
Specification and Proof in
Membership Equational Logic*

Adel Bouhoula w and Jean-Pierre Jouannaud w and Jos@ Meseguer w

SRI International, Computer Science Laboratory
333 Ravenswood Avenue, Menlo Park, California 94025, USA

t INRIA Lorraine and CRIN, 615 rue du Jardin Botanique
B.P. 101, 54602 Villers-l~s-Nancy Cedex, France

LRI, CNRS and Universit6 de Paris-Sud
BAt 405, 91405 Orsay Cedex, France

Abs t rac t - This paper is part of a long-term effort to increase expres-
siveness of algebraic specification languages while at the same time having a
simple semantic basis on which efficient execution by rewriting and powerful
theorem-proving tools can be based. In particular, our rewriting techniques
provide semantic foundations for Maude's functional sublanguage, where
they have been efficiently implemented.

Membership equational logic is quite simple, and yet quite powerful.
Its atomic formulae are equations and sort membership assertions, and its
sentences are Horn clauses. It extends in a conservative way both order-
sorted equational logic and partial algebra approaches, while Horn logic can
be very easily encoded.

After introducing the basic concepts of the logic, we give conditions and
proof rules with which efficient equational deduction by rewriting can be
achieved. We also give completion techniques to transform a specification
into one meeting these conditions. We address the important issue of proving
sufficient completeness of a specification. Using tree-automata techniques,
we develop a test set based approach for proving inductive theorems about
a specification. Narrowing and proof techniques for parameterized specifi-
cations are investigated as well. Finally, we discuss the generality of our
approach and how it extends several previous approaches.

*Supported by Office of Naval Research contracts N00014-95-C-0225 and N00014-96-
C-0114, by the Information Technology Promotion Agency, Japan, and by the Centre
National de la Recherche Scientifique, France

68

1 I n t r o d u c t i o n

This paper is part of an effort to increase the expressiveness of algebraic
specification languages while at the same time having a simple semantic basis
on which both the operational semantics of such languages, and theorem
proving tools supporting formal verification can be based. In particular,
the semantic concepts and proof techniques that we propose have emerged
out of, and provide foundation for, work on the functional sublanguage of
Maude [22, 20], which extends in substantial ways the OBJ language [10, 16].

Regarding expressiveness of algebraic specifications, it has for a long time
been recognized that it is very important in practice to support subsorts,
partiality, errors, and overloading of function symbols. Our ideas extend and
unify within a simple semantic framework two different lines of work in al-
gebraic specification, namely the order-sorted approach initiated by Goguen
in the late 1970's, and different partial algebra approaches. The theoretical
framework on which this unification is achieved is quite simple. We assume
a family of kinds, ~, and a many K:-kinded signature of operations ~. Each
kind K E K: has an associated set of sorts SK. Each sort s E SK is in-
terpreted as a unary membership predicate, defining a subset As C ,4K at
the level of an algebra ,4. Atomic formulae are either K:-kinded E-equations
T = U or membership assertions T : s, and general sentences are Horn
clauses on these atomic formulae. The intuitive interpretation is that data
elements that have a kind K, but do not have a sort are undefined, or error
elements. Axioms in a specification can prescribe subsort inclusions, as well
as definedness of an overloaded operator for different arity and coarity sorts.

The simplicity of the membership algebra framework allows an efficient
operational semantics by rewriting (or narrowing when a specification is
seen as a logic program in the PROLOG sense) that makes specifications
executable. Such a semantics, which justifies many of the design decisions
made in the implementation of Maude [20], is investigated in detail in this
paper, by deriving from the general deduction rules for the logic more effi-
cient equivalent rules for rewriting under reasonable assumptions about the
oriented equations. In this regard, the simplicity of our framework provides
a satisfactory solution to many problems, like sort-decreasingness, that the
more restrictive logics had to face. One of the main problems with the earlier
approaches was that sort-decreasingness was not closed under completion.
This is no more the case here, since we can easily add semantic-preserving
membership axioms. This is a main advantage over previous (some of them
quite complex) attempts to settle this question [6, 15].

Besides operational semantics and completion techniques, we also study

69

in detail theorem proving techniques supporting verification of specifications
in membership equational logics. Such techniques include methods for prov-
ing sufficient completeness of a specification relative to a subspecification of
constructors, and inductive proof techniques that extend the many-sorted
test-set based inductive theorem proving approach to the more expressive
context of membership specifications. An important ingredient of this ex-
tension is the encoding of a relevant subset of membership equational logic
specifications as tree automata with equality and disequality tests introduced
in [4] and further studied in [8]. We also consider the extension of these tech-
niques to reason about parameterized specifications satisfying a separability
principle. In both cases, the main novel aspect of our technique is to refine
a given conjecture step by step until it does not contain any more defined
symbols. Separability then guarantees than the resulting conjectures can be
broken into a parameterized part for which an oracle is to be used, and a
constructor part to which tree automata techniques apply [7].

Due to space limitations, the set of references and the discussion of re-
lated work in the present version of this work are still incomplete. We
nevertheless can mention that, besides extending the more standard formu-
lation of order-sorted algebra [14], our approach has some similarities with
the order-sorted approaches in [25] and in the work of Poign~. It is also
quite close to the work of Wadge et al. on classified algebras, and has some
similarities with the typed algebra approaches like those of Manca, Salibra
and Scollo, of Mosses, of Hintermeier, Kirchner and Kirchner, and of Poign~.

Three additional papers further develop the ideas presented here in a
summarized form: a full version of the present paper [3]; a detailed model
theoretic study of the logic and the semantic connections with order-sorted
and partial equational logics [21]; and an original study of the tree automata
based inductive theorem proving techniques that are further developped here
within the framework of membership equational logic [2].

We describe our Horn clause language in section 3. Functional compu-
tations with these Horn clauses is described in section 4, where confluence,
type-decreasingness, and regularity are introduced. They are further inves-
tigated in section 5. Relationships with tree automata are investigated in
section 6, and its application to compute induction schemas in Section 7.
Sufficient completeness is adressed in section 8. Proving inductive conse-
quences is sketched in section 9. Related work is discussed in section 10,
and concluding remarks appear in section 11.

70

2 P r e l i m i n a r i e s

In this article, we will use the word kind instead of the more usual word
sort, that we will reserve for another purpose. A many-kinded signature

is made of: (i) a set of kinds K:; and (ii) a /C* x/(:- indexed family of
sets ~ = {Z~_~K}(~jC.,K~:) so that each function symbol f E ~'-K--~K
is equipped with input kinds in K and an output kind K. The case
where K is empty yields the set {~g}geE of constants. We assume that

~glx...xg.'-~g N ~KI• : 0 i f K ~ K ~.
Given a K-kinded signature ~, a ~-algebra is a /(:-indexed set .4 =

{.A/~}Ke~: together with an assignment to each f E ~Klx...K,~K of a func-
tion ,41 : .AK1 x . . . x -4K,. A ~-homomorphism h : ,4 --+ B between two
~-algebras is a/(:-indexed family of functions h = {hk}Ke~ such that for
each f E ~KIx...Kn~K, we have hKoAl = Blo(hK 1 • x hK,), a condition
which specializes to hK o ,41 = B! when f is a constant.

Given a/C-kinded set X = ~KeICXK of variables, whose disjoint subsets
XK, for K E/C are all denumerable (and disjoint from ~), we define the set
of many-kinded terms 7~ (X) as usual: a variable of XK is a term of kind K;
f (U1, . . . ,Un) is a term of kind K i f f f E ~Klx...xKn-4K and Vi E [1..n], Ui
is a term of kind Ki. A term has a unique parse, hence a unique kind. The
capital letters L, M, N, R, S, T, U, V, W will denote terms.

Terms are identified with finite labelled trees as usual. Positions are
strings of positive integers. A is the empty string (root position), �9 is the
concatenation of strings. We use 7~os(U) for the set of positions in U,
~TPos(U) for its set of non-variable positions and VTPos(U) for its set of
variable positions. The depth (resp. non-variable depth) of a term t is
the maximum length of a position p E 7Pos(t) (resp. p E ~CTPos(t)). The
subterm of M at position p is denoted by M[p, and we write M t> M[p.
We will use the property that -~ UE> is well-founded for any terminating
rewrite relation -+. The result of replacing M[p with N at position p in
M is denoted by M[N]p, where p may be omitted. We use Var(M) for
the set of variables of M. Terms without variables are called ground. We
assume that each kind contains a ground term. Substi tutions are writ ten as
in {xl ~-~ M1, . . �9 xn ~-~ Mn}, where Mi is assumed different from xi. We use
greek letters for substitutions and postfix notation for their application. We
say that two many-kinded terms S and T unify if there exists a substi tution
a such that Sa : Ta, and that they overlap if one of them unifies with a
subterm of the other. The set of unifiers of two given terms S, T possesses
a unique (up to conversion) minimal unifier with respect to subsumption,

called the most general unifier of S and T, and denoted by mgu(S, T).

71

3 L a n g u a g e

Our language is a many-kinded first-order language whose only predicates
are an infix equality, denoted by _ = _, and a family of unary member-
ship predicates, denoted by _ : s, where s ranges over a set of sorts, as
defined later. These predicates allow us to state two kinds of Horn clauses,
conditional equations whose head is an equality atom, and conditional mem-
berships, whose head is a membership atom.

3.1 S i g n a t u r e s a n d A x i o m s

Def in i t i on 1 A signature in membership equational logic is a pair fl of a
many-kinded signature (K:, ~, X), and of a disjoint IC-kinded family of sets
of sorts S = {SK)KEK. ,~ may be omitted if irrelevant.

It is convenient to identify SK with a subset of K, for all K E K:. Men-
tifying Sg with K itself would not be correct, since the kind K acts as a
built-in error type for those computations taking place in kind K which do
not return a value inhabiting a sort.

De f in i t i on 2 Atomic fLformulas in membership equational logic are either
equalities S = T or memberships S : s, where S , T are many-kinded Z-
terms, and s is a sort. 12-sentences are then conditional axioms of the form

(v-e) r i~ r ^ . . . ^ r

where r r Cn are atomic fLformuIas, and the finite many-kinded set of
variables ~ C 2~ contains all the variables occurring in r r Cn- Such
axioms are either conditional memberships:

w L(~): s i s ~(~): t' ^ v(~) = W(~)

where L is a many-kinded term of kind K, s is a sort of kind K, and U, V, W
are vectors of many-kinded terms, or conditional equalities:

v~ L(~) = R(~) i~ U(~): t' ^ V(e) = W(~)

where, as previously, L and R are many-kinded terms of the same kind K,
and U, V, W are vectors of many-kinded terms.
L = R or L : s is called the head of the axiom, while U(~) : ~AV(~) = W(~)
is its body or condition. We will often omit the set of (universally quanti-
fied) many-kinded variables ~ when it is not necessary to carry it along.

72

Note that the universally quantified variables in the axioms are K:-kinded.
Conditional equations and conditional memberships complement each

other: the language of conditional equations is used to specify the meaning
of those functions that are not meant to be constructors, while the language
of conditional memberships is used to define the sets (each one in some
kind) on which these functions are total. This is therefore a language of
partial functions that become defined on subdomains definable in the logic.
This language is powerful enough to encode many (usually meta-theoretic)
concepts: Subsorts declarations are syntactic sugar for membership axioms
of the form x : s i f x : s'. Order-sorted signature declarations of the form
] : st • . . . x sn -~ s where s l , . . . , sn, s are sorts, are syntactic suger for
conditional membership axioms of the form f (~) : s i f ~ : ~. The signature
becomes overloaded on sorts when there are several axioms of the above
form for a given function symbol f .

3 .2 M e m b e r s h i p A l g e b r a s a n d S a t i s f a c t i o n

The models of membership equational logic are membership algebras. They
are Z-Algebras with a specification of a subset for each sort s.

De f in i t i on 3 For Q = ((K:, ~, X), ~q) a signature in membership equational
logic, an Q-algebra is a Z-algebra ,4 together with the assignment to each
sort s e K of a subset ,4s C ,4K" An Q-homomorphism f : ,4 --+ B between
two such Q-algebras is a ~-homomorphism such that for each s E K , we
have fK(,4s) C Bs. This defines a category AIg~ in the obvious way.

A K:-kinded map a : 2d -4 ,4 , called an assignement, extends in a unique
way, by the freeness of the/C-kinded algegra Tr~(X), to a ~-homomorphism
-~ : Tr.(X) -4 ,4. We then say that the Q-algebra ,4 with assignement a

satisfies the equation (V~) S = T, where Var(S, T) C 5, if[~(S) = ~(T),
and use the notation ,4,a ~ a (V~) S = T to denote such satisfaction.

Similarly, ,4, a ~ n (VS) S : s holds iff ~(t) e ,4s.

De f in i t i on 4 An n-algebra A satisfies a conditional axiom (V~) r i f r A
. . . A r written A ~ a (V~)r i f r A . . . A Cn, iff A , a ~ a (Vx)dk for each
assignment a : �9 -+ A such that A, a ~ (V5)r for each i e [1..n]. For

a set of such conditional axioms, we write A ~f l g if f A ~ a ~o .for each
E ~. The n-algebras that satisfy a set of conditional axioms define a full

subcategory Alga,g of Alga in the obvious way.

?3

3.3 S p e c i f i c a t i o n s

Def in i t i on 5 A specification or theory in membership equational logic is a
pair (~, E) consisting of a si9nature ~ in membership equational logic and a
set of axioms E on this signature.

Specifications in membership equational logic generalize the more fa-
miliar notion of order-sorted specifications, which have been the subject
of numerous studies since their introduction by Joseph Goguen in the late
seventies [12, 10, 14]. This work extends the order-sorted framework while
keeping its conceptual elegance and making progress in four different direc-
tions. First, all terms are many-sorted, hence there is a well-defined syntac-
tic notion of a term which makes sense. Second, our language provides for
partial functions which are indeed total on subdomains definable in Horn
logic of equality and membership. Hence, partiality can be studied by proof
theoretic means 3.4. Third, the logic is the simplest, yet most expressive,
first-order logic we can think of for defining functions, a claim supported
in Section 10. Fourth, as a Horn logic, it has a simple proof theory, and
enjoys an initial algebra semantics. The latter is true of Order-sorted logic
as well, but its proof theory is complicated by several technical anomalies
that disappear in the richer framework of membership equational logic.

Figure 1 presents a specification of numbers, aiming at illustrating the
expressive power of membership equational logic, that is, its ability to encode
many properties of the specification, whether true in all models or in the
initial one, as conditional equations or memberships. After the header,
giving the name NUMBER to the specification, comes the imported module
B00L whose kind is called Error-Boo1, and the many-sorted signature, with
one kind, Number, refined in three sorts, Nat, I n t , Complex, each one being
a subsort of the next. We use the keywords fmod for functional modules,
cop for constructors, op for defined symbols, mb for memberships and eq for
equations. Expressions like s : Number shortcut the enumeration of all
possible sorts in the kind Number. Important remarks are:

There are several categories of membership constraints. The first four
encode the order-sorted signature of the constructors, while the next take
care of the operations. The latter five constraints are not necessary in theory,
since the corresponding properties can be deduced for the initial model from
the equations defining the operations by using an inductive argument. It
is good practice to run a theorem prover in order to check their validity as
inductive consequences of the remaining axioms. But they also specify on
which sorts a function symbol should be completely defined, allowing the
prover to check sufficient completeness at these sorts.

74

fmod N U M B E R is protect ing B O O L
kind Number [Nat < Int < Complex]
cop 0 : N u m b e r
cop S, P : Number -+ Number
cop <_, _> : Number x Number --> N u m b e r
op --- : N u m b e r x Number -+ Number
op _+-, -*- : Number x Number --+ Number [comm]
op _>_ : Number x Number --+ Er ror -Bool
op Conj, [_[: Number --+ Number
mb 0 : Na t
mb S(x) : s i f x : s and s : {Nat, Int}
mb P(x) : Int if x : Int
m b < x , y > : Complex if x : In t and y : Int
mb x+y , x*y : s if x : s and y �9 s and s : N u m b e r
mb x-y : Na t if x,y : Na t and x > y -- T
mb x-y : Int if x,y : Int
mb Conj(x) : Complex if x : Complex
mb Ixl - Na t if x : Complex
mb x*x : Na t i f x : Iut
mb x*y : Na t i f x : Complex and y : Complex and y -- Conj(x)

eq P(S(x)) = x i f x : Int
eq S(P(x)) -- x if x : Int
eq < x , 0 > -- x if x : Int
eq (x>0) - T if x : Nat
eq (0>S(x)) = F if x : Na t
eq S(x)>S(y) = x > y if x ,y : Int
eq P (x) > P (y) = x > y i f x , y : Int
eq S (x) > P (y) = x > P (P (y)) if x , y : Int
eq P (x) > S (y) = x>S(S(y)) f i x , y : Iut

eq x + 0 = x
eq x + S (y) = S(x+y) if x : Int and y : Int
eq x + P (y) = P (x + y) if x : In t and y : Iut

eq x-0 = x
eq x-S(y) -- P(x-y) if x : Int and y : Int
eq x-P(y) = S(x-y) if x : Int and y : Int

eq x*0 = 0
eq x*S(y) = (x*y)+x if x : Int and y : Int
eq x*P(y) = (x*y)-x i f x : Int and y : Int
eq < x , y > + < x ' , y ' > = < x + x ' , y + y ' > if x ,x ' ,y ,y ' : Iut

�9 X)) eq < x , y > < ,y > < x * x ' . y * y ' , x * y ' + x) * y > if x ,x ' ,y ,y ' : Iut

eq x + < x ' , y ' > = < x + x ' , y > if x ,x ' ,y ' : Int
eq x * < x ' , y ' > = < x * x ' , x * y ' > if x ,x ' ,y ' : Int
eq C o n j (< x , y >) = < x , - y > if x,y : Int
eq Conj(x) = x if x : Iut
eq Ix] = x*Conj(x) if x : Complex

endfm

F i g u r e 1: A s p e c i f i c a t i o n o f n u m b e r s in m e m b e r s h i p e q u a t i o n a l logic

75

There is no membership axiom for specifying the sort of x -y when x , y
are of sort Complex, and indeed, the semantics of x -y is only defined for the
case where x and y are in Nat or in In t . So, this operation is defined on the
sorts Nat x Nat and In t x In t . Although we could have given an additional
membership axiom for the case where x , y are in Complex, we chose not to
do so, therefore saving us from the burden of giving semantics at all sorts
when this is not really needed in a given specification. As a consequence, x -y
becomes an error element of kind Number when x , y are complex numbers.
This is an example of the use of kinds to catch error terms.

Successor and predecessor are two non-free constructors, since they ap-
pear as top function symbols in the two first equations. The constructor for
complex numbers is not free either, due to the third equation. 0 is the only
free constructor in this specification.

The equation x+0 = 0 does not specify the sort of x. Since the signature
is many sorted, x has to range over some kind, here the kind Number. This
equation may in particular apply to a term of kind Number not belonging
to any of the sorts Nat, I n t , Complex. This possibility for a variable in
an axiom to belong to a kind is systematically exploited in Maude for the
axioms of associativity and commutativity which apply to terms in a kind.

The last equation raises an interesting problem: the lefthand side has sort
Nat by using the membership axiom encoding t h e order-sorted specification
of the operation [_[. But the righthand side is the product of two complex
numbers, hence would normally have sort Complex. Such sort-increasing
rules could result in a lack of completeness of the computation mechanism,
and this is why it may seem wise to add the inductive property stating that
x*Conj (x) has sort Nat. This is actually not necessary, as discussed later.

Figure 2 shows how a bounded stack of complex numbers with a recov-
ery operator can be naturally specified in membership equational logic. This
example also shows how sort constraints in order-sorted algebra [13] can be
viewed as a special case of the more general conditional axioms in member-
ship equational logic. The module BD-STACK imports the NUMBER mod-
ule discussed previously. We slightly abuse syntax by assuming that decimal
notation is available to avoid a long list of successor symbols. Note that vari-
ables with no sort assigned to them are of the appropriate kind, that can be
inferred from the expressions in which they appear. Note also that the state-
ment p r o t e c t i n g ~MBER applies to the sorts, not to the kind Number itself,
since new error messages like Length (Pop (Push (S (<0,0>) , A))), where A is
a stack exceeding the bound, can now be generated. This is closely related
to the appropriate way of understanding sufficient completeness for mem-
bership algebra specifications, as discussed in Section 8.

76

fmod BD-STACK is protecting NUMBER
kind ErrStack[NeStack < Stack]
cop Push : Number x ErrStack -~ ErrStack
cop Empty : --+ ErrStack
op Recover : ErrStack --+ ErrStack
op Top : ErrStack -+ Number
op Pop : ErrStack ~ ErrStack
op Lenght : Stack -~ Number
op Bound : ~ Number
eq Bound = 999
mb Empty : Stack
mb Push(x,y) : NeStack if x : Complex and y : Stack and Bound > Length(y)
eq Lenght (Empty) = 0
eq Length (Push(x,y)) = S(Length(y))
eq Top(Push(x,y)) = x if Push(x,y) : NeStack
eq Pop(Push(x,y)) = y if Push(x,y) : NeStack
eq Recover(Push(x,y)) = Recover(y) if Length(y) > Bound
eq Recover(y) = y if y : Stack

endfm

Figure 2: A specification of bounded stacks

3 .4 D e d u c t i o n , S o u n d n e s s a n d C o m p l e t e n e s s

Membership equat ional logic coincides wi th the special case of many-sor ted
Horn logic wi th equali ty where the general not ion of s ignature, t ha t is, a
tr iple (K:, ~ , H) wi th (~:, ~) a K:-kinded signature and H = { I I ~ } ~ e ~ a sig-
na ture of predicates, is restr icted so t ha t H consists only of unary predicates,
where IIK is SK and the postfix nota t ion t : s is used for s(t). Hence, there
is a sound and complete inference sys tem for membership equat ional logic.

Unlike kinds, sorts are of a semantic nature. Given a specification, a
t e rm has one kind, 0 has kind Number in the specification of figure 1. Using
the axioms, we may be able to prove tha t the same t e rm inhabi ts some spe-
cific sort of t ha t kind. 0 has sort Nat, x*y has sort Nat when x , y have sort
Complex and y = Conj (x) : the use of this axiom for proving the member-
ship x*y : Nat requires therefore proving the equali ty y---Conj (x) . Hence
deduct ion of sorts and deduct ion of equalities depend on each other in our
inference system: to test whether a given te rm has a given sort becomes
semi-decidable. To this end, we will make use of environments assigning
sorts to finitely many variables occuring in a proof: an envi ronment is a
par t ia l K:-kinded funct ion F : 5 ~+ S, where �9 is a finite vector of variables

77

Variable:

Subject Reduction:

Membership:

Reflexivity:

Symmetry:

Transitivity:

Congruence:

Replacement:

x : s E F
F t - e x : s

F F - e N : s F I - e M = N
r l - e M : s

F ~ - e U a : t ' F ~ - z V a = w a
F~-e L a : s

F ~ - E M = M

F~-z M = N
F ~ - s N = M

F ~ - z M = N F ~ - z N - - P
F I - ~ M = P

r ~ M1 = N1. . . r ~e M. = N . r ~ / (- M) : K r ec](-~) : K

F ~-~ .f(M) = f (N)

P ~-e Ua : t' P ~-~ Va = W ~
F t-~ La = Ra

.here L(~) = R(~) if g(~): tTA V(z) = W(~) e $

Figure 3: Equality and membership judgements

with disjoint components, denoted as a set of pairs x : s w i t h x a variable
in ~ and s the sort r (x) if F is defined, or the kind K of x otherwise. We
call sorted term a pair made of a term and an environment assigning sorts
to (some of) the variables in the term.

We adopt the familiar view of deduction by using environments and
judgements: our typing judgements are written as F ~-~ M : s if the term
M can be proved to have the sort s in the environment F by using the
equations and memberships in ~, and our equality judgements are writ ten
as F F-~ M = N if the term M can be proved equal to the term N in the
environment F by using the equations and memberships in $. A term M of
kind K has sort s E K in the environment F if F ~-e M : s is provable in the
inference system of figure 3. A term M has a (not necessarily unique) sort
if there exists an environment F and a sort s E r such that F ~-E M : s.

78

T h e o r e m 6 (Soundness and Completenes) For any atomic R-sentence ~,

Given an R-algebra ,4 and an environment F, an assignment a : F ~-~ ~4
is a K:-kinded map a : 5 ~+ ,4 of the corresponding variables such that
a(x) E A , if F(x) = s.

T h e o r e m 7 (Initial and Free Algebras) For (fl, g) a specification in mem-
bership equational logic such that R = (~:, E, X) , there is an (fl, g)-algebra
T~,e(X) and an assignment yx : X ~-~ T~,g(X) such that for each assign-
ment a : X ~-+ A with A E Algfl,c there is a unique ~-homomorphism

: Tn,e(X) ~-~ A such that ~ o yx = a. In particular, for 0 the empty
•-kinded set, Ta,~(O), denoted Ta,e, is initial in the category Alga,~.

The construction of T~,e(X) follows in a straightforward way from the
rules of deduction as the quotient T-algebra T ~ . (2 d) / - x = e , where

defines a E-congruence by the reflexivity, symmetry, transitivity, and con-
gruence rules of deduction. The sort structure is then defined by It] E
Ta,~(X)s iff g ~-a (~) t : s, which is independent of the choice of t by

vertue of Subject Reduction.

4 Computations

In this section, we provide an operational semantics for the efficient compu-
tation by rewriting supported by Maude for functional modules.

4.1 C o n d i t i o n a l R e w r i t i n g a n d M e m b e r s h i p R u l e s

The idea of reductive conditional rules appeared first in [18], was then gen-
eralized in [17] and again slightly in [9]. We adapt the latter.

De f in i t i on 8 A CRMS, or conditional rewriting/membership system, is
defined by (conditional) membership rules and (conditional) rewrite rules:

s : t ' ^

L(5) -+ a(~) i f U(5) : t' A V(5) ~ W(5)

where u ~ v is a shorthand .for 3w s.t. u *) w + ! - v . For both kinds of

rules, L is called the lefthand side. We usually omit mention of the set

79

of variables. We denote by En the set of Horn clauses obtained by replacing
arrows and joinability symbols in the rules of 7~ by the equality symbol =.

A reductive CRMS T~ has two kinds of rules, subsort membership rules
of the form x : s i f x : t, defining the subsort ordering <Ic generated by the
set of pairs {t <~c s J x : s i f x : t q 7~}, and reductive rules satisfying the
following reductivity requirement: there exists a reduction ordering ~- s.t.

(i) L ~ X for each lefthand side L of a reductive rule in 7~,
(ii) L ~- R for each rewrite rule L --~ R i f U : t A V ~ W in 7~,
(iii) L (~- Ut>) + U,V,W, VUe U, VVG V, VW6 W , s.t. for all rules

L - + R i f U : t A V ~ W a n d L : s i f U : ~ A V ~ W i n T ~ .

The subsort ordering definition does not involve deduction: a semantic
definition would yield the same ordering under the assumption that the
specification is confluent and sort-decreasing, a property introduced next.

Given a CRMS 7~, we reformulate our inference system in figure 4, replac-
ing equalities by rewrites or joinability, therefore exploiting the full power of
rewriting to replace a search by a computation. The notation ~_o indicates
that the rule used at the root of a proof tree is Replacement or Membership,
and hence, F ~-Te M ~ N appears as the reflexive transitive closure of
P ~_o M ~N. We therefore write M ~ r ,nN for F F - ~ M ~N, in
which case we say that S is reducible in the environment F, M >~,7~ N
for F F-n M ~ N, and M #r ,n N for F F-7~ M ~ N, and use MSr,n for
the set of E-normal forms (the 7~-normal form if it is unique) of M in the
environnement F. We also write S :r,n s for F F -~ S : s, in which case we
say that S is sortable in the environment F, and S "* �9 r ,~ s for F F-7~ S : s.

In order to relate both inference systems, we need to further assume that
sorts decrease along computations in the following sense:

Def in i t i on 9 A CRMS 2s is sort decreasing i f whenever M :r,n s and
M ~ N for some N and s, there exists t <Ics s.t. N :r,n t.

P r o p o s i t i o n 10 Let 1s be a confluent, sort-decreasing CRMS, and 7~e be
its associated set of Horn clauses. Then

F t-7~ M : s i f f M - -~ N :r,~ t for some N and t <~: s
F,~

P t-7~e M = N i f f M # r ,n N

A slightly different version of the inference system, closer to the actual
deduction system used in the Maude implementation when no evaluation
strategies are declared for the operators, is obtained by eliminating Sub-
ject Reduction and rewriting instead the terms U a before sorting them in
the conditions of Membership and Replacement.

80

Variable:

Subject Reduction:

Membership:

Reflexivity:

Transitivity:

Congruence:

Replacement:

x : s E r

r F - ~ N : s F F - x M - - - + N
rt-~M:s

F F-~ Ua : t' r t-~ V a ~ W-"a

FF-~ M-- - -~M

FF-nM-- - -+N FF-nN----- ,P
Ft -nM--- - -~P

r~M~---+N1...r~-~M.----+N, r~-~y(~):Z r~-~/(~):K

F F-n Ua : t' F F-n Va # W a
r }- n La---~ R~

.here L(~) -~ R(~) i~ U(5) : t t ̂ V(~) ~ W(~) e n

Figure 4: Rules of deduction for sort-decreasing CRMS's

4.2 De c ida b i l i t y of E q u a l i t y a n d M e m b e r s h i p S t a t e m e n t s

The key properties investigated here are decidability of rewriting and of
computation of normal forms, termination, and confluence, which in turn
imply decidability of equality and membership statements:

Proposi t ion 11 Assume that 7~ is a reductive URMS. Then, ~R is ter-
minating. Furthermore, M :r,n s, M ~ r , ~ N and N E M S r , n for some

N are decidable properties of M and N .

Theorem 12 Assume that 7~ is a confluent, reductive, sort decreasing
CRMS, and let 7~.~ be its associated set of Horn clauses. Then F F-n e M = N
iff M S n = NJ, n , r F-n~ M : s iff M$:r ,n s' for some s' <Jc s, hence equality

and membership are decidable.

Bottom-up evaluation strategies allow obtaining reduced substitutions
when matching a lefthand side of a rule, hence sorts can be computed once

81

and for all and stored in the term structure. In case of multiple sorts for a
given term, the combinatorial explosion may slow down the sort-checking,
although Maude uses a very efficient implementation of sorts by boolean
vectors. It is therefore interesting to have a kind of unique sort property:

D e f i n i t i o n 13 A specification is regular if each term has a unique minimal
sort, and strongly regular i f each term has a unique minimal sort w.r. t F -~

Strong regularity allows to improve efficiency for arbitrary computation
strategies. The point is that the t ruth of a membership statement U : s
in the condition of a rule necessitates the existence of a membership whose
head matches U. If this is not the case, then U : s cannot be true, therefore
allowing us to avoid wasting time in normalizing the condition of the rule.
This stronger notion of regularity appeared already in OBJ for the case of
order-sorted equational logic, and is the one used in Mande [22].

5 Confluence Properties and Completion

We define first the Church-Rosser property needed in our framework, and
show that it follows from confluence, sort-decreasingness and regularity.

De f in i t i on 14 A specification 7~ is Church-Rosser iff VF, S, s, T, t such
t h a t S (~ , R T , S : ~ s a n d T : O t , 3U, u s u c h t h a t S ~ , R U , T ~* U, F,R
U :r u, with u <_r. s and u <1c t.

T h e o r e m 15 A specification 7?., whose righthand sides of rules are irre-
ducible, is Church-Rosser iff it is confluent, sort-decreasing and regular.

We now characterize our properties by means of critical inference steps:

De f in i t i on 16 Given two conditional rewrite rules L --+ R i f U : s' A V
W and G -+ D i f U' : t' A V' ~ W ' such that Var(L) f3 l)ar(G) = 0 and
Llpa = Get, for some non-variable position p 6 .T'Pos(L) and most general
(many-kinded) unifier a, then the critical pair:

La[Da]p = Ra if Va : s' A U'a : ~ A Va ~ Wa A ETa J~ W'a

is confluent i f (La[Da]p)7 ~ R a 7 for all substitutions 7 which satisfy the
condition of the critical pair.

Given a conditional membership rule L : s i f U : s' A V ~ W and a
conditional rewrite rule G -r D i f U' : t' A V' ~ W' such that Var(L) fq
])ar(G) = 0 and LIpa = Ga for some non-variable position p 6 :F79os(L)
and most general unifier a, then the critical reduced membership

82

L a : s --> L~r[Dcr]p i f Ua : s' A U'a : ~' A V a ~ W a A V-7g ~ W ' a
is sort decreasing i f for each substitutions 7 satisfying the condition of the
critical reduced membership, there exists t <_~: s such that (La[Da]p)7 :~e t.

Given two conditional membership rules L : s i f U : s' A V ~ W and
G : t i f U' : t ' A V' ~ W' such that];at(L) n];ar(G) = ~ and L a = Ga for
some most general unifier a, then the critical membership

La : s, t i f Ua : s' A U'a : t' A V a ~ W a A V 'a ~ W'cr
is strongly regular i f for each substitutions 7 satisfying the condition of the
critical membership, there exist u <_1c s, t such that L a 7 :o u.

Critical reduced memberships were already used in OBJ to check for
sort decreasingness. Note the use of plain unification in the definition of
our critical pairs and memberships. Confluence, sort-decreasingness and
regularity can now be reduced to their respective critical instances:

T h e o r e m 17 (i) (Sort-decreasingness) Let 7Z be a confluent, reductive
CRMS whose memberships are left-linear. Then T~ is sort decreasing iff
its critical reduced memberships are sort decreasing.

(ii) (Church-Rosser) Let 7s be a reductive, sort decreasing CRMS. Then
7~ is Church-Rosser iff its critical pairs are confluent.

(iii) (Regularity) Let 7s be a confluent sort-decreasing CRMS. Then 7Z
is strongly regular iff all its critical memberships are strongly regular.

Confluence of critical pairs or sort decreasingness of critical reduced
memberships is undecidable. Decidable sufficient conditions exist for con-
ditional rewrite rules. Regularity is easy to refutes since the existence of a
minimum for a given set of sorts does not depend on any computation. To
infer regularity is as difficult as to infer confluence and sort-decreasingness,
since the substitutions satisfying a given condition must be considered.

Sort-decreasing order-sorted specifications are not closed under compu-
tation of critical pairs. Comon solved this by showing that confluence of
non-decreasing specifications was reducible to the confluence of critical pairs
computed by a decidable restricted form of second order unification. We
solve the same problem in a different way, by considering a more expressive
specification language closed under computation of critical pairs and crit-
ical memberships (computed via plain unification). It is then easy to add
these critical axioms to the starting specification, as it is done in Knuth
and Bendix completion. The corresponding completion procedure achieves
confluence and sort-decreasingness. Achieving regularity as well is possible
at the price of adding new sorts at completion time.

83

6 Bottom-up Tree Automata

Many-sorted signatures are bottom-up tree automata, in which sorts become
states, and signature declarations become transitions. For the case of order-
sorted signatures, subsort declarations become empty transitions. Since
signature and subsort declarations are membership axioms of a particularly
simple form, a natural question is whether more complex axioms can be
encoded as transitions of the automaton. The answer is positive for non-
conditional left-linear rewrite rules [5].

De f in i t i on 18 A bottom-up tree automaton, or simply automaton, is a
quadruple (8, <_s, ~, .~), where (S, <__s, ~) is an order-sorted signature whose
sorts are called states, whose membership declarations are called transitions,
and whose subsort declarations are called empty transitions. ~" is a subset
of S whose elements are called accepting states.

Recognizing a term T is done by rewriting T according to the transitions:

De f in i t i on 19 To an automaton r = (S, <s ,~ ,Jr) , we associate a many-
sorted signature (S, ~.4) and a rewrite system 7s over the signature ~A:

7"s -- {f~,s(s) -+ s}$:~--,s ~r. t2 {s ~ t}s<s$
A term T E Tr.(O) is recognized by the automaton if it rewrites to an ac-
cepting state s using the rules in 7s We say that T inhabits the sort s.

Bottom up tree automata are closed under Boolean operations, deter-
minization and cylindrification, their emptyness problem is decidable, and
they can encode order-sorted specifications whose axioms are left linear rules:

T h e o r e m 20 Let (~, 7s be an order-sorted specification for which 7s is a
set of le~ linear rewrite rules. Then, there exists a computable bottom-up
tree automaton .ATe, called the normal form automaton of (~, 7s s.t.:
(i) Each 7s ground term S is recognized at an accepting state u
of the automaton, s.t. s is accessible from u by empty transitions if f S :7~ s.
(ii) Each 7s ground terms T is recognized at the non-accepting state
t of the automaton iff T :n t. I f 7s is sort decreasing, the normal form S of
T is recognized at a state t ~ s.t. t is accessible from t' by empty transitions.

The remark that the language of ground normal terms in normal form
is recognizable is due to Gallier and Book for the simple case of left-linear
many-sorted specifications, and to Comon for the general case of order-sorted
specifications. When the set of rules has the unique normal form property,
the automaton can be seen as a realization of the initial algebra:

84

Coro l l a ry 21 Let (Z, TZ) be an order-sorted specification s.t. ~ is a set of
left linear rewrite rules. Assume that each ground term has a unique normal
form with respect to 7~. Then the ground terms accepted by the normal form
automaton of (~, 7~) define an order-sorted algebra, called the canonical term
algebra of ~ , that is initial among all E-algebras that are models of (E, 7~).

We give a simple example of an order-sorted specification of integers
together with its associated normal form automaton in Figure 5.

obj INTEGERS
sorts Nat<Int
o p S , P : I n t ~ Int
o p S : N a t -+ Nat
o p 0 : Nat
eq P(S(x)) ~ x if x : Int
eq S(P(x)) -~ x if x : Int
end obj

s,e "r

0 E

S ,e

S e e

S

0

Figure 5: An order-sorted specification and its normal form automaton

Non-linear non-conditional rewrite and membership rules can also be
expressed by using bottom-up tree automata with equality/disequality tests
labelling the transitions [4]. The intuition is that the automaton has to verify
conditions on the terms recognized so far at states in ~ before applying the
transition from ~ to s labelled by the function symbol f . It is also possible to
express associativity, commutativity, identity and idempotency, by labelling
the transitions with formulae of Presburger's arithmetic [19].

7 Induction schemas

In this section, we relate normal form automata and induction.

Def in i t ion 22 Given a CRMS 7~, a term (T, I') is said to be ground re-
ducible (resp. irreducible, sortable) if T 7 is reducible (resp. irreducible,

85

sortable) for each irreducible ground substitution 7. We also say that T is
ground reducible (irreducible, sortable) in the environment P. <>

D e f i n i t i o n 23 A sort s is free iff every ground term inhabiting s is irre-
ducible. A Cartesian product of sorts is free if so are its components.

Given a sort s, a set S of free subsorts of s is a cover sort of s if every
irreducible ground constructor term T inhabiting s inhabits a unique sort in
S. Cover sorts are extended to Cartesian products of sorts as expected.

A finite set T of order-sorted terms inhabiting a free sort s is a cover
set of s iff every ground term inhabiting s is an instance of a term in T .

A test term is a ground-reducible order-sorted term (T, F), all variables
of which inhabit free sorts. 0

The normal form automaton actually separates sorts into three cate-
gories, the free ones, the ones inhabited by reducible ground terms only, and
the ones inhabited by both reducible and irreducible ground terms.

D e f i n i t i o n 24 (Induction Variables) Given a set 7?. of rules, the set
ZndT~os(f,7~) o]induct ion positions o f f E ~" is the set {p = i.q] 3](-L) --+
R i f C e 7~, s.t. q e .~7~os(Li))}. The s e t Z n d V a r ((T , F) , n) of induction
variables of an order-sorted term (T,F) is the set {x e X I 3p s.t. T]p=
/ (S) , Sq s.t. Tip. q -- x, and q e ZndT)os(f,7~)}. 0

Since the initial algebra is characterized by terms inhabit ing free sorts,
other terms are eliminated by repeatedly instantiat ing t hem by elements in
a cover set before simplifying them, which requires an addit ional property.
To each non-left linear rule L -+ R i f P , we associate its linearized version
L t -+ R ~ i f P~ A P" , such that L' is linear, L = L~a for some renaming a,
R = R~a, P = P~cr, and x -- y E ptl iff xa = ya.

D e f i n i t i o n 25 A term (T, F) is strongly ground reducible i f either:
(i) T is reducible in the environment F, or

5i) the .formula Plal V . . . V Pn(rn is an inductive theorem of 7~, where
{Li -+ P,4 i f Pi}ie[1..n] is the set of tinearized rules in 7~ whose lefthand
sides match a subterm of T with respective substitutions a l , . . . , an. 0

Case (ii) of strong reducibility is undecidable, while case (i) is a part icular
decidable case, but case (ii) can be checked (and hopefully solved) by using
an inductive theorem prover, as the one described in Section 9. The following
proper ty is crucial for testing completeness of definitions in Section 8.

P r o p e r t y 26 Let (T, F) be a test term free of induction variables. Then
(T, F) is strongly ground reducible.

86

8 Complete Definitions

The evaluation of any te rm should result in a te rm expressed by means of
constructors, together with its sort. In Maude, specific keywords allow us to
specify the constructors. Besides, the membership rules for the defined sym-
bols specify the appropriate input sorts for which a function is completely
defined, therefore always evaluates to a constructor term of the appropriate
sort. Terms whose result is not a constructor term are considered as error
terms inhabit ing a kind, but no sort. Adapted from [3], our procedure for
testing completeness of a function I exhibits the sorts on which f is only
partially defined, so tha t this can be matched against the user declarations.

To prove completeness, all algorithms found in the l i terature assume
either tha t constructors are free, or that rules for defined symbols are un-
conditional. Instead, we assume given a complete specification, which comes
in two parts: a complete specification of constructor symbols (C, Tic), and a
complete specification of defined symbols (T~,Ti~) relative to (C, Tic).

8 .1 C o m p l e t e S p e c i f i c a t i o n s o f C o n s t r u c t o r S y m b o l s

Constructor symbols may be free for some sorts, and completely defined in
all other sorts. For example, the successor function S is free on Zero U Pos

and completely defined on Ned in the specification given in figure 5.

D e f i n i t i o n 27 Given a constructor specification (C, Tic), obtained as a re-
f inement by additional free sorts of the user-defined subspecification of con-
structor by using the tree automata technique given in Section 6, a construc-
tor c : K1 • . . . x Kn --~ K is free at sorts s l x . . . x 8n i] c (x l , . . . , x n) is

ground irreducible in the environement {xl : 81, . . . , xn : 8n}.
A constructor c : K1 • . . . • Kn --4 K is defined at sorts S l x . . . • sn i f

c (x l , . . . , x n) is ground reducible in the environement { x l : 8 1 , . . . , xn : 8n}.
A constructor c : K1 x . . . x Kn -+ K is complete at sort 81 • . . . x sn i f

i . there exists a cover sort S = {S~l x . . . x s n } , E I o f 81 • . . . • 8n such that c
is free at all sorts in some subset Q of S and defined at all sorts in $ - Q.

A constructor c is complete if:
(i) c is complete at all sorts s l x . . . x s , E K1 x . . . x Kn such that

(c(5), {x i : si}ie[1..n]) is ground sortable,
5i) c(5) inhabits a minimal (w.r,t. <Jc) free sort i f so do its variables.

A specification o] constructors is complete i f each constructor is complete.

T h e o r e m 28 ([5]) It is decidable whether a specification of constructors in

membership equational logic is complete.

87

8.2 C o m p l e t e S p e c i f i c a t i o n s o f D e f i n e d S y m b o l s

We denote by T~,ulc the restriction to the constructor signature C of the
initial algebra Ta,n, and by h the unique C-homomorphism Tc,nc ~ Tn,nlc.

Def in i t ion 29 Let (~, 7~) be a specification. A specification of defined sym-
bols is complete relative to the constructor subspecification (g,7~c) iff the
unique homomorphism h : Tc,~c -+ Tn,~lc is injective and for each sort s
the component hs : (7c,~c)~ ~ (Tn,nlc)s is bijective. 0

The idea is that each ground term of sort s can be proved equal to a
constructor ground term having the sort s in the constructor specification
7~c, and that 7 ~ does not impose new equalities on constructor terms.
Error ground terms not having a sort are new error terms created by the
symbols in :D. We now give an operational version of completeness:

Def in i t ion 30 Let (~,7~) be a specification in which 7~ is a reductive
CRMS. A function symbol f E 2) is operationally complete relative to
the constructor subspecification (C, 7~e) iff]or each term T of the -form
f (T1 , . . . ,Tn) where for all i, T i e T(C) and T :n s -for some sort s, there
exists T' E T(C) such that f (T1 , . . . , Tn) -++ T' and T' :7r s. A specifica-
tion of defined symbols is operationally complete relative to the constructor
subspecification (C, 7~) iff each -f E 7) is operationally complete. (~

P r o p o s i t i o n 31 Let (~, 7~) be a constructor specification in which ~ is
a ground confluent, ground sort-decreasing, reductive CRMS, containing a
subspecification of constructors (C,7~c). Then, the completeness of (f~, 7~)
is equivalent to the operational completeness of (~, 7~).

Sort declarations for defined symbols seem superflous when computing
with ground terms: all sort declarations involving defined symbols are true in
the initial model of the specification obtained by removing such declarations.
They are theorems for free, to follow a felicitous turn of phrase by Wadler:

T h e o r e m 32 Let (C U T~, 7~) be a complete specification relative to a sub-
specification of constructors (C, 7~c) in which 7~ is a confluent, ground sort-
decreasing, reductive CRMS. Let f14 be the set of membership rules in
whose head contains a defined symbol.

Then, all memberships in f14 are inductive consequences o-f T~ I = 7~-A4,
and 7~ I is a reductive system which is ground-confluent and ground sort-
decreasing, and has the same ground normal -fo~ns as 7~. Besides, if.hal I is a
set o-f membership rules whose head contains a defined symbol and which are
inductive consequences of 7?., then (C U 9 , 7~ U .h4 ~) is also ground confluent.

88

Operational completeness becomes undecidable in presence of condi-
tional rewrite rules. A complete test is based on the notion of a pattern [2]:

m

Def in i t ion a3 A pattern is an order-sorted term (f(T) , {~ : "$}) such that
f e T~ and Ti E T(C,]2ar(T)) for each Ti E T.

Our test computes pattern trees for the defined symbols. A pattern tree
for f E T~K_~K at sort ~ E K is a tree whose nodes are labeled by patterns,
whose root is labeled by the initial pattern (f(5), {5 : ~}), and such that the
successors of each internal node labeled by a pat tern (f (T) , F) are obtained
by either covering the sort or the set of values of an induction variable in
f (T) . As a result of the covering operations, the patterns in the tree grow
until they become strongly reducible. If there exists a symbol f E T) that is
only partially defined, our procedure will output a description of the ground
instances on which the function f is not defined.

9 Proof by Induction

Our method for proving inductive consequences of of a complete specifica-
tion is adapted from [2]. It has three ingredients: by exhibiting free sorts
for ground constructor terms, the normal form automaton allows us to com-
pute a canonical induction schema. This schema is then used to eliminate
all terms in a conjecture that have reducible instances, resulting when it
terminates in conjectures whose (constructor) terms inhabit free sorts only.
These conjectures are then solved by using a powerful theorem of Comon and
Delor [7]. The obtained method is both sound and refutationally complete.

More precisely, our inference system hi(n) builds inductive proofs by
instantiating induction variables of a goal (or subgoal) with test terms, and
then simplifying the obtained instances, therefore producing new subgoals.
~-I(~) applies to pairs (s where E is the set of current conjectures and
7/ is the set of inductive hypotheses. Soundness and completeness proofs
of our inference system follow [1], showing that a minimal counterexample
clause is preserved along a fair derivation when one exists.

Finite success is obtained when the set of conjectures to be proved is ex-
hausted. Infinite success is obtained when the procedure diverges, assuming
fairness. When this happens, the thing to do is to guess and prove a lemma,
which is used to subsume or simplify the generated infinite family of sub-
goals, therefore stopping the divergence. This is possible in our approach,
~incc lemma~ (proved beforehand) can easily be used in the same way as

axioms are.

89

T h e o r e m 34 Assume given a complete specification. Then ~ ~Znd CO iff
(C0, 1~) ~-I(7~) (E1,7/I) ~-I(n) --. is a successful derivation.

We obtain as a corollary that our inference system is refutationally com-
plete: all fair derivations originating from (E0, 0) end up eventually in a
disproof if[7~ ~s Eo. Let us point out that our procedure for checking
inductive conjectures is sound when the symbols in :D are not completely
defined, but it is no more refutationnally complete: in case the given con-
jecture is not valid, there is no guarantee anymore that a counterexample
will eventually be found. But divergence is precluded in this case, since
divergence implies the validity of the inductive conjectures.

10 Generality of Membership Equational Logic

Although membership equational logic is a very simple logic, it can faith-
fully represent very nicely many other logics, even more complex ones, used
in algebraic specification. In particular, denoting membership equational
logic by Eqtl:, we have a conservative map of logics �9 : OSEqtl ~ Eqtl:
from order-sorted equational logic to membership equational logic, and a
conservative map �9 : PEqtl ~ Eqtl: from partial equational logic with
conditional existence equations [24] to membership equational logic: both
partial and order-sorted algebra are subsumed in membership algebra [21].

These extensions are bicompatible, so that for each order-sorted (resp.
partial) theory T there is a full inclusion of the category of algebras of T
into the category of membership algebras for /I~(T) (resp. ~ (T)) tha t has
a right adjoint in the other direction. It then follows that initial algebras,
free algebras, and relatively free algebras--for example, in parameterized
const ruct ions--are all preserved by both extension and restriction. There-
fore, we can do our computa t ion and proof-theoretic and model-theoretic
reasoning for order-sorted or partial algebra specifications in their corre-
sponding translations into membership equational logic.

In addit ion, not only is membership equational logic a special case of
Horn logic with equality, denoted Horn = , so that we have an obvious inclu-
sion of logics Eqtl: ~-~ Horn =, but we can also define what at the model-
theoretic level amounts to another "inclusion" Horn = ~-r Eqtl: so tha t in
fact bo th logics have exactly the same expressive power to specify classes
of models. It should be noted that , model-theoretically, we have a strict
hierarchy of types of classes of models

Varieties C Semivarieties C Horn C PartialSemivarieties

90

the first classes are specifiable ;by many-sorted equations, the second by
conditional many-sorted equations, the third by Horn clauses, and the last
by conditional existence equations.

The last family of model classes can be characterized more abstractly as
finitely locally presentable categories [11]. Mossakowsky [23] has shown how
a wide range of partial algebra specification formalisms, including partial
algebras with conditional existence equations, are in fact equivalent at the
model-theoretic level, in that, in ,fact they all specify the same categories
of models up to equivalences' a n d are all "sublogics" of each other in an
appropriate model-theoretic:sense.

Of course, such classes ofpartial models are intrinsically more complex
than the classes of models that :are Horn specifiablc or, equivalently, speci-
fiable in membership equational logic--and require also more complex proof
systems to reason about:; The :attractive feature of membership equational
logic is that, by using a bicompatible extension map, we can always em-
bed those more complex !o~cg:into the simpler proof-theoretic and model-
theoretic world of membe~hip equational logic in a conservative way, and
we can safely reason abo~t :free algebras, initial algebras, and parameterized
data types in this simple~ framework, being sure that the exact same results
and constructions hold in the same way, via the extension adjunction, for
their partial algebra counterparts.

11 Conclusion

Membership equational logic is a simple and general framework for alge-
braic specification that extends both order-sorted algebra and partial alge-
bra approaches. We have given conditions under which membership algebra
specifications can be efficiently executed by rewriting. These results extend
in several directions: extra variables in conditions; rewriting modulo equa-
tional axioms like commutativity, associativity, identity, idempotency and
their combinations; and parameterized specifications.

All this provides an operational semantics for Maude's functional sublan-
guage, in which these rewriting techniques have been implemented [20]. The
current Maude interpreter implementation can support efficient equational
logic computation reaching up to 200K rewrites per second for typical exam-
ples on a 90 MHz Sun Hyper SPARC [20], which appears to be competitive
with up-to-date implementations of PROLOG and ML.

Directions for future research include the following: generalization of
tree-automata techniques, to handle more complex membership tests that

91

emerge naturally in membership equational specifications; development of
the proving techniques for parameterized specifications; weakening or re-
moval of the sort-decreasingness conditions, as it was done in the order-
sorted case by using tree automata; extension of membership equational
logic with sort functions to achieve polymorphism in a more convenient way
than via parameterization alone, as advocated by Moses; elaboration of a
higher-order membership equational logic; and, more generally, investigat-
ing membership equational logic as a formalism for defining inductive types
from which more complex types could be generated by means of function
space construction and polymorphism.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

Adel Bouhoula. Automated Theorem Proving by Test Set Induction. Journal
of Symbolic Computation, to appear.

Adel Bouhoula and Jean-Pierre Jouannaud. Automata-driven automated in-
duction, submitted, I996.

Adel Bouhoula, Jean-Pierre Jouannaud, and Jos~ Meseguer. Specification and
proof in membership equational logic. Draft, 1996.

A-C. Caron, J.-L. Coquid~, and M. Dauchet. Encompassment properties and
automata with constraints. In Proc. 5th RTA, Montreal, LNCS 690, 1993.

Hubert Comon. Inductive proofs by specifications transformation. In Proc.
3rd RTA, Chapel Hill, LNCS 355, 1989.

Hubert Comon. Completion of rewrite systems with membership constraints.
In Proc. 19th ICALP, Vienna, LNCS 623, 1992.

[7] Hubert Comon and Catherine Delor. Equational formulae with membership
constraints. Information and Computation, 112(2):167-216, 1994.

[8] Hubert Comon and Florent Jacquemard. Ground reducibility and automata
with disequality constraints. In Proc. 11th STACS, Caen, 1994.

[9] Nachum Dershowitz and Mitsuhiro Okada. A rationale for conditional equa-
tional programming. Theoretical Computer Science, 75:111-138, 1990.

[10] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jose
Meseguer. Principles of OBJ2. In Proc. 12th ACM POPL, 1985.

[11] P. Gabriel and F. Ulmer. Lokal pr~sentierbare Kategorien. Springer Lecture
Notes in Mathematics No. 221, 1971.

92

[12] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types.
In Current Trends in Programming Methodology, vol. 4, pages 80-149, 1978.

[13] Joseph Goguen, Jean-Pierre Jouannaud, and Jos~ Meseguer. Operational se-
mantics for order-sorted algebra. In Proc. 12th ICALP, LNCS 194, 1985.

[14] Joseph Goguen and Jos~ Meseguer. Order-sorted algebra I: Equational deduc-
tion for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105:217-273, 1992.

[15] Claus Hintermeier, Claude Kirchner, and H~l~ne Kirchner. Dynamically-typed
computations for order-sorted equational presentations. Proc. 20th ICALP,
Jerusalem, LNCS 700, 1994.

[16] Jean-Pierre Jouannaud, Claude Kirchner, H~l~ne Kirehner, and Aristide
Megrelis. OBJ: Programming with equalities, subsorts, overloading and
parametrization. Journal of Logic Programming, 12:257-279, 1992.

[17] Jean-Pierre Jouannaud and B. Waldmann. Reductive conditional term rewrit-
ing systems. In Proc. Third IFIP Working Conference on Formal Description
of Programming Concepts, Ebberup, Denmark, 1986.

[18] Stephane Kaplan. Conditional rewrite rules. Theoretical Computer Science,
33:175-193, 1984.

[19] Denis Lugiez and Jean-Luc Moysset. Tree automata help one to solve equa-
tional formulae in ac-theories. Journal of Symbolic Computation, 18(4):297-
318, 1994.

[20] M. Clavel, S. Eker, P. Lincoln and J. Meseguer. Principles of Maude. In
Proceedings of the 1st International Workshop on Rewriting Logic and its Ap-
plications, Electronic Notes in Theoretical Computer Science 4, 1996.

[21] Jos4 Meseguer. Membership algebra, 1996. Lecture at the Dagstuhl Seminar
on Specification and Semantics, Report 151, 9628, 19-21, 1996.

[22] Jose M~seguer and Timothy Winkler. Parallel programming in Maude. In
J.B. Ban~tre and D. Le M~tayer, editors, Research Directions in High-Level
Parallel Programming Languages, pages 253-293. Springer-Verlag, June 1991.

[23] T. Mossakowski. Equivalences among various logical frameworks of partial
algebras. In Proc. gth CSL, Paderborn, 1995, LNCS 1092, 1996.

[24] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Alge-
bras. Oxford University Press, 1987.

[25] Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Research
Report SR-86-17, Univ. Kaiserslautern, October 1986.

