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Abst rac t .  The paper reviews recent results which aim at generalizing 
finite automata theory from words and trees to labelled partial orders 
(presented as labelled directed acyclic graphs), with an emphasis on log- 
ical aspects. As an important type of labelled partial order we consider 
pictures (two-dimensional words). Graph acceptors and their specializa- 
tion for pictures, "tiling systems", are presented, and their equivalence 
to existential monadic second-order logic is reviewed. Other restricted 
versions of graph acceptors are discussed, and an intuitive exposition 
of the recently established monadic quantifier alternation hierarchy over 
graphs is given. 

1 Introduction 

The computational model of finite automaton ows a lot of its wide applicability 
to its good logical and algorithmic properties. Such properties are, for instance, 
the expressive equivalence between finite automata  and monadic second-order 
logic over words, and the decidability of the emptiness problem (as well as the 
inclusion problem) for languages recognized by finite automata.  

These features of finite automata  were essential when finite au tomata  theory 
was extended from finite words (as inputs) to infinite words ([Bfi62]), and from 
finite words to finite trees ([TW68], [])o70]) and infinite trees ([Ra69]). By the 
equivalence between logic and automata,  monadic second-order formulas could 
be converted into automata.  Via this transformation, the decidability of the 
emptiness problem for these types of finite automata  provided proofs that  certain 
monadic second-order theories are decidable (in particular, the theories SIS and 
$2S of one, respectively two successor functions). Similarly, the verification of 
finite-state programs with respect to monadic second-order or temporal  logic 
specifications could be solved effectively, being reducible to the inclusion problem 
between automaton recognizable languages. 

The purpose of this paper is to review some results which throw a light 
on these questions in the context of finite partial orders. The motivation to do 
this is twofold: partial orders are a natural "next step" beyond trees, so that  a 
mathematical  analysis over this domain should be tried, and partial orders allow 
to model several aspects of concurrent computations more naturally than words 

o r  t r e e s .  
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We shall adopt a representation of partial orders by directed acyclic graphs 
with labelled vertices and labelled edges. Since a substantial theory of recogniz- 
able sets of infinite partial orders does not yet exist (excepting special cases such 
as infinite Mazurkiewicz traces and asynchronous automata), we confine our- 
selves to the case of finite partial orders in the present paper. Many approaches 
have been developed to obtain "natural" generalizations of finite automata the- 
ory to cover partial orders and graphs, among them [KS81], [Cou90], and [Th91]. 
We concentrate here on the last mentioned proposal, which is closely related to 
the "tiling systems" of [GR96] over labelled rectangular grids (pictures). This 
approach is based on the view that a finite automaton is a finite system which 
checks (by its finitely many transitions) local neighbourhoods of the input struc- 
ture, thereby associating a state to each point of the input. As it turns out, 
recognizability by such automata (nondeterministic graph acceptors) is equiva- 
lent to definability in the existential fragment of monadic second-order logic. We 
shall sketch this equivalence proof; it supplies an alternative method compared 
to the classical approach in linking logic and automata. (While in the classical 
method complementation results are the essential point and a single inductive 
proof covers the logical side, the present method does not involve complemen- 
tation and treats first-order logic and existential second-order quantifiers in two 
separate steps.) 

A master example of partial orders where the new features appear in a trans- 
parent way is provided by the class of pictures. In this case, graph acceptors take 
the simple form of tiling systems. Undecidabitity results such as for the empti- 
ness of recognizable sets are easy to show, and the recently established monadic 
quantifier alternation hierarchy is also set up in this domain. 

The present paper is meant as an introduction, integrating results from 
[Th91], [PST94], [GRST96], [Th96a], and [MT96]. Most arguments are presented 
on the intuitive level, assuming that the reader is familiar with basic automaton 
constructions and simple facts of logic. In Section 2, we collect the necessary 
terminology, and in Section 3 we recapitulate some well-known results on tree 
automata and recognizable tree languages. In the subsequent section, these re- 
sults are confronted with the corresponding statements on recognizable sets of 
pictures. In Section 5 we present the general model of finite-state graph accep- 
tor, supplemented by a discussion of some natural restrictions in Section 6. In 
the last two sections, we outline the hierarchy proof on monadic quantifier al- 
ternation and discuss some (mostly ongoing) work concerning further types of 
labelled partial orders. 

I thank Oliver Matz, Ina Schiering, and Sebastian Seibert for many useful 
discussions and helpful remarks on the subject of this paper. 

2 L a b e l l e d  P a r t i a l  O r d e r s  a n d  W o r d s ,  T r e e s ,  P i c t u r e s  

A partial order with node labels in a finite alphabet A can be represented as a 
relational structure (V, ~, (P,~)~,eA) where ~ is a partial order on the nonempty 
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set V and for each a E A, Pa is a subset of V, containing the elements v E V 
which are labelled by the letter a. 

In the au toma ta  theoretic view, the idea of "local neighbourhood" enters, 
where one considers the "next-smaller" or "next-larger" neighbours of an el- 
ement.  Thus it is useful to identify a (discrete) partial  order with a directed 
acyclic graph, taking as edge relation E the minimal relation which generates 
by its reflexive transitive closure the partial  order <.  (Thus (u, v) E E holds iff 
u < v and there is no w with u < w < v.) To be able to handle orderings on 
neighbour vertices, not only vertices but also the edges are labelled (for exam- 
ple to distinguish between first and second successor in binary trees). Thus, the 
structures of this paper  are vertex labelled and edge labelled graphs of the form 

G = (Y, (Eb)beB, (Pa)aeA) 

where V is the set of vertices, the Pa are disjoint subsets of V whose union is 
V, and the Eb are disjoint non-reflexive binary relations over V. The edge set 
is the union E = [-JbeB Eb. So we consider a vertex v to be labelled with letter 
a if v E Pc, and an edge (u, v) to be labelled with letter b if (u, v) E Eb. In 
the sequel, such graphs are often assumed to be acyclic, i.e. where one obtains a 
partial  order when forming the reflexive transitive closure E* of the edge set E.  

Let us mention some special cases: words, trees, pictures, and grids. A word 
w of length n (>  0) over the alphabet  A is presented as the labelled acyclic graph 
w = ( {1 , . . . ,  n}, S, (P~)aeA) where 1 , . . . ,  n are the letter positions of w, S is the 
successor relation on { 1 , . . . ,  n}, and Pa is the set of positions i in w which carry 

letter a. 
For convenience of notation, we consider as trees only binary ones (where each 

vertex has either two successors or is a leaf). In this case, nodes are representable 
as words over {1, 2}, the root as the empty  word, and the domain dom(t) of a 
tree t is a prefix-closed set K of words where for each word w E K either 
both  or none of wl,  w2 are in K.  A tree t : dom(t)  --+ A is presentable as 
a relational structure t = (dom(t), $1, $2, (Pa)aeA), where $1, $2 are the two 
successor relations on dom(t)  and Pa is defined as before. By the frontier of 
a tree we mean the sequence of its leaves in lexicographical order; the frontier 
word is the sequence of associated node labels. The frontier language of a tree 
language (set of trees) T is the set of frontier words of trees from T. 

By a picture over A we mean a mat r ix  of letters from A; if such a ma-  
trix p has m rows and n columns, the picture domain is the set dom(p) = 
{ 1 , . . . ,  m} x { 1 , . . . ,  n}, and the picture a map  p :  dom(p) --+ A. The correspond- 
ing relational structure is p = (dom(p), St, $2, (Pa)aeA) where $1, $2 contain the 
pairs ((i, j ) ,  ( i+  1, j)) ,  respectively ((i, j ) ,  (i, j +  1)) (with components  in dom(p)),  
and where P~ = {(i, j) I p((i, j ) )  = a}. By a grid we mean an unlabelled picture 
(or equivalently a picture over a one-letter alphabet) .  Also for pictures we shall 
use the notion of frontier word, which we fix to be the first row of a picture. Thus 
the frontier language of a picture language L is the set of first rows of pictures 

from L. 
It  is useful to consider boundary markers added to trees and pictures. In the 

case of binary trees, this will mean that  we add # to the alphabet  A and add to 
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each leaf two successors, each labelled with this new boundary symbol ~ .  The 
extended domain of the tree t including also the boundary positions is denoted 
dom + (t). In the case of pictures we pass from dom(p) = { 1 , . . . ,  m} • {1, . . . ,  n } to 
the set dom + (p) : {0 , . . . ,  m + I} • {0, . . . ,  n + 1} such that  the added boundary 
points are again labelled with ~ .  

3 A u t o m a t a  o n  T r e e s  

A (nondeterministic) tree automaton over A has the form A : (Q, A, q0, A F) 
where Q is the finite state set, A the alphabet of node labels, q0 the initial 
state, A _ ((A U {#}) x Q)a the transition relation, and F C_ Q the set of final 
states. We impose the restriction that  ~ has to be matched by the initial state, 
i.e., a transition ((a, q), (# ,  q'), (# ,  q")) only occurs with q' = q" = q0- (In the 
literature, transitions from Q x A x Q x Q are usually considered; the present 
definition is an inessential modification which fits better for a generalization to 
tiling systems and graph acceptors.) The automaton accepts a tree t if there is 
a run p : dom +(t) -+ Q which maps the root to a state in F,  such that  the 
tree with the extended vertex labelling (now in the set A x Q) can be covered 
(or: "tiled") by transitions from A. Formally, for each triple (u, v, w) of nodes 
from dom+(t), where v and w are the first, respectively second successor of 

the triple (t(v),p(v)) ,  has to occur in a .  A tree 
automaton is called deterministic if its transition set determines an evaluation 
procedure in the set Q, working from the tree frontier to the root. This means 
that  for any states q~, q~Z and any input letter a, only one state q exists such 
that ((a, q), (a', q'), (a", q")) E A (independently of a', a"). The tree language 
recognized by the tree automaton .A consists of those trees (over the given label 
alphabet A) which are accepted by .4, and two tree automata  are equivalent if 
they recognize the same tree language. 

The basic facts on tree automata are well-known (see, for example, [GS84]). 
Let us summarize some statements in the following theorem: 

T h e o r e m  1. (a) For any nondeterministic tree automaton one can construct an 
equivalent deterministic tree automaton. 
(b) The class of recognizable tree languages is closed under boolean operations 
and projection. (A tree language TB over B is a projection of a tree language TA 
over A if there is a map ~ : A -+ B such that the trees in TB originate from the 
trees in TA by applying 7c pointwise.) 
(c) The emptiness problem for tree automata is decidable. 
(d) The class of context-free languages coincides with the class of frontier lan- 
guages of recognizable tree languages. 

Part (a) is shown by the subset construction for tree automata:  Given a non- 
deterministic tree automaton.4 with state set Q, the corresponding deterministic 
automaton has subsets of Q as states, and a transition ((a, S), (a ~, S~), (a', S ' ) )  
is admitted if 

S : {q E Q I 3q' E S~3q " E S~:  ((a, q), (a ~, q'), (d',  q')) E A~4}. 
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We skip here further details, which are well-known and can be found in [GS84]. 
Finally we recall a natural example of a tree language which is not recog- 

nizable: the set of trees (over any given alphabet) which consist of a root with 
two identical subtrees t. A tree automaton which recognizes this set would also 
accept trees that  are not of this form (by a simple pumping argument, applied 
to the case where the height of t exceeds the number of states). Intuitively, a 
connection (comparison) between the two subtrees is possible within the run 
of an automaton only via the transition at the root; the finite number of such 
transitions does not suffice to distinguish infinitely many trees t. 

4 A u t o m a t a  o n  P i c t u r e s :  T i l i n g  S y s t e m s  

In order to transfer nondeterministic automata  from trees to pictures we use dif- 
ferent transitions. Over the label alphabet A (extended by the boundary marker 
~ )  and the state set Q, we consider (2 x 2)-matrices over (A tA {~:}) x Q. Due 
to the use of a boundary around pictures, it is not necessary to introduce initial 
and final states. (For example, the occurrence of an "initial state" at the top 
left corner of a picture and of a "final state" at the bot tom right corner can be 
imposed by allowing corresponding transitions where ~ occurs on the top row 
and left column, respectively on the bot tom row and right column.) Thus a tiling 
system over A is a triple A = (Q, A, A) with finite state set Q and a finite set 
A of (2 x 2)-matrices over (A U {~})  x Q (called transitions or tiles). A tiling 
system accepts a picture p over A if there is a run p : dom + (p) --4 Q, inducing 
a labelling of dom + (p) in (A U {~})  x Q, such that  each (2 x 2)-submatrix of 
adjacent positions matches a transition from A. Such a covering of a picture over 
(AU {~})  x Q is called a tiling by A, and the corresponding run accepting. Again, 
the picture language recognized by ,4 is the set of pictures (over A) accepted 
by ,4, and a picture language is called recognizable it consists of the pictures 

accepted by some tiling system. 
The notion of determinism for tiling systems is not as canonical as for tree 

automata.  Here we call a tiling system deterministic if its tiles induce a unique 
tiling on any given picture over A, starting from the top left corner down-right 
towards the bot tom right corner. More precisely, given the entries (a, q) for the 
upper row and left column of a tile, as well as the alphabet letter at the bot tom- 
right, there is only one matching tile, i.e. a unique state assignment for the 
bottom-right position. Moreover, there is only one tile to be put  on the top left 
corner of a picture, i.e., whose top and left alphabet letters are ~ ;  and such a 
uniqueness condition also holds for the continuation of a tiling along the leftmost 
column and along the top row of a picture: so a left column tile is determined 
uniquely by its upper row entries of the form (~, q), (a, q'), and a top row tile is 
determined uniquely given its left column entries (~ ,  q) and (a, q'). Such tiling 
systems are a version of the tessellation automata  of [IN77]. 

As we now verify, the preceding theorem concerning tree au tomata  fails 
for tiling systems in the parts (a), (b), (c); only for part  (d) a corresponding 
(but modified) claim can be stated. The following statement combines proofs of 



25 

[PST94] (for (a)), [GR96] or [GRST96] (for (b) and (c)), and [LS96] (for (d)). (As 
the author recently learned, all these results already appear, presented in a dif- 
ferent terminology, in the unpublished dissertation [Sp85], partly communicated 
in [Sp86].) 

T h e o r e m  2. (a) Not for each tiling system there is an equivalent deterministic 
tiling system. 
(b) The class of recognizable picture languages is closed under union, intersec- 
tion, and projection, but not under complement. 
(c) The emptiness problem for tiling systems is undecidable. 
(d) The class of context-sensitive languages coincides with the class of frontier 
languages of recognizable picture languages. 

Proof. (a): A suitable example is the set L of all quadratic pictures where label 
b occurs once on the rightmost column and once on the bottom row, moreover 
these two b are on the same counterdiagonal (i..e., in the same distance to the 
bottom right corner), and where label a occurs at all other positions. 

Recognizability of L by a (nondeterministic) tiling system is verified easily: A 
special kind of state is propagated along the diagonal (starting from the top left 
corner), and a point on this diagonal is guessed (by nondeterminism), from which 
two "signals" are sent (again in the form of special states), one horizontally to 
the right, one vertically to the bottom. If at the two border points where these 
signals arrive letter b occurs, this information can be transmitted to the bottom 
right corner (where the transitions are defined as to check this). The test that  
otherwise letter a occurs is easily implemented, as well as the test that  the picture 
is a square (using a continuation of the first mentioned "diagonal signal"). 

Now suppose that  a deterministic tiling system recognizes L. By determinism, 
on a picture from L the states of an accepting run are uniquely determined 
except for the last column and the last row (where transitions may depend 
on the occurrences of label b). By finiteness of the state set, one can find on 
a sufficiently large square two different placements ("options") of the b in the 
last column, and correspondingly in the last row, such that  in the associated 
accepting runs the penultimate state of the last column is the same. Consider 
the picture which results by taking the first option for b in the last column, the 
second option for b for the last row. On this picture an accepting run exists 
(take the run according to the first option and insert on the last row the state 
sequence according to the second option). This contradicts the definition of L. 

(The preceding proof shows that the subset construction fails for the domain 
of pictures, in contrast to the case of trees.) 

(b): It is easy to verify closure under union, intersection and projection. To 
show non-closure under complement consider the set K of pictures pq over the 
alphabet {a, b} where p and q are both square pictures and p ~ q. To check this 
by a tiling system, two properties have to be verified: the size of the matrix should 
be n x 2n for some n, and there should be in p and q a pair of corresponding 
positions carrying different letters. The first property is checked, for example, 
by two "diagonal signals" as mentioned above (from the top left corner to the 



26 

bottom row and up again to the top right corner). For the second, the position 
u in p is guessed by nondeterminism, while the corresponding position v in q is 
determined by the coincidence of two further "signals", one passing horizontally 
from u to the right, the other passing down-right from u along a diagonal, from 
there vertically upwards to the first row, and from there down-right as a diagonal 
again. 

Let us show that  the complement of K is not recognizable. The pictures of 
size different from n x 2n are detected easily (use a diagonal signal down-right 
and then up-right and check that it does not arrive at the top-right corner). Thus 
it suffices to show that  the set of pictures of the form pp, where p is square, is not 
recognizable. A tiling system can transfer the information from the left square 
grid (of size n • n) to the right square grid only via the two stripes of states 
along the border between the two half pictures (of square form). Assuming k 
states and l alphabet letters, the number of such stripes of tiles is (k �9 l)2(~+2). 
However, the number of possible (n x n)-squares  over the label alphabet grows 
by the rate 2 n2. Thus, for sufficiently large n we find distinct squares p and q of 
side length n such that  on tilings over pp and qq the central two stripes of states 
are identical. Thus pq and qp also admit tilings, a contradiction. 

(This argument is an adjustment of the above-mentioned idea to obtain non- 
recognizable tree languages: There the set of trees with two identical subtrees 
below the root was used, and the inability of tree automata to provide enough 
flow of information between these two subtrees was noted. Similarly, the two 
(n x n)-pictures as considered here are connected only via the central (one- 
dimensional) stripe of transitions, which is again insufficient to provide enough 
information flow between the two pictures.) 

(c): For any Turing machine Ad we can construct a tiling system ~4~ over an 
appropriate label alphabet which accepts some picture iff • halts when started 
on the empty tape. The idea is to let AM accept the pictures which code halting 
computations of Ad started on the empty tape. Such a halting computation is 
finite in space and time (the two dimensions of the picture). Thus, the first 
line of such a picture represents the initial configuration: a sequence of blanks 
together with one pair (so, blank) (where so is the initial state of iV(). The correct 
succession of ~ r i n g  machine configurations can be checked using (2 • 2)-square 
transitions. That  the picture is sufficiently large to include all work cells of 
the computation is guaranteed by excluding transitions for border points of the 
picture which code work cells. Finally the last line should include a final (= 

halting) state of Ad. 
(d) Given a linear bounded automaton (LBA) Ad, defining a context-sensitive 
language L, one can apply the idea of the previous proof to construct a tiling 
system which accepts a picture p iff the first row of p is a word accepted by 
~4. Conversely, the computation by a tiling system has to be simulated by an 
LBA. The main problem here is the parallel mode in which states are assigned to 
vertices row by row. This has to be broken up into a (nondeterministic) sequentiM 
process as performed by an LBA. Since there is no bound on the computation 

time of the desired LBA, this is possible. [::] 
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Over binary trees and over pictures, there is an internal structure of transi- 
tions: the rote of each vertex in a transition is fixed by means of the two successor 
relations $1, $2. This can be taken as a motivation to work with even simpler 
transitions or tiles, in which only two vertices appear (rather than three or four 
as in tree automata  or tiling systems), without a loss of expressive power. In both 
cases, for trees and pictures, it suffices to have transitions from ((AU {#})  x Q)2, 
i.e. connecting two vertices only, together with the distinction whether the first 
is related to the second via $1 or via $2. In the case of pictures, one speaks of 
the reduction of tiling systems to "domino systems" (cf. [GR96]). 

5 Graph Acceptors and Existential Monadic Logic 

Over words or trees, there is a simple argument to show that  monadic second- 
order formulas and finite automata  are expressively equivalent: Acceptance of a 
word or tree by a finite automaton can be described with an existential monadic 
second-order formula (where the existential set quantifiers are used to express 
the existence of a run, i.e. of a state sequence). Conversely, the construction of 
automata  for given monadic second-order formulas is done inductively over the 
construction of formulas. To simplify the technical details, one first eliminates 
first-order variables (in terms of second-order variables which range over sin- 
gletons); then it suffices to treat atomic formulas with set variables only, and 
as induction step the treatment of the boolean connectives "not", "or", and of 
the existential set quantifier suffices. By the closure of automaton definable sets 
under complement, union, and projection, these induction steps are trivial. 

For pictures (and hence for acyclic graphs or partial orders in general), this 
inductive argument fails because the class of automaton definable sets is not 
closed under complement. So a logic which matches recognizability should not be 
closed under negation. It turns out that  existential monadic second-order logic is 
appropriate (over graphs of bounded degree) ; and that  a different proof strategy 
from formulas to automata  can be adopted. It starts with a characterization of 
first-order logic and treats monadic second-order quantification separately. This 
approach to the proof, where first-order logic is not eliminated but emphasized, 
yields a uniform characterization of finite-state acceptors by existential monadic 
second-order logic (over labelled graphs of bounded degree, thus including the 
cases of words and trees). Only in special cases, where a closure result for nega- 
tion also holds (as it happens over words and trees) the characterization extends 
to cover entire monadic second-order logic. In this sense, existential monadic 
second-order logic is a more natural counterpart to finite au tomata  than full 
monadic second-order logic. 

Let us explain this approach in a little more detail. (For a full technical 
treatment,  see e.g. [Th96].) First we briefly fix the logical terminology. Over 
graphs G = (V, (Eba)beB, (P~a)~ea), formulas of monadic second-order logic in- 
volve variables x, y , . . .  for vertices and X, ] I , . . .  for sets of vertices; they are built 
up from atomic formulas 

Pa(x) (for a C A), Eb(x,y) (for b C B), x = y, X(y)  
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by means of the connectives -1, V, A, -+, ++ and the quantifiers 3, Y which may 
be applied to either kind of variable. The notation ~ ( x l , . . . ,  xm, X1 . . . .  , Xn) 
indicates that  in the formula ~ at most the variables a h , . . . , x m , X 1 , . . . , X n  
occur free, i.e., not in the scope of a quantifier. Formulas without free variables 
are called sentences. If G = (V, (P~)aeA ,  (Eba)beB) is a graph, v l , . . . ,  vm e V, 
V I , . . . ,  Vn C_ V,  the satisfaction relation 

(a ,  v~, . . . ,  v,~, V~,...V~) ~ ~(~1, . . .x ,~,  X~, . . .  ,Xn) 

holds if tP is formed for the signature given by the label alphabets A, B and 
satisfied in G when interpreting xi by vi, X i  by ~ ,  and of course "---" by equality, 
Pa by Pa a, and Eb by Eb a.  The superscripts G thus distinguish the relations in 
interpretations from relation symbols in formulas; they are omitted (as done also 
before) when no confusion arises. 

Let/(: be a class of graphs. Relative to/C, a sentence ~ defines the (graph) 
language L(~) = {G �9 K: ] G ~ ~}. A language L C K; is called definable in 
monadic second-order logic if some sentence ~v with L = L(~) exists. 

A formula 
3X1VX2  . . . B / V X k ~ ( X I  , X2,  . . . X k ,  Y ) ,  

where the X-~- and Y are blocks of second-order variables (possibly of different 
length) and ~ is a first-order formula, is called a ,Uk-formula. ,Ul-formulas are 
also called existential monadic second-order formulas (EMSO-formulas). A set 
of graphs is said to be 27k-definable if a defining s exists. 

To establish a general bridge between EMSO-formulas and "automata",  we 
recall the notion of graph acceptor (following the idea of [Th91]). As input graphs 
we allow graphs (not necessarily acyclic) whose degree is bounded by a constant 
d (which means that  for any vertex u there are at most d neighbours connected 
by an edge from or to u, in either direction). This boundedness of degree reflects 
our motivation to define graph properties by checking local neighbourhoods with 
a finite device: If there was no bound on degree, a finite device (being able to 
store only a finite amount of "local neighbourhoods") will confuse different neigh- 
bourhoods presented as inputs. Of course, such an approach is also conceivable, 
but for the present treatment we prefer to avoid the resulting complications. 

As a precise description of "local neighbourhoods" in graphs we use the 
notion of r-sphere. Call (for r _> 0) r-sphere around vertex v in the graph G the 
induced subgraph over those vertices in G which have distance < r to v, and 
with v as designated center. (The distance of u to v is < r if there is a path 
v o v l . . . v k  with k < r, va = v, vk = u, and (v~,vi+l) �9 E or (v i+t ,v i )  �9 E for 
i < k.) Clearly, if the graphs under consideration are of bounded degree (and of 
a fixed signature regarding the labellings), there are only finitely many possible 

isomorphism types of r-spheres. 
The automata to be introduced now accept graphs by associating states to 

vertices (as in tree automata) and by checking the existence (or nonexistence) 
of local neighbourhoods in the graph with this state assignment. An important 
feature is that  the checking process may "count" occurrences of local neighbour- 
hoods up to a certain fixed threshold number. Formally, a graph acceptor over 
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the label alphabets A, B has the form A = (Q, A, B, A, Occ) where Q is a finite 
set (of "states"), A is, for some r >_ 0, a finite set of r-spheres with vertex labels 
in A x Q and edge labels in B, and Occ is a boolean combination of condi- 
tions "there are :> n occurrences of spheres of type r"  (where v is an r-sphere 
isomorphism type over the label alphabets A • Q for vertices and B for edges). 

As for tiling systems, we call Zl the set of transitions (or tiles). The item Occ 
is called the occurrence constraint. 

The graph acceptor ,4 accepts the graph G if it can be "tiled by transitions" 
such that  a consistent assignment of states to vertices (a "run") is defined by 
this tiling and such that  the occurrence constraint is satisfied. Formally, there 
should be a run p : V --+ Q such that  each r-sphere of the expanded graph Gp 
with vertex labels in A x Q matches a transition from A, and the occurrence 
numbers of these spheres are compatible with the constraint Occ. We call this 
covering of Gp an "accepting tiling" of G. The graph language recognized by .4 
(relative to the graph class/(:) is Ltc(A) = {G E/C J,4 accepts G}. We say that  
L C/(: is recognizable iff L = Llc (A) for some graph acceptor A. 

Now the equivalence between EMSO-logic and graph acceptors reads as fol- 
lows (cf. [Th91], [Th96]): 

T h e o r e m  3. For any class IC of graphs of bounded degree, a graph language 
L CC_ 1C is recognizable by a graph acceptor iff L is EMSO-definable in IC. 

Proof. We shall only give a rough outline of the proof, which also shows that  a 
graph language L is recognizable by a graph acceptor with only one state iff L 
is first-order definable. 

For the direction from left to right we code states by 0-1-vectors (say of length 
m), whence state assignments to the graph vertices correspond to m-tuples of 
subsets of the vertex set. Thus, acceptance by a graph acceptor can be formalized 
by a statement 3 X 1 . . . X m ~ ( X 1 , . . . ,  Xm), where ~ is a boolean combination 
of statements "r-sphere r occurs > n times". Such a boolean combination is 
directly expressible as a first-order formula (starting with the quantifiers "there 
are distinct vertices X l , . . . ,  x . " ) .  

For the converse direction we have to transform an EMSO-sentence into an 
equivalent graph acceptor. It will suffice to transform a first-order sentence into 
an equivalent one-state graph acceptor, since existential set quantifiers express 
the same as the requirement that  an assignment of states to vertices (i.e., a run) 
should exist. A one-state graph acceptor can specify graph properties which fix 
the occurrence numbers of r-spheres up to a threshold t. Properties determined 
in this simple way (for suitable r and t) are called locally threshold testable. We 
are done if we can verify that  any first-order formula can only specify a locally 
threshold testable graph property. 

This claim is the content of "Hanf's Theorem" (shown already 1965 in the 
context of first-order model theory). The proof has to establish the following, 
for any given m: If two graphs are distinguishable by first-order formulas of 
quantifier-depth m, then, for some r and t, the occurrence numbers of r-spheres 
in the two graphs, counted up to threshold t, differ. In other words: For any m 
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there should exist r and t such that  the same occurrence numbers of r-spheres 
in graphs G, G ~ counted up to threshold t imply that  G, G I satisfy the same 
sentences of quantifier-depth m. In this form, the claim can be shown by an 
application of the Ehrenfeucht-Fraiss~-game. For the details we refer the reader 
to [EF95] or [Th96]. [] 

Finally, let us compare graph acceptors with automata  over words and trees, 
and with tiling systems over pictures. Clearly, conventional transitions of finite 
au tomata  over words and trees can be captured within 1-sphere transitions in 
graph acceptors. Moreover, the use of initial and final states is superfluous in 
graph acceptors: For example, over words an initial state should only occur at 
a 1-sphere center which has no left neighbour in the 1-sphere (with respect to  
successor, the edge relation). Thus the special role of initial and final states is 
captured by their occurrence in special transitions. By the same reason, pictures 
can be recognized without the use of a boundary symbol ~ ,  and again it turns 
out that  1-spheres suffice. In all these cases (when simulating classicM automata  
and tiling systems) the occurrence constraints of graph acceptors are not needed. 
In the next section we shall see that  over unrestricted acyclic graphs (or partial 
orders), these constraints are indispensable. 

6 R e s t r i c t e d  M o d e l s  o f  G r a p h  A c c e p t o r s  

The purpose of this section is to analyze the model of graph acceptor in some 
more detail. In particular, we show that  the two "complicated" features of graph 
acceptors are necessary over general acyclic graphs, if the expressive power 
should correspond to EMSO-logic: the admission of arbitrary sphere radius in 
the transitions, and the occurrence constraints. 

First we consider the issue of restricted sphere radius in transitions. 

P r o p o s i t i o n 4 .  Let L~ be the set of "n-supergrids', which have vertex label "a" 
throughout and are obtained from standard grids by substituting for any edge an 
edge sequence of length n (called "superedge"). L~ is recognizable (in the class of 
partial orders) by a graph acceptor with 2n-sphere transitions, but not by graph 
acceptors with 1-sphere transitions. 

Proof. Clearly, Ln is recognizable by a graph acceptor with 2n-sphere transi- 
tions. For contradiction, consider a graph acceptor ~4 which recognizes Ln (say 
for n > 4) with 1-sphere transitions. In an accepting run of a large enough 
n-supergrid, one can pick two occurrences of the same 1-sphere transition at 
the central positions of two superedges which are located between the same two 
columns of a n-supergrid (provided there is a sufficiently high number of rows in 
the supergrid). Obtain a new graph by exchanging the targets of the outgoing 
edges of the two 1-spheres covered by these transitions. The new graph is still 
acyclic and is again accepted by .4. Since the new graph is no more a supergrid, 

we obtain the desired contradiction. [] 
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An adaptation of the argument shows the same claim for any given sphere 
radius r (instead of r = 1). As remarked before, sphere radius 1 suffices over 
words, trees, and pictures. We do not know a precise description of the class of 
acyclic graphs where in graph acceptors the use of 1-sphere transitions suffices. 
It seems that  planarity conditions are useful in this context (as they occur also 
in the set-up of regular expressions for describing languages of labelled acyclic 
graphs, cf. [BDW95]). 

Let us turn to the occurrence constraints. In the next proposition we use 
graphs G~ which are made up of vertices Ul, �9  u~ and Vl, . . . ,  v~ as follows: 
From ul there are two edges, one to vi (labelled 0) and one to v((i+l) rood ~) 

(labelled 1). Imagine the u~ and the v~ arranged in two circles (modulo n), with 
two pointers from each vertex of the first circle to the second circle. 

P r o p o s i t i o n 5 .  Let L be the set of acyclic graphs Gn where at least one ver- 
tex ui is labelled b and the remaining vertices (not labelled b) are labelled a. 
L is recognizable by a graph acceptor, however not by a graph acceptor without 
occurrence constraint. 

Proof. The set of the graphs G~ is recognizable even without occurrence con- 
straints, when the vertex labellings are discarded. Inclusion of such a constraint 
(requiring at least one transition with vertex label b) then serves recognize L. 
Now, for a contradiction suppose that  L is recognizable without occurrence con- 
straints. Consider the graphs G~ over u l , . . . ,  u,~ and v l , . . . ,  vn with precisely 
one label b, say at ul. For sufficiently large n, there will be an accepting run 
(and corresponding tiling) where a transition is repeated, say with centers at ui 
and uj and such that  ul is not covered by these two copies of the transition. 
Then the graph with vertices u i + l , . . . ,  uj, Vi+l , . . .v j  (built up modulo j -  i), 
which has no label b, admits also an accepting tiling, a contradiction. [] 

In some situations, however, the occurrence constraints can be eliminated (at 
the cost of more states in graph acceptors). In particular, this applies to graph 
acceptors over words, trees, and pictures. The idea is to implement a threshold 
counting procedure within the transitions, using the partial order to avoid loops 
in the counting process. It is essential that the overall counting result can be 
collected at some special vertex and that  the intermediate counting results are 
propagated without duplication. (So we refer to a "designated" outgoing edge of 
each vertex, which has to be determined uniquely in terms of the edge labelling.) 

P r o p o s i t i o n 6 .  Let E be a class of acyclic graphs which have a designated out- 
edge for each vertex and furthermore a vertex which is reachable from any vertex 
by a path (i.e., a greatest element of the associated partial order). Then a lan- 
guage L C IC is recognizable iff it is recognizable by a graph acceptor without 
occurrence constraints. (The same holds if  all vertices of the graphs under con- 
sideration have a designated in-edge and a smallest element in the associated 
partial order.) 
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Proof. Consider a graph acceptor with state set Q, transitions v l , . . . ,  ~-k (say 
of radius r), and occurrence constraint Occ in which t is a threshold such that  
occurrence numbers > t are not distinguished in Occ. We construct a new graph 
acceptor whose states are vectors (q, n l , . . . , n k )  with nl ~ t for i = 1 , . . . , k .  
At vertex v this vector indicates that  state q E Q is assumed and "up to now" 
the transition rl has occurred ni times. These occurrence numbers are updated 
following the paths of the partial order of the input graph. The designated out- 
edge serves to avoid double-counting: The accumulated occurrence numbers are 
transferred further only along the designated outgoing edge. Thus, for an r- 
sphere of type ri whose center has no incoming edges, only the vector (nl, �9 �9 nk) 
with ni = 1 and nj = 0 for j ~ i is allowed. Any given r-sphere, say of type vi, 
which has incoming edges, is (in its center) supplied with a vector ( n l , . . . ,  nk) 
where each nj is the sum of the j - th  components of the sources of incoming 
edges which are designated, and where furthermore 1 is added to ni (to capture 
that  the present type is vi). Finally, r-sphere transitions for the greatest element 
(the unique vertex without outgoing edges) are allowed only for the case that  
the center vertex is labelled with some vector ( n l , . . . ,  nk) which satisfies Occ. 

The proof for the case of designated in-edges and the existence of a smallest 
element in the partial order is analogous. [] 

It is clear that  graph acceptors over words, trees, and pictures are subsumed 
under the preceding proposition, so that  occurrence constraints can indeed be 
eliminated in these cases. Formally, for trees one applies the second case of 
the proposition, taking the (unique, if existing) incoming edge of a vertex as 
designated. Over pictures one takes as designated edges the horizontal ones, 
except for the vertices of the last column (detected by the lack of a horizontal 
out-edge in a transition) where the vertical out-edge is taken as designated. A 
detailed construction is given in [GRST96]; it shows that  graph acceptors and 
tiling systems have the same expressive power over pictures. 

7 B e y o n d  R e c o g n i z a b i l i t y :  T h e  M o n a d i c  H i e r a r c h y  

We have seen in Section 4 that  the class of recognizable picture languages, or 
equivalently the class of EMSO-definable picture languages, is not closed under 
complement. How large is the gap between recognizability and definability in full 
monadic second-order logic? As shown in [MT96], this gap is as large as possi- 
ble: one obtains an infinite hierarchy above the recognizable picture languages, 
induced by the alternating application of complementation and projection (or 
speaking logically, by the alternating application of existential and universal set 
quantifiers). In other words, the classes of ~Uk-definable picture languages form 
an infinite hierarchy for increasing k. Moreover, this holds even over unlabelled 
pictures, i.e. rectangular grids. The proof involves a nice application of automata 

theory to a "purely logical" question. 
To explain this result, note that  any pair (m, n) of (positive) natural numbers 

fixes uniquely a grid, which we shall denote by G(m, n); it is the grid with m 
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rows and n columns. Any binary relation over the positive natural numbers 
thus corresponds to a grid language. We consider unary functions as special 
binary relations and thus associate with the function f over the positive natural 
numbers the grid language 

L[f] = {a(rn, f(m)) I m > 0}. 

Now the hierarchy is witnessed by the grid languages L[fk], where fk is a variant 
of the k-fold exponential function over 2 (called sk in the sequel). Inductively, 
we define 

s0(m) = m, ~k+~(m) = 2"~(m), I0(m) = m, fk+~(m) = A(m)21~(m) 

Now the main result of [MT96] reads as follows: 

T h e o r e m T .  (a) If L[f] is Zk-definable, then f(m) is in sk(O(m)). 
(b) The grid language L[fk] is Z2k+3-definable. 
(c) The hierarchy of the classes of Zk-definable grid languages (for k = 1, 2 . . . .  ) 
is infinite. 

Proof. First we note that  from (a) and (b) we obtain (c), using that fk+t(m) is 
not sk(O(m)). It remains to show (a) and (b). 

(a): Let ~o(Y~,..., Yn) be a 23k-formula , defining pictures over the label alphabet 
{0, 1}% For any given column length m we shall transform ~, into a finite word 
automaton Am which scans pictures of colunan length m from left to right, 
column by column; so the input letters are columns of length m with entries in 
{0, 1}", and the state set also depends on the column length m. It suffices to 
show that  

(+) for column length m there is a nondeterministic finite automaton 
.A,~ which is equivalent to ~, over pictures of column length m and has 
sk-l(c TM) states for some constant c (depending only on T)- 

Then the shortest word accepted by Am has length _< sk_l(cm). Hence, if 
defines a grid language L[f], then f (m)  is sk(O(m)), as was to be shown. 

The claim (+) is proved by induction on k, which is the number of set quan- 
tifier blocks in 

~ ( v ,  . . . .  , v~) = 3xk v x k _ l . . . ~ / v Y ?  r  v ~ , ~ , . . . ,  x l ) ,  

equivalently 

3x~  -, 3X~_l  . . . .  3~-7 r . . . .  , Y~, x--L. . . ,  ~ ) ,  

with first-order kernel r respectively r For simplicity assume tha~ the variable 
b[oc___ks X~ all have the same length 1. Consider the case k = 1. The formula 
3X1 r (Y1,..-, Y~, ~ [ )  defines a picture language over the alphabet {0, 1} '~ which 
(by Theorem 3 and the last remark of Section 6) is recognizable, say with a 
tiling system over the state set Q. (We suppose, without loss of generality, that  
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on the boundary of a picture only a dummy state is assumed.) When reading a 
picture column by column from left to right, one can view the tiling system as 
a nondeterministic finite word automaton; for column length m a state of this 
automaton is an m-tuple over Q. Thus for column length m the automaton has 
cm(: So(Crn)) states where c is a constant depending only on the tiling system 
(and hence on 9). 

In the induction step (from k to k + l )  we use the fact that  a complementation 
step (absorbing -~) and a projection step (absorbing l existential quantifiers) 
have to be carried out. For nondeterministic automata,  the first step, involving 
the subset construction, increases the number of states by an exponential (thus 
passing from the bound Sk-1 (O(m)) to sk (O(m))). Since the second step leaves 
the respective number of states as it is, we obtain the bound on the number of 
states as required in (+). 

(b): For each k > 0 we have to provide a E2k+s formula which defines the  grid 
language L[fk]. The idea is to describe by such a formula, given any grid say of 
column length m, a counting process depending on k and m: On the grid, we 
imagine writing binary numbers of length fk-1 (m) on the top row, in succession 
from 0 up to 2 lk-l('~) - 1. To "write" means to describe a corresponding subset 
Zk of the top row (which induces by its characteristic function a sequence of 
bits). The overall length of the sequence of all these binary numbers is then 
fk-l(m)" 2 lk-l(m), which is fk(m), i.e. the desired row length for a grid of 

column length m. 
For the definition of the set Zk, one proceeds by induction on k. We shall 

indicate how to obtain a monadic second-order formula; the detailed analysis 
leading to the formula complexity Z2k+3 will not be presented here. 

As a preparation, it is useful to recall the definition of transitive closure in 
monadic logic. I f /~  is a (definable) binary relation and u an element (vertex), 
we can define the set of vertices v which are reachable from u via a path made 
up of pairs from R. Namely, a vertex v is reachable from u in this sense iff it 
belongs to all sets X which contain u and such that  for any pair (w, w') E R 
with w E X,  also w' belongs to X. This type of definition allows, for instance, 
to describe the elements of the down right diagonM starting at a given vertex u. 
In the sequel we shall assume the definability of such sets tacitly. 

Let us show the claim for k = 1. We have to describe, over column length 
m, the counting process from 0 to 2 "~ - 1, using binary numbers of length m; 
this will fix the row length to be m2'~(= fl(m)). We do this by describing two 
subsets I/1, Z1 of the first row, which we identify with two 0-1-sequences. The 
first sequence ]11 is in (10"~-1) *, i.e. it marks by its entries 1 the first digits 
of the binary numbers, while the second sequence Z1 is the sequence of these 
binary numbers, each of length m, in succession. Now a position is in Y1 if 
it belongs to the transitive closure of the first top row position under taking 
the m-th horizontal successor. This is expressible by a monadic formula if the 
m-th horizontal successor is definable. For this, one observes that  two top row 
positions u, v are in distance m (over a grid of column length m) if there is a third 
position w on the bot tom row which is reached simultaneously in two ways: along 
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a down right diagonal from u and along a vertical line down from v. Transitive 
closure definitions can be used to express this, thus Y1 is definable. Turning to 
the definition of Z1, the essential point is to describe that  two successive number 
representations stand for numbers i, j with i + 1 = j .  But this is easy because 
we can say (as above) when two top row positions are in distance m (and then 
can fix corresponding bits in two successive binary numbers). 

On grids whose row length is greater than m2 '~ we need these definitions in 
slightly more general form: We have to refer to an iterated concatenation of the 
sequences Y1 and Z1 (by stipulating the successor of 2 m - 1 to be 0 again). We 
denote these iterated versions of ]/1, Z1 on longer grids by ]111, ZI (which are again 
definable in monadic logic). Furthermore, we need to compare bit-sequences of 
length m over a longer distance than m, if they start at corresponding positions 
u, v of the Y~-marking, where u comes before v. We say that  v is reachable from 
u by proceeding to the right, and express that the m bits from vertex u (where 
Y~ is 1) up to u' coincide with the m bits from v (where Y~ is also 1) up to 
v I as follows: for any two "corresponding" vertices ~/ and ~ between u and u I, 
respectively between v and v' (inclusive), the bits at ~ and ~ coincide. Vertices 
and ~ "correspond" if they are connected via two auxiliary vertices u* and v* as 
follows: u* is reached vertically downwards from u and down-left diagonally from 
fi, similarly v* is reached vertically downwards from v and down-left diagonally 
from ~, and v* is reachable from u* by passing horizontally to the right. All 
these connections are describable using transitive closure definitions. 

The induction step is explained just for the case k = 2 (this suffices to clarify 
the genera] construction). We have to describe the counting process from 0 up 
to 2 "~'~ - 1 using binary numbers of length ra2 m. Here we use the sequences 
]Ill, Z~. We have to define two subsets ]/2, Z2 of the top row (again viewed as 0-1- 
sequences) where ]/2 is in (10 m2m- 1)., i.e. marks the starting points of the binary 
numbers of length rn2 rn, and Z2 is the sequence of these binary numbers. The 
definition of Y~_ and Z2 can be done as before, once the distance rn2 rn between 
two top row positions becomes definable. This, however, is possible by using the 
numbers coded in Z~, given by induction hypothesis, as addresses of positions in 
Y2, Z2. For instance, consider two positions u, v where the Y/-bit is 1. They have 
distance m2 m if the block of m bits in Z~ which starts at u coincides with the 
corresponding block of rn bits starting at v and such that  this block of length 
m does not occur inbetween, starting at a Y]-position. The equality of blocks of 
length m in turn can be described as explained in the preceding paragraph. [] 

As a consequence of the theorem we obtain that  over (acyclic) graphs in 
general, the hierarchy of ~Uk-definable sets is strict .  (For grids, a strictness proof 
has recently been announced by Nicole Sehweikardt, Mainz.) 

The theorem above shows that the gap between automata  over graphs (equiv- 
alent to the 27 t-fragment of monadic second-order logic) and futt monadic second- 
order logic is large, when the input structures are grids, pictures, or more com- 
plicated graphs. The hierarchy theorem sharpens the classical results on limits of 
27i-definability, originating in Fagin's work (see [Fag75], [FSV95]). There it was 
shown that  connectivity is a monadic graph property which is not ~l-definable. 
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In [Fag74] Fagin had shown that the Zl-fragment of unrestricted second-order 
logic (where second-order quantifiers range over relations, rather than sets), char- 
acterizes NP; as a consequence the n-th level of the polynomial time hierarchy 
is characterized by the Z~-fragment of unrestricted second-order logic. So the 
Z~-hierarchy of monadic logic is the "monadic analogue" of the polynomial time 
hierarchy. 

A closer analysis of the hierarchy proof above shows, however, that the re- 
lation between the polynomial time hierarchy and its monadic version is very 
loose. The defining formulas for the witness languages L[fk] as used above can 
all be written as formulas 3 X 1 . . . 3 X ~ ( X 1 , . . . ,  X,)  where ~ belongs to the 
extension of first-order logic by the transitive closure operator (see [EF95] for 
definitions). As a consequence, all the sets L[fk] belong to NP, the first level 
of the polynomial time hierarchy. In fact, even for the non-elementary function 
f : m ~-~ f,~(m) the set L[f] is in NP. On the other hand, recent work of Ajtai, 
Fagin, and Stockmeyer shows that for each level of the polynomial time hierar- 
chy some complete set exists which is definable in monadic second-order logic. 
So the monadic alternation hierarchy result seems to be far away from the open 
problem whether the polynomial time hierarchy is infinite. 

8 C o n c l u d i n g  R e m a r k s  

The emphasis of this paper was to present a general approach to "recognizable" 
sets of labelled partial orders by means of a model of graph acceptor and some 
variants of it, and to show over the domain of pictures and grids that central 
statements of classical automata theory fail. 

It is interesting to anMyze the situation for other classes of labelled partiM 
orders. A rough distinction of such classes may be done in three categories: 
(1) Classes where the central facts on word automata and tree automata are 
preserved, (2) classes which are "opposite", such as pictures and grids, where 
neither closure under complement holds nor the emptiness problem is decidable, 
and (3) classes with a "mixed situation". 

A natural case of the first category is given by the Mazurkiewicz traces, 
viewed as partial orders (presented as dependency graphs). Several chapters of 
[DR95] develop this theory of recognizability. The trace dependency graphs ex- 
haust rather well the range of the first category; it seems that by any substantial 
generalization of trace dependency graphs one leaves the framework of classical 

automata theory. 
A candidate for the second category is, besides pictures and grids, the class 

of "mirror-concatenated trees" ([Th96a]); they are obtained from two labelled 
ordered trees with identical numbers of leaves by identifying the frontiers (which 
is done order preserving) and by reversing the edge direction in one tree (so 
that the roots of the two trees give a smallest and a greatest element in the 
resulting partiM order). Surprisingly, these simple partiM orders lead to recog- 
nizable sets with undecidable emptiness problem. (Namely, for any pair G1, G2 
of context-free grammars, the emptiness of the intersection L(G1) A L(G2) can 



37 

be checked by forming the set S(G1, G2) of mirror-concatenated derivation trees 
from G1, G2, which have a common frontier word, and by testing for the empti- 
ness of S(G1, G2). The set S(GI, G2) is recognizable by a graph acceptor, con- 
structible from G1, G~.) We conjecture that over this domain also the closure 
under complementation fails for recognizable sets. 

A "mixed situation" (as in the third category above) occurs over directed 
acyclic graphs of bounded tree-width. A graph is of tree-width k if there is a 
partition of its edge set into "clusters" (also called tree decomposition) and an 
undirected edge relation R on the collection of clusters such that three properties 
are satisfied: the clusters together with R define an undirected tree t, each cluster 
contains at most k vertices, and the clusters in which a given vertex v occurs 
form a connected subset of the tree t. Over graphs of bounded tree-width, the 
emptiness problem for monadic second-order properties is decidable ([Cou89], 
[See92]). On the other hand (as ongoing work of I. Schiering shows), existential 
monadic second-order sets of graphs of bounded tree-width need not be closed 
under complement; the complementation property can be saved, however, when 
the partition of the tree decomposition has only clusters which form connected 
subsets of the given graph. 

There are further directions of work which have not been touched in this 
paper and which deserve more study. Already in the introduction we mentioned 
the subject of monadic second-order properties of infinite partial orders. Another 
track is the description of properties by calculi of regular expressions (as pursued 
in [BDW95]), or by algebraic notions of recognizability (as developed in Cour- 
celle's work [Cou90],[Cou96]). Finally, for applications in decision problems of 
logic or in program verification the complexity of the transformation procedures 
from logical formulas to finite-state acceptors need to be analyzed. 
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