has the following meaning: D in the state s has

the capability of passing into the state s ~ by performing a transition, where label l
represents the interaction with the external (to D) world during such move; thus
1 contains information on the conditions on the external world for the capability
to become effective, and on the transformation of such world induced by the
execution of the action; so transitions correspond to action capabilities;

- the precise form of the states is irrelevant, only the action capabilities starting
from them matter, and so two states can be distinguished only if they have
different action capabilities.

ACTIVITY: CCScan be used both for defining requirements (say CCS-R) or design
(say CCS-D) in a fragment of the development process represented by:

I Formal requirement specification]

Refinement I I Correctness proofs

Refinement[...... I C~ P r~176
[Design specification J

SPECIFICATION: C C S - R specifications follow a model-oriented style. Every speci-
fication consists of a so-called behaviour expression, i.e. a term in the CCS language.

The basic semantics of CCS is the standard strong bisimulation (see [22]), i.e. it
gives the synchronization tree associated with a behaviour expression.

The ~- relation is the weak bisimulation preorder; weak bisimulation means for-
getting irrelevant (not all) internal moves in a synchronization tree; tl _ t2 iff tl is

weakly simulated by t2.
The specification language, CCS, offers both formal model-oriented constructs

(_._, _+_) and end product-oriented constructs (-jJ-).
For what concerns structuring constructs, we have the "rename" construct, which

helps structure the specifications, and -JJ- which allows to follow the end product
structure. Sometimes the latter must be used for structuring the specification (the
specification of a simple sequential process may be expressed as the parallel compo-

sition of several smaller processes).
The specification for CCS-R are similar; the only difference is that in this case

the ~- relation is the identity.

M e t h o d s ba se d on "a lgebra ic specif icat ion We consider the classical ADT
method, say C A D T , see [27], originally devised for specifying abstract data types,

109

the SMOLCS method for requirement specifications, say S M o L C S - R (see [2, 10]),
and the method exemplified by M. Bidoit et al. in their treatment of the steam boiler
problem (see [6]), that we call here ASSRS, for Algebraic Specification of Sequen-
tial Reactive Systems. Strikingly enough, in all cases, the underlying formalism is
essentially the same.

FORMAL MODEL: (Isomorphism classes of) First-order structures with equality,
usually many-sorted.

SPECIFICATION: in any case the specification style is property-oriented and the
specification language allows structured versions of first-order many sorted logic with
equality (PLUSS for ASSRS and METAL for SMoLCS-R) . Here we consider the
simplest version of SMoLCS-R: the one based on first-order logic; there are several
variants where the logic is extended with combinators of either temporal or modal
or deontic logic in order to to express liveness and safety properties on the behaviour
of the dynamic systems, see e.g. [10].

The differences among the considered methods become evident only looking at
the methodological aspects, in particular at the end products and at the rationales.

END PRODUCT: In C A D T the end products are the usual, static so-to-speak, data
types (lists, stacks, bulletin board, etc.); for A $ $ R S the sequential reactive dynamic
systems and for S M o L C S - R the reactive concurrent dynamic systems.

RATIONALE for CADT: Trivial: carriers and interpretations of operations/predicates
represent respectively the values (classified by types) and the operations/tests for
handling them.

RATIONALE for ASSRS: A sequential system receives/sends information from/to
the external world. Thus, it is modelled by a function which given a set of input
messages (information from outside) and its actual state returns a new state and a
set of output messages (information for outside).

The signature of the associated algebra will have the sorts "set of input messages",
"set of output messages", "state" and two operations with functionality

"set of input messages" x "state" -+ "set of output messages"
and

"set of input messages" x "state" -+ "state",
respectively. These functions allow to represent the activity of the system.

RATIONALE for SMoLCS-R: Part of the rationale is supported at the syntactic
level, where some of the sorts are qualified as dynamic and are s.t. for each of
them, say ds, there exits a corresponding sort of labels Lds and a labelled transition
predicate _ ---4 _: ds l_ds ds; this is reflected in the models.

Given an algebra L, each one of its dynamic sorts, say ds, determines the labelled
transition system (Lds, Lt_as, - _L+ _L) representing a type of dynamic systems.

The interpretation is like for CCS-R and CCS-D with three important dif-
ferences: everything can be typed; states may be relevant and, more importantly,

110

the C A D T method for static structures is embedded. Notice that in this way la-
bels may have states as subcomponents, thus allowing to express also the so-called
higher-order dynamic systems.

Clearly, we can handle in this way also structured dynamic systems; i.e. systems
having components which are in turn other dynamic systems; in these cases we have
algebras with several sorts corresponding to states and labels, together with the
associated transition predicates.

ACTIVITY: All these methods cover the formal specification of the requirements:

(Informal requirements)

Analysis
Interpretation
Formalization

i Formal rec

Refinement

Validation

uirement specification t

Correctness proofs

Refinement I I Correctness proofs

Design specification

Coding

S M o L C S - D This is the SMoLCS method for "design" specifications; it shares all
components with S M o L C S - R except, obviously, activity and specifications. Its
specifications follow a borderline style using many-sorted first-order conditional logic
(see [3]), plus the constraint on the models picking up the initial element, exactly
one, modulo isomorphism.

R e w r i t i n g Logic (RL) Rewriting logic, shortly RL (see [21]), is a formalism paradig-
matic for understanding the role of the methodological aspects: apparently small
variations in the formalism may cause strikingly big differences.

Being apparently based on the definition of transition systems, with the possibil-
ity of defining combinators like those for parallelism and the like, it resembles CCS
and, because of its algebrMc setting, the version of SMoLCS for design specifications,
SMoLCS-D. But a careful analysis, following our pattern, of the method associated
to RL, say RL, reveals the differences.

END PRODUCT: Non-reactive (closed) dynamic systems.

111

FORMAL MODEL: The formal models are classified by signatures (many-sorted first-
order without predicate symbols).

A S-formal model is essentially a S-algebra A plus a transition system
(STATE,_ ~ _) , where STATE = U,eso~t,(s)A, and the transition relation
satisfies particular conditions: if s ==~ s', then s and s' are of the same sort, it is
reflexive, transitive and closed by congruence w.r.t, the operations of S; moreover the
transitions are decorated by additional information about their structure in terms
of other transitions.

Here we have given a concise set-theoretic presentation of the RL models (see
[4] for a complete presentation), but notice the original one, in [21]), adopts the
language of category theory.

RATIONALE: The elements of the carriers of a formal model correspond to inter-
mediate states in the life of (types) of dynamic systems as for CCS and SMoLCS
methods, but the interpretation of the transitions is very different.

First of all, here transitions are not labelled and so there is no idea of interaction
with the external world. Indeed, s ~ s' with its additional information i represents a
(either partial or complete) behaviour of the dynamic system and i gives information
on the structure of such behaviour (e.g., it is the sequential composition of two other
partial behaviours).

SPECIFICATION: The specifications of RL follows a borderline style using a combi-
nation of equational logic on the operations of the signature and of conditional rules
for defining the transitions, plus an initiality constraint.

3.2 R e l a t i n g M e t h o d s

Here we briefly outline some interesting ways of relating methods exploiting the
concepts introduced so far. A more rigorous and comprehensive treatment is in the
full paper [5].

We distinguish between replacing a method with another one and by translating
its formalism into another one, getting a new method.

Assume we have two specification methods, say F M and F M t, given following
the pattern of Sect. 2. The relevant components, for the issues we are considering
here, are respectively ($'P, .fv~, S'PCC, [_]], ~-+) and (CT ~', M ' , ,.q7~$C ', H ' , s-+').

A comparison is sensible only if the end products of the two methods are compa-
rable, i.e. if s O 8P ' is not empty, or better if it contains relevant end products. Of
course, we can compare the two methods only when restricted to consider g p n gp ' .

A replacement of F M by FM' is a function
Rep: SPSC ---+ SPSC'

s . t .

- it is compatible with the semantics, i.e. if [SP1] = [SP2], then [[Rep(SP1)]' =
[Rep(SP~)] ' ,

- and for all SP e SPgC s.t. Z([SP~) _C s N $P', 2:(~SP~) = I ' (~Rep(SP)] ') ;

i.e. the following "partial" diagram commutes:

112

~ P(]~4)

P (E P N s

I ' ~ P(Ad') ,

[-]
" 8PSC

Rep

[_]'
SPs

where P(X) denotes the collection of the parts of X.
If R e p is partial, then only a part of the specifications of FM can be replaced

by those of FM'.
If R e p is non-injective, then FM is finer (FM' is coarser), i.e. FM' allows to

give more abstract specifications.
If R e p is non-surjective, then FM' is more powerful (FM' is less powerful), i.e.

FM' allows to give more specifications.
In the literature there are various ways of relating formalisms: in particular we

have the notions of simulation and of translation. While the second one is essentially
what one would expect for analogy with other kinds of translations (S:PCC is trans-
lated into SPEC' and J~4 into Ad'), simulations are a bit more sophisticated: if F '
simulates F, then the semantics of F ' specifications can be understood in terms of
the semantics of those of F (while ST)EC is translated into SPEC', ~4' is sent back
into Ad).

It can be shown that both simulation and translation can lead to method re-
placement under some reasonable assumptions on the two rationales.

Consider now the case when an existing method FM with formalism F has to
be modified to use a different formalism F'; e.g. since the original one is no more
supported, or a new one is equipped with more software tools.

How to recover/integrate the specifications produced using the original method?
How to exploit all experience gained on the original method and in some sense how
to keep the "method" ?

The key idea is to provide a suitable translation of F into F ' and then derive a
modified method by transferring the rationale along with the translation.

In [5] and [4] we consider the interesting case of the relationship between RL and
SMoLC S - D. The interest lies in the fact that the two methods have comparable end
products, similar activities, formal models and specifications with common features,
as the two specification languages almost coincide for syntax; furthermore these two
are the only methods in the literature having such common aspects, and frequently
they are confused. By trying to relate the methods reveals the important differences.

Not only the end products of RL are a subset of those of SMoLCS-D.
Out of three possible simulations between the two formalisms (the most sensible

ones) only one of them will result in a method replacement (of RL by SMoLCS,D) .

113

Moreover the almost obvious embedding of RL into the S M o L C S - D formalism does
not provide a method replacement.

As a last remark it can be shown that the method we have called A S S R S
(by Bidoit et al.), apparently less related to S M o L C S - D than RL, because of the
underlying similar concepts in the rationale, can be replaced in a very natural way
by SMoLCS-D.

4 Conclusions

We started with some general discussion on the permanent controversy on formal
methods and the current rather confusing situation, with different authoritative
views on what should be done in the formal methods area. Adopting the view that
researchers should take more care of the technology transfer problem, we have ad-
vocated a more explicit connection of a formalism to the methodological aspects for
really getting an effective formal method.

Being the time and our experience not mature enough for addressing the problem
in its globality (we do not even know whether it would be sensible), we have confined
ourselves to discuss in some detail the activity of providing formal specifications. We
have presented some basic ideas on how to provide a pattern qualifying the different
aspects of a method, distinguishing between context, formalism and pragmatics and
relating them in a method.

Though of preliminary character, we feel that some of the ideas can be exploited
in other different contexts and perhaps generalized as a useful conceptual tool. Mor-
ever we hope to have shown that this is a subject of interesting investigation itself
(but please look at the full paper for a more comprehensive and rigorous treatment).

Finally, we will welcome useful comments, constructive criticism and suggestions.

References

1. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and
S. Angel. A Pattern Language. Oxford University Press, 1977.

2. E. Astesiano and G. Reggio. SMoLCS-Driven Concurrent Calculi. In H. Ehrig,
R. Kowalski, G. Levi, and U. Montanari, editors, Proc. TAPSOFT'87, Vol. 1, num-
ber 249 in Lecture Notes in Computer Science, pages 169-201. Springer Verlag, Berlin,
1987.

3. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Technical Report
DISI-TR-96-20, DISI - Universit& di Genova, Italy, 1996.

4. E. Astesiano and G. Reggio. On the Relationship between Labelled Transition Logic
and Rewriting Logic. Technical Report DISI-TR-96-19, DISI - Universit& di Genova,
Italy, 1996.

5. E. Astesiano and G. Reggio. Formalism and Method. Technical Report DISI-TR-97-3,
DISI - Universit$ di Genova, Italy, 1997. Full version.

6. M. Bidoit, C. Chevenier, C. Pellen, and J. Ryckbosh. An Algebraic Specification of the
Steam-Boiler Control System. In J.-R. Abrial, E. Borger, and H. Langmaack, editors,
Formal Methods for Industrial Applications, number 1165 in Lecture Notes in Computer
Science, pages 79-108. Springer Verlag, Berlin, 1996.

7. M. Broy and C. Jones. Editorial. Formal Aspects of Computing, 8(1-2), 1996.

114

8. R.M. BurstaU and J.A. Goguen. Institutions: Abstrac~ Model Theory for Specification
and Programming. Journal of the Association.for Computing Machinery, 39(1):95-146,
1992.

9. M. Chandy and J. Misra. Parallel Program Design: a Foundation. Addison-Wesley,
1988.

10. G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types: A Temporal
Logic Approach. T.C.S., 173, 1997. To appear.

11. D. Craigen, S. Gerhart, and T. Ralston. An International Survey of Industrial Appli-
cations of Formal Methods: Volume 1 Purpose, Approach, Analysis and Conclusions.
Technical Report NIST GCR 93/626, NIST, 1993.

12. H. Ehrig and B. Mahr. A Decade of TAPSOFT: Aspects of Progress and Prospects
in Theory and Practice of Software Development. In P.D. Mosses, M. Nielsen, and
M.I. Schwartzbach, editors, Proc. of TAPSOFT '95, number 915 in Lecture Notes in
Computer Science, pages 3-24. Springer Verlag, Berlin, 1995.

13. A. Finkelstein, J. Kramer, and B. Nuseibeh, editors. Software Process Modelling and
Technology. John Wiley & Sons, 1994.

14. C. Floyd. Theory and Practice of Software Development: Stages in a Debate. In P.D.
Mosses, M. Nielsen, and M.I. Schwartzbach, editors, Proc. o] TAPSOFT "95, number
915 in Lecture Notes in Computer Science, pages 25-41. Springer Verlag, Berlin, 1995.

15. W. Wayt Gibbs. Software's Chronic Crisis. Scientific American, (9):72-81, 1994.
16. J. Goguen and Luqi. Formal Methods and Social Context in Software Development. In

P.D. Mosses, M. Nielsen, and M.I. Schwartzbach, editors, Proc. o.f TAPSOFT '95, num-
ber 915 in Lecture Notes in Computer Science, pages 62-81. Springer Verlag, Berlin,

1995.
17. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, London, 1985.
18. C.A.R. Hoare. How did Software Get so Reliable Without Proof ? In M.-C. Gaudel

and J. Woodcock, editors, FME'96: Industrial Benefit and Advances in Formal Meth-
ods, number 1051 in Lecture Notes in Computer Science, pages 1-17. Springer Verlag,

Berlin, 1996.
19. C.A.R. Hoare. Unification of Theories: A Challenge for Computing Science. In

M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type Speci-
fication, number 1130 in Lecture Notes in Computer Science, pages 49-57. Springer
Verlag, Berlin, 1996. l l t h Workshop on Specification of Abstract Data Types joint
with the 8th general COMPASS workshop. Oslo, Norway, September 1995. Selected

papers.
20. I.S.O. LOTOS - A Formal Description Technique Based on the Temporal Ordering

of Observational Behaviour. IS 8807, International Organization for Standardization,

1989.
21. J. Meseguer. Conditional Rewriting as a Unified Model of Concurrency. T.C.S.,

96:73-155, 1992.
22. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
23. Monterey. Announcement of the Monterey "Workshop on Formal Methods for Com-

puter Aided Software Development". 1994.
24. J. Sommerville. Software Engineering: Third Edition. Addison-Wesley, 1989.
25. J. Souqui~res and N. l.Avy. Description of Specification and Developments. In Proc. of

International Symposium on Requirements Engineering RE'93. IEEE Computer Soci-

ety, Los Alamitos, CA, 1993.
26. H. van Vliet. Software Engineering: Principles and Practice. John Wiley & Sons, 1993.
27. M. Wirsing. Algebraic Specifications. In .1. van Leeuwen, editor, Handbook of Theoret.

Comput. Sci., volume B, pages 675-788. Elsevier, 1990.
28. M. Wirsing. Algebraic Specification Languages: An Overview. In E. Astesiano,

G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Specification, num-
ber 906 in Lecture Notes in Computer Science, pages 81-115. Springer-Verlag, Berlin,

1995.

